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Representations of the Quantum Plane

and the Quantum Algebra Uq(sl2)
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Sapporo 060-0810, Japan
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Abstract

A class of representations on the Hilbert space L2(Rd) (d ≥ 2) of the
quantum plane C2

q and the quantum algebra Uq(sl2) is presented. The
boundedness and the unboundedness of the representations are discussed.
A physically interesting example of the representations is shown to appear
in a two-dimensional quantum system with a magnetic field concentrated
on an infinite lattice.

Keywords: quantum plane, quantum algebra, singular magnetic field.

1 Introduction

In the previous paper [2] (cf. also [1]), the author considered a quantum system
in the plane R2 which is under the influence of a perpendicular magnetic field
concentrated on an infinite discrete set D of R2 and showed that, in this quantum
system, there appear, in a natural way, representations of the canonical com-
mutation relations (CCR) with two degrees of freedom. Interestingly enough,
these representations are not necessarily unitarily equivalent to the Schrödinger
representation of the CCR with two degrees of freedom and each inequivalent
representation physically corresponds to the occurrence of the Aharonov-Bohm
effect in the context of the quantum system under consideration. Moreover, in
connection with the inequivalent representations with D being an infinite lattice,
bounded operator representations of the quantum plane C2

q and the quantum
algebra Uq(sl2) with |q| = 1 (q ∈ C) were constructed as well as their reductions
to lattice quantum systems.

∗Supported by the Grant-In-Aid No.17340032 for Scientific Research from the JSPS.
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From a mathematical point of view, it would be natural to ask if there is
any general structure behind the representations of C2

q (|q| = 1) constructed in
[2]. This is one of the motivations for the present work. In this paper, we show
that the answer is affirmative, presenting a general theory of representations of
C2

q on the Hilbert space L2(Rd) (d ≥ 2) with |q| not necessarily equal to one.
This general theory, of course, includes, as examples, the previously obtained
representations of C2

q mentioned above. A new feature of the representations of
C2

q given in this paper is in that they may be unbounded.
As for work related to the present one, we mention only Schmüdgen’s pa-

pers [6, 7, 8], which may have close connections in theoretical structures and
mathematical methods. In [6] (resp. [7]), ∗-representations of the real quantum
plane R2

q (resp. R2
q, the real quantum hyperboloid Xq,γ and SLq(2, R)) with

|q| = 1 are discussed, while those of Uq(sl2(R)) with |q| = 1 are investigated in
[8]. We remark that, in the present paper, we do not consider ∗-structures of
the representations constructed.

The present paper is organized as follows. Section 2 is a preliminary, where
we define a class of closed linear operators on L2(Rd) constructed from the
Schrödinger representation of the CCR with d degrees of freedom. In Section
3 we present a general scheme for the construction of a class of representations
of C2

q on L2(Rd). Here we see that, to obtain an unbounded operator represen-
tation, the constituent operators of the representation are required to have a
common invariant domain. A possible form of such an invariant domain is given
in Section 4 in the case d = 2. In the paper [1], we showed a scheme to obtain
representations of Uq(sl2) from a representation of C2

q. Using this scheme and
the results in Section 3, we present in Section 5 a class of representations of
Uq(sl2) on L2(Rd). In the last section, we consider a two dimensional quantum
system with a singular gauge potential determined by a meromorphic function
of which poles are on an infinite lattice and show that representations of C2

q

(resp. Uq(sl2)) of the type discussed in Section 3 (resp. Section 5) are realized
in this system.

