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Abstract
We consider, in an abstract form, a system of “quantum particles” coupled to a

Bose field. It is shown that, under suitable hypotheses, the composed system can
have a ground state even if the uncoupled particle system has no ground state.

1 Introduction

In a quantum system with a coupling parameter λ ∈ IR, it may occur that the Hamiltonian
of the system has a ground state for a non-zero λ even if it has no ground state at the
zero-coupling λ = 0. If such a phenomenon occur, then we call it the enhanced binding in
the quantum system under consideration.

A typical example is a quantum mechanical system whose Hamiltonian is given by
the Schrödinger operator HS(λ) := −∆ + λV on L2(IRd), where ∆ is the d-dimensional
generalized Laplacian and V : IRd → IR is a potential. Indeed, it is well known that HS(0)
has no ground state, but, for a general class of V , HS(λ) with λ 6= 0 has a ground state
(e.g., [17]). As a next stage, it is interesting to investigate if enhanced binding occurs in
a quantum system of particles coupled to a quantum field.

Recently the study of enhanced binding in non-relativisic quantum electrodynamics
(QED) was intiated by Hiroshima and Spohn [14] in the case of the Pauli-Fierz model
in the dipole approximation and then by Hainzl, Vougalter and Vugalter [11] in the case
of Pauli-Fierz model without the dipole approximation. In [14] it is shown that, under
suitable conditions, the enhanced binding occurs for large coupling constants. On the
other hand, in [11], the enhanced binding is shown to occur for small coupling constants
and for a class of potentials. The results and methods in [11] have been extended to the
Pauli-Fierz model with spin [8, 9](see also [10]).

In this paper we consider enhanced binding in an abstract model of “quantum parti-
cles” coupled to a multi-component Bose field. We prove that, under suitable hypotheses,
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enhanced binding occurs in this model. This suggests that enhanced binding in quantum
particle-field interaction systems is a general phenomenon, although it may depend on
the type of interactions.

The present paper is organized as follows. In Section 2 we describe the model consid-
ered and state the main results. The model is essentially same as that discussed in the
previous papers [4, 5, 6] except that the Bose field is a multi-component one. In Section
3 we prove the self-adjointness of the total Hamiltonian of the model, where we present
a method different from the one used in [4, 5]. In considering the problem of enhanced
binding in the model, we distinguish two cases: the case where the Bose field is massive
and the one where the Bose field is massless, but, without infrared singularity. We first
prove the existence of enhanced binding in the massive case. This is done in Section
4. Section 5 is devoted to proof of the existence of enhanced binding in the massless
case. In the last section we apply these general results to the Pauli-Fierz type model
without A2-term in the dipole approximation. In particular, we show that, if the regime
of momenta of photons interacting with the quantum particle becomes sufficiently large
with an infrared cutoff fixed, then the model has a ground state at least for the coupling
constant in some bounded open interval even if the unperturbed particle Hamiltonian has
no ground state. The present paper has two appendices. In Appendix A, we formulate,
in an abstract form, the weak differentiability of Heisenberg type operators. In Appendix
B, we establish, in an abstract framework, a theorem on the existence of a ground state
of a self-adjoint operator and a limit theorem of ground states. Each theorem clarifies
a general structure underlying methods used in proofs of existence of ground states in
non-relativistic QED [7, 12, 13]. These theorems may be interesting also in its own right
in the spectral theory of self-adjoint operators.

2 Definition of the Model and the Main Results

We consider, in an abstract form, a model of a quantum system S coupled to a multi-
component Bose field. We denote the Hilbert space of the system S by H, which is taken
to be an arbitrary separable complex Hilbert space. In concrete realizations, S may be a
system of quantum particles or a quantum field system.

In general we denote the inner product and the norm of a Hilbert space X by 〈·, ·〉X
and ‖ · ‖X respectively, where we use the convention that the inner product is antilinear
(resp. linear) in the first (resp. second) variable. If there is no danger of confusion, then
we omit the subscript X in 〈·, ·〉X and ‖ · ‖X . For a linear operator T on a Hilbert space,
we denote its domain by D(T ). For a subspace D ⊂ D(T ), T |D denotes the restriction of
T to D. If T is densely defined, then the adjoint of T is denoted T ∗. For linear operators
S and T on a Hilbert space, D(S + T ) := D(S) ∩ D(T ) unless otherwise stated.