2 Preliminary

For each vector a ∈ Rd (d ≥ 2), we define a unitary operator V (a) on the Hilbert
space L2(Rd) by

(V (a)ψ)(x) := ψ(x + a), ψ ∈ L2(Rd), a.e.(almost everywhere) x ∈ Rd. (1)

Let G be a Borel measurable function on Rd a.e. finite. We denote the mul-
tiplication operator by the function G on L2(Rd) by the same symbol G. The
following lemma is well-known (or easily proved):

Lemma 1 Let Ga(x) := G(x + a), a.e.x ∈ Rd. Then, for all a ∈ Rd, the
operator equality V (a)GV (a)∗ = Ga holds, where V (a)∗ denotes the adjoint of
V (a).
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Let
T (a) := GV (a). (2)

Since the function G is a.e. finite, the multiplication operator G is a densely
defined closed linear operator on L2(Rd). It follows that the same holds for
T (a). But T (a) may be unbounded. Note that the operator equality

G = T (a)V (a)−1 (3)

holds. Some basic properties of the operator T (a) are summarized in the next
proposition:

Proposition 1 Let T (a) be as above. Then:

(i) The operator T (a) is bounded if and only if the function G is essentially
bounded on Rd. In that case, D(T (a)) = D(G) = L2(Rd).

(ii) The operator T (a) is unitary if and only if |G(x)| = 1, a.e.x ∈ Rd.

(iii) Let
NG := {x ∈ Rd|G(x) = 0}. (4)

Then T (a) is injective if and only if the Lebesgue measure |NG| of NG is
equal to zero. In that case, G is injective with T (a)−1 = V (−a)G−1 on
D(G−1).

Proof. (i) Let T (a) be bounded. Then it follows from the closedness of
T (a) and the denseness of D(T (a)) that D(T (a)) = L2(Rd). Hence, by (3), G
is bounded with D(G) = L2(Rd), implying that the function G is essentially
bounded on Rd. Proving the converse statement is easy.

(ii) If T (a) is unitary, then, by (3), G is unitary. This implies that |G(x)| =
1, a.e.x ∈ Rd．The converse statement can be easily proved.

(iii) Suppose that T (a) is injective. Then, by (3), G is injective. On the
other hand, it is easy to see that kerG = {ψ ∈ L2(Rd)|{x ∈ Kc

ψ|ψ(x) 6= 0} ⊂
NG} · · · (∗), where Kψ is a null set of Rd depending on ψ. Hence |NG| must be
zero. Conversely, suppose that |NG| = 0. Then, by (∗), kerG = {0}. Hence
G is injective, which, together with the injectivity of V (a), implies that T (a) is
injective. ¤

For each vector b ∈ Rd, we define a unitary operator

U(b) := eib·x (5)

(the multiplication operator by the function : x 7→ eib·x) on L2(Rd). It is easy
to see that

V (a)U(b) = eia·bU(b)V (a), a,b ∈ Rd, (6)

the d-dimensional form of the Weyl relation.

Proposition 2 For all a,b ∈ Rd, U(b)D(T (a)) = D(T (a)) and

U(b)T (a) = e−ia·bT (a)U(b).
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Proof. Direct computation using (6) and the commutativity of G with U(b).
¤

Proposition 3 For all a ∈ Rd, T (a)∗ = (G∗)−aV (−a) and D(G) ⊂ D(T (a)∗).

Proof. By Lemma 1, we have T (a) = V (a)G−a. Since V (a) is bounded, it
follows that T (a)∗ = G∗

−aV (a)∗ = (G∗)−aV (−a). Let ψ ∈ D(G). Then∫
Rd

|(G∗)−a(x)|2|(V (−a)ψ)(x)|2dx =
∫

Rd

|G(x)|2|ψ(x)|2dx < ∞.

Hence ψ ∈ D(T (a)∗). ¤

3 A Class of Hilbert Space Representations of
the Quantum Plane

Let w1 and w2 be linearly independent vectors in Rd. Suppose that there exist
non-zero Borel measurable functions Fj : Rd → C (j = 1, 2) a.e. finite and a
constant q ∈ C \ {0} satisfying

F1(x)F2(x + w1) = qF1(x + w2)F2(x), a.e.x ∈ Rd. (7)

A simple example satisfying the functional equation (7) is given as follows:

Example 1 Let u,v ∈ Rd, α, β ∈ C and q := eβw1·v−αw2·u. Let

F1(x) := eαx·u, F2(x) := eβx·v.

Then it is easily checked that these F1 and F2 satisfy (7).

We define
Tj := FjV (wj), j = 1, 2. (8)

Theorem 1 For all ψ ∈ D(T ∗
1 ) ∩ D(T ∗

2 ) and φ ∈ D(T1) ∩ D(T2),

〈T ∗
1 ψ, T2φ〉 = q 〈T ∗

2 ψ, T1φ〉 , (9)

where 〈 · , · 〉 denotes the inner product of L2(Rd).

Proof. We have 〈T ∗
1 ψ, T2φ〉 =

∫
Rd F1(x − w1)F2(x)ψ(x − w1)∗φ(x + w2)dx

and
〈T ∗

2 ψ, T1φ〉 =
∫

Rd

F2(x − w2)F1(x)ψ(x − w2)∗φ(x + w1)dx.

By change of variables and condition (7), one sees that (9) holds. ¤
Theorem 1 and Proposition 1-(i) imply the following result:
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Corollary 1 Suppose that F1 and F2 are essentially bounded on Rd. Then T1

and T2 are bounded with D(Tj) = L2(Rd) (j = 1, 2) and T1T2 = qT2T1.

Thus, in the case where F1 and F2 are essentially bounded, the set {T1, T2}
of operators yields a bounded operator representation of the quantum plane C2

q

with q 6= 0,±1 ([4, 5]).
In the case where at least one of F1 and F2 is not essentially bounded on Rd,

however, we need some condition for {T1, T2} to give a representation of C2
q:

Corollary 2 Suppose that there exists a dense subspace D in L2(Rd) such that,
for j = 1, 2, V (wj)D ⊂ D and FjD ⊂ D. Then TjD ⊂ D (j = 1, 2) and
T1T2 = qT2T1 on D.

Proof. The property TjD ⊂ D follows from the present assumption and the
definition of Tj . By Proposition 3, D ⊂ D(T ∗

1 )∩D(T ∗
2 ). Hence, by Theorem 1,

we have that, for all ψ, φ ∈ D, 〈ψ, T1T2φ〉 = 〈ψ, qT2T1φ〉. Since D is dense, we
obtain the desired result. ¤

Suppose that the assumption of Corollary 2 holds. Then we can define the
algebra generated by T1|D (the restriction of T1 to D) and T2|D. We denote it
Ow1,w2(D). We define

Ow1,w2(D)′ := {B ∈ B(L2(Rd))| 〈B∗φ, Tjψ〉 =
〈
T ∗

j φ,Bψ
〉
, φ, ψ ∈ D, j = 1, 2},

(10)
the weak commutant of Ow1,w2(D), where B(L2(Rd)) denotes the Banach space
of all bounded linear operators B on L2(Rd) with D(B) = L2(Rd).

Proposition 4 Let a ∈ Rd be such that a ·wj ∈ 2πZ, j = 1, 2 and U(a)D ⊂ D.
Then U(a) ∈ Ow1,w2(D)′.

Proof. Applying Proposition 2, we have U(a)Tj = TjU(a), which implies
the desired result. ¤

4 Invariant Domains in the Case d = 2

In this section, we consider the case d = 2 and suppose that w1 × w2 > 0.
In this case, a possible invariant domain for T1 and T2 can be constructed as
follows. We first introduce a subset Lj of Rd (j = 1, 2) by

L1 := ∪n∈Z{tw1 + nw2|t ∈ R}, L2 := ∪m∈Z{mw1 + tw2|t ∈ R}. (11)

Note that
L1 ∩ L2 = Lw1,w2 := {mw1 + nw2|m,n ∈ Z}, (12)

a two-dimensional lattice. The set

Ω := Lc
1 ∩ Lc

2 = (L1 ∪ L2)c (13)
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is an open set in Rd. It is easy to see that

Ω ± wj = Ω, j = 1, 2. (14)

Hence Ω has the translation symmetry with vectors ±wj (j = 1, 2). We de-
note by C∞

0 (Ω) the set of infinitely differentiable functions on Rd with compact
support in Ω.