For a self-adjoint operator S on a Hilbert space, we denote its spectrum (resp. essential
spectrum) by σ(S) (resp. σess(S)) and its spectral measure by ES(·). If S is bounded
from below, then we set

E0(S) := inf σ(S) (2.1)

the ground state energy of S. We say that S has a ground state if E0(S) is an eigenvalue
of S; in this case, each non-zero vector in ker(S − E0(S)) is called a ground state of S.
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To describe the Bose field, one uses the Boson Fock space over a separable complex
Hilbert space X :

Fb(X ) := ⊕∞
n=0 ⊗n

s X

=

{
ψ = {ψ(n)}∞n=0

∣∣∣∣n ≥ 0, ψ(n) ∈ ⊗n
s X ,

∞∑
n=0

‖ψ(n)‖2 < ∞
}

, (2.2)

where ⊗n
s X denotes the n-fold symmetric tensor product of X with ⊗0

sX := C (the set
of complex numbers).

As is well known [16, §X.7], one of basic objects on Fb(X ) is the annihilation operator
a(f) (f ∈ X ) which is a densely defined closed linear operator on Fb(X ) such that, for
all ψ = {ψ(n)}∞n=0 ∈ D(a(f)∗), (a(f)∗ψ)(0) = 0 and

(a(f)∗ψ)(n) =
√

nSn

(
f ⊗ ψ(n−1)

)
, n ≥ 1,

where Sn is the symmetrization operator on ⊗nX (S∗
n = Sn, S

2
n = Sn,⊗n

s X = Sn(⊗nX )).
The adjoint a(f)∗, called the creation operator, and the annihilation operator a(g) (g ∈ X )
obey the canonical commutation relations

[a(f), a(g)∗] = 〈f, g〉 , [a(f), a(g)] = 0, [a(f)∗, a(g)∗] = 0 (2.3)

for all f, g ∈ X on the dense subspace

F0(X ) := {ψ ∈ Fb(X ) | there exists a number n0 such that

ψ(n) = 0 for all n ≥ n0}, (2.4)

where [X,Y ] := XY − Y X.
Let

φ(f) :=
a(f) + a(f)∗√

2
, f ∈ X , (2.5)

which is called the Segal field operator. It is shown that φ(f) is essentially self-adjoint on
F0(X ) [16, §X.7]. We denote its closure by the same symbol φ(f).

It follows from (2.3) that, for all f, g ∈ L2(IRd),

[φ(f), φ(g)] = i=〈f, g〉 (2.6)

on F0(X ). Moreover we have

eiφ(f)eiφ(g) = e−i=〈f,g〉eiφ(g)eiφ(f), f, g ∈ X , (2.7)

which is called the Weyl relations of {φ(f)|f ∈ X} [16, §X.7].
For every self-adjoint operator S on X , one can define a self-adjoint operator dΓ(S),

called the second quantization of S ([15, p.302], [16, §X.7]), by

dΓ(S) := ⊕∞
n=0S

(n), (2.8)

with S(0) = 0 and S(n) is the closure of n∑
j=1

I ⊗ · · ·⊗
jth
^

S ⊗ · · · ⊗ I

 ∣∣∣∣ ⊗n
alg D(S),

3



where I denotes identity and ⊗n
alg algebraic tensor product. If S is nonnegative, then so

is dΓ(S).
We assume that the Bose field is an N -component quantum field over IRd (d,N ∈ IN).

Hence the one-boson Hilbert space is taken to be

W := ⊕NL2(IRd) (2.9)

(the N direct sum of L2(IRd)) and the Hilbert space of the Bose field is taken to be Fb(W).
Let ω be a Borel measurable function on IRd which is injective and 0 < ω(k) < ∞ for
a.e. k ∈ IRd with respect to (w.r.t.) the Lebesgue measure on IRd. Then ω defines
a multiplication operator on W , which is nonnegative, injective and self-adjoint. We
denote it by the same symbol ω (ωf := (ωf1, · · · , ωfN), f = (f1, · · · , fN) ∈ W with
fi ∈ D(ω), i = 1, · · · , N). The function ω represents a dispersion relation of one free
boson associated with the Bose field under consideration.