Proposition 5 Suppose that each Fj (j = 1, 2) is infinitely differentiable on Ω.
Then TjC

∞
0 (Ω) ⊂ C∞

0 (Ω) and T1T2 = qT2T1 on C∞
0 (Ω).

Proof. We have FjC
∞
0 (Ω) ⊂ C∞

0 (Ω). By (14), V (wj)C∞
0 (Ω) ⊂ C∞

0 (Ω).
Thus the desired result follows. ¤

5 A Class of Hilbert Space Representations of
Uq(sl2)

For a complex number q ∈ C\{0,−1, 1}, the quantum algebra Uq(sl2) is defined
to be the complex associative algebra with unit 1 generated by four elements
E,F,K,K−1 subject to the following relations [4, 5]:

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, (15)

[E,F ] =
K − K−1

q − q−1
, (16)

where [X,Y ] := XY − Y X. As is shown in Lemma 4.1 and Lemma 5.1 in [1]
(cf. also [9]), there is a general scheme to construct a representation of Uq(sl2)
from a representation of the quantum plane C2

q.
Let T1 and T2 be as in Section 3.

Theorem 2 Assume that |NFj | = 0, j = 1, 2. Suppose that there exists a
dense subspace D in L2(Rd) such that, for j = 1, 2, V (wj)D ⊂ D and FjD ⊂
D,F−1

j D ⊂ D. Let a, b, a′, b′ ∈ C be constants satisfying

abq =
a′b′

q
= − 1

(q − q−1)2
. (17)

and

E := T2(aT2 + a′T−1
2 )T−1

1 , F := T1(bT2 + b′T−1
2 )T−1

2 , (18)
K := T 2

2 , K−1 := (T−1
2 )2. (19)

Then the set {E,F,K,K−1} generates a representation of Uq(sl2) on the vector
space D.

Proof. Apply Lemma 4.1 in [1] to the representation {T1, T2} of C2
q. ¤

We denote by Πa,b;a′,b′ the representation of Uq(sl2) given in Theorem 2.
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Proposition 6 There is no finite dimensional subspace M of D which reduces
the representation Πa,b;a′,b′ and in which the highest weight of Πa,b;a′,b′ |M is not
equal to −a′/aq2.

Proof. Suppose that there is a finite dimensional subspace M of D which
reduces the representation Πa,b;a′,b′ . By a general fact on finite dimensional rep-
resentations of Uq(sl2) ([4, Proposition VI.3.3]), The representation Πa,b;a′,b′ |M
has a highest weight vector ψ ∈ M \ {0}: Eψ = 0 and Kψ = λψ with highest
weight λ ∈ C \ {0}. Then

T2(aT2 + a′T−1
2 )T−1

1 ψ = 0, (20)
F2(x)F2(x + w2)ψ(x + 2w2) = λψ(x), a.e.x ∈ Rd. (21)

By (20) and the easily derived relation T2T
−1
1 = qT−1

1 T2, we obtain (aq2λ +
a′)T−1

1 ψ = 0. Hence aq2λ + a′ 6= 0. Therefore λ = −a′/aq2. This implies the
desired assertion. ¤

Theorem 3 Suppose that the following (i) or (ii) hold:

(i) For a constant c > 0, |F2(x)| = c, a.e.x ∈ Rd.

(ii) |F2(x)|2 ≥ |a′|/|a||q|2, a.e.x ∈ Rd.

Then there is no finite dimentional subspace M of D which reduces the repre-
sentation Πa,b;a′,b′ .

Proof. By a general fact on finite dimensional representations of Uq(sl2)
([4, Proposition VI.3.3]), we need only to show that the representation Πa,b;a′,b′

has no highest weight vector. Let ψ be a vector in D such that Eψ = 0 and
Kψ = λψ with λ ∈ C \ {0}. Then (20) and (21) hold. By Proposition 6,
we need only to consider the case λ = −a′/aq2 6= 0. Then, by (21), we have
|F2(x)||F2(x + w2)||ψ(x + 2w2)| = |a′||ψ(x)/|a||q|2.

Let condition (i) be satisfied. Then we have k|ψ(x + 2w2)| = |ψ(x)| with
k = |a||q|2c2/|a′|. Since ψ is in L2(Rd), it follows that k = 1. Then |ψ(x +
2w2)| = |ψ(x)|. But this implies

∫
Rd |ψ(x)|2dx = ∞ if ψ 6= 0. Thus ψ = 0.

We next consider the case where condition (ii) holds. In this case we have
|ψ(x + 2w2)| ≤ |ψ(x). This inequality and condition ψ ∈ L2(Rd) imply that
ψ = 0. ¤

The element C defined by

C :=
qK − 2 + q−1K−1

(q − q−1)2
+ FE (22)

is called the Casimir element of Uq(sl2) and commutes with E,F,K and K−1.
In the representation Πa,b;a′,b′ , we have

Πa,b;a′,b′(C) = a′b + ab′ − 2
(q − q−1)2

, (23)

which is a scalar.
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Theorem 4 Let Πa,b;a′,b′ and Πc,d;c′,d′ be two representations of Uq(sl2) of the
form given in Theorem 2. Suppose that a′b + ab′ 6= c′d + cd′. Then Πa,b;a′,b′ is
not unitarily equivalent to Πc,d;c′,d′ .

Proof. If Πa,b;a′,b′ is unitarily equivalent to Πc,d;c′,d′ with a unitary operator
U , then UΠa,b;a′,b′(C)U−1 = Πc,d;c′,d′(C). Hence, by (23), we have a′b + ab′ =
c′d + cd′. But this is a contradiction. ¤

Proposition 7 Let F1 and F2 be essentially bounded and Aq be the ∗-algebra
generated by E,F,K,K−1 in Theorem 2. Then Aq is not irreducible.

Proof. Let W be the two-dimensional subspace generated by w1 and w2

and {f1, f2} be an orthonormal basis of W . We expand wj (j = 1, 2) as wj =
wj1f1 + wj2f2 (wj1, wj2 ∈ C) and define a matrix

T :=
(

w11 w12

w21 w22

)
Then T is regular. For each n = (n1, n2) ∈ Z × Z, we define (an1, an2) ∈ C2 by
(an1, an2) := 2πT−1n. Then the vector an := an1f1 + an2f2 satisfies an · wj =
2πnj ∈ 2πZ. Hence U(±an) commute with E,F,K and K−1, and hence all
those of Aq (note that U(an)∗ = U(−an)). Therefore the commutant of Aq is
not the set of scalar operators. Thus Aq is not irreducible. ¤

6 Representations of C2
q and Uq(sl2) in a quantum

system with a singular gauge potential

In this section we consider a two-dimensional quantum system with a perpen-
dicular magnetic field concentrated on the infinite lattice Lw1,w2 defined by
(12).

For a vector a = (a1, a2), we denote its corresponding complex number by
a = a1 + ia2.

Let f be a meromorphic function on C\{nw1+mw2|m,n ∈ Z} with possible
poles on the points nw1 + mw2 (m, n ∈ Z) (wj = wj1 + iwj2). Then one can
define a gauge potential A on

M := R2 \ Lw1,w2 (24)

by
A(x) = (A1(x), A2(x)) (25)

with

A1(x) := =f(x1 + ix2), A2(x) := <f(x1 + ix2), x = (x1, x2) ∈ M. (26)

The magnetic field B is defined as a distribution on R2 by

B := D1A2 − D2A1, (27)
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where Dj is the distributional partial differential operator in xj . Each compo-
nent Aj (j = 1, 2) is infinitely differentiable on M. By the Cauchy-Riemann
equation for f , we have

B(x) = 0,
∂A1(x)

∂x1
+

∂A2(x)
∂x2

= 0, x ∈ M. (28)

Hence the magnetic field B is concentrated, as a distribution, on the set Lw1,w2 .
Let