The free Hamiltonian of the Bose filed is defined by

Hb := dΓ(ω) (2.10)

acting on Fb(W).
The Hilbert space of the coupled system of S and the Bose field is given by the tensor

product
F := H⊗Fb(W). (2.11)

Let A be a self-adjoint operator on H, which denotes physically the Hamiltonian of
the quantum system S and Bj (j = 1, · · · , J , J ∈ IN) be a self-adjoint operator on H such
that ∩J

j=1D(Bj) is dense in H. Let gj ∈ W , j = 1, · · · , J . As a total Hamiltonian of the
coupled system, we take the following operator:

H(λ) := A ⊗ I + I ⊗ Hb + λ
J∑

j=1

Bj ⊗ φ(gj), (2.12)

where λ ∈ IR is a constant parameter denoting the coupling constant of the system S and
the Bose field system. The Hamiltonian H(λ) gives a unification of Hamiltonians of some
particle-field interaction models (cf. [4, 5]).

In the previous papers [4, 5], the existence of a ground state of H(λ) with N = 1
is discussed under the assumption that A has a ground state (hence H(0) has a ground
state). In the present paper, we consider the problem of enhanced binding on the model,
i.e., the problem whether or not H(λ) with λ 6= 0 has a ground state even if A has no
ground state(hence H(0) has no ground state). We show that, under suitable hypotheses,
the problem is solved affirmatively. For results on the problem of enhanced binding on
the Pauli-Fierz model in non-relativistic QED, see [8, 9, 10, 11, 14]. The method taken
in the present paper is similar to that used in [14], but we do not need such scalings as
done in [14], at least on the level of a general theory.

We now formulate basic hypotheses. To do this, we first recall an important notion
on commutativity of self-adjoint operators:
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Definition 2.1 We say that two self-adjoint operators T and S on a Hilbert space
strongly commute (or T strongly commutes with S) if their spectral meausres commute,
i.e., for all Borel sets I1, I2 ⊂ IR, ET (I1)ES(I2) = ES(I2)ET (I1).

A family of self-adjoint operators {Sj}n
j=1 on a Hilbert space is said to be strongly

commuting if Sj strongly commutes with Sl for all j, l = 1, · · · , n with j 6= l.

In what follows, we assume that A is of the form

A = A0 + A1 (2.13)

with A0 a nonnegative self-adjoint operator and A1 a symmetric operator.

Hypothesis I. gj, gj/ω
3/2 ∈ W (j = 1, · · · , J) and 〈gj(k), gl(k)〉C N ∈ IR, a.e.k, j, l =

1, · · · , J .

Hypothesis II. The operator A1 is A0-bounded, i.e., D(A0) ⊂ D(A1) and there exist
constants a, b ≥ 0 such that, for all u ∈ D(A0),

‖A1u‖ ≤ a‖A0u‖ + b‖u‖. (2.14)

Hypothesis III. The operator A0 strongly commutes with each Bj (j = 1, · · · , J) and

D(A0) ⊂ ∩J
j,l=1D(BjBl). (2.15)

Moreover, there exist constants cj, dj ≥ 0 such that, for all u ∈ D(A
1/2
0 ),

‖Bju‖ ≤ cj‖A1/2
0 u‖ + dj‖u‖ (j = 1, · · · , J). (2.16)

Hypothesis IV. The set {Bj}J
j=1 is a family of strongly commuting self-adjoint opera-

tors.

Hypothesis V. D(A0) ⊂ ∩J
j=1D(BjA1) ∩ D(A1Bj) and [Bj, A1]|D(A0) is bounded (j =

1, · · · , J). We denote the operator norm of [Bj, A1] by ‖[Bj, A1]‖.

We introduce an operator

RB :=
1

2

J∑
j,l=1

〈
gj√
ω

,
gl√
ω

〉
W

BjBl. (2.17)

and define
A(λ) := A − λ2RB. (2.18)

Under Hypotheses I–III, we have D(A(λ)) = D(A0).
Let

Λ := {λ ∈ IR \ {0}|A(λ) is self-adjoint and bounded from below} (2.19)

Hypothesis VI. Λ 6= ∅.
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Remark 2.1 Assume Hypotheses I–III and suppose that

a +
λ2

2

J∑
j,l=1

∣∣∣∣∣
〈

gj√
ω

,
gl√
ω

〉∣∣∣∣∣ cjcl < 1. (2.20)

Then Hypothesis VI holds. This is proved as follows.
By Hypothesis III, we can show that

‖BjBlu‖ ≤ cjcl‖A0u‖ + (cjdl + cldj)‖A1/2
0 u‖ + djdl‖u‖, u ∈ D(A0). (2.21)

Hence

‖(A1 − λ2RB)u‖ ≤

a +
λ2

2

J∑
j,l=1

∣∣∣∣∣
〈

gj√
ω