FA
j (x) := eαI

(j)
A (x), x ∈ R2 \ Lj (29)

with α ∈ C \ {0} and

I
(j)
A (x) :=

∫ x+wj

x

A(x′) · dx′, x ∈ R2 \ Lj , (30)

where the integral
∫ x+wj

x
means the line integral along the straightline : t 7→

x + twj , t ∈ [0, 1].
Let

Ωm,n := mw1 + nw2. (31)

and Res(Ωm,n, f) be the residue of f at z = Ωm,n.
In what follows, we assume that

cf := <(Res(Ωm,n, f)), (32)

the real part of the residue Res(Ωm,n, f), is a non-zero constant independently
of (m,n) ∈ Z2. A class of such meromorphic functions f is easily constructed
[1, 3].

We introduce a constant:
qα := e2παcf (33)

Lemma 2 For all x ∈ Ω,

FA
1 (x)FA

2 (x + w1) = qαFA
1 (x + w2)FA

2 (x). (34)

Proof. It is sufficient to show that, for each x ∈ Ω,

I
(1)
A (x) + I

(2)
A (x + w1) − I

(1)
A (x + w2) − I

(2)
A (x)) = 2πcf . (35)

Let L be the left hand side of this equation. It is easy to see that L =
=

∫
C

f(z)dz, where C is the closed curve starting and ending at x which is
a composition of four straight lines going as x → x + w1 → x + w1 + w2 →
x + w2 → x, forming a parallelogram. There exists a unique (m,n) ∈ Z2 such
that Ωm,n is in the interior of C. Hence, by the residue theorem, we have∫

C
f(z)dz = 2πiRes(Ωm,n, f). Thus L = 2πcf . ¤
We define

TA
j := FA

j V (wj), j = 1, 2. (36)
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Theorem 5 Each TA
j leaves C∞

0 (Ω) invariant and

TA
1 TA

2 = qαTA
2 TA

1 (37)

holds on C∞
0 (Ω).

Proof. It is easy to see that the function FA
j is infinitely differentiable on Ω.

Hence we can apply Proposition 5 with Fj = FA
j to obtain the desired result.

¤
Thus {TA

1 , TA
2 } gives a representation of the quantum plane C2

qα
on C∞

0 (Ω).
We next consider the boundedness of this representation.

Theorem 6 Let <α = 0. Then each TA
j is unitary.

Proof. If <α = 0, then |FA
j | = 1. Hence, by Proposition 1-(ii) TA

j is unitary.
¤

In the case where <α 6= 0, for each j = 1, 2, we introduce two real-valued
functions R2 \ Lj as follows:

Kj(x) := (<α)=
∫ x+wj

x

f(z)dz, x ∈ R2 \ Lj . (38)

Proposition 8 For each j = 1, 2, TA
j is bounded if and only if the function Kj

is bounded above on R2 \ Lj.

Proof. By Proposition 1, TA
1 and TA

2 are bounded if and only if FA
1 and FA

2

are essentially bounded on R2. Note that

I
(j)
A (x) = =

∫ x+wj

x

f(z)dz, x ∈ R2 \ Lj .

Hence |FA
j (x)| = eKj(x), x ∈ R2 \ Lj . Obviously each Kj is continuous on Ω.

Therefore FA
j is essentially bounded on R2 if and only if Kj is bounded above

on R2 \ Lj . ¤
We can apply Theorem 2 to the representation {TA

1 , TA
2 } of the quantum

plane C2
qα

to obtain the following result:

Corollary 3 Let a, b, a′, b′ ∈ C be constants satisfying

abqα =
a′b′

qα
= − 1(

qα − q−1
α

)2 . (39)

and

EA := TA
2 (aTA

2 + a′(TA
2 )

−1
)(TA

1 )
−1

, (40)

FA := TA
1 (bTA

2 + b′(TA
2 )

−1
)(TA

2 )
−1

, (41)

KA := (TA
2 )

2
, K−1

A := (TA
2 )

−2
. (42)

Then the set {EA, FA, KA,K−1
A } generates a representation of Uqα(sl2) on the

vector space C∞
0 (Ω).
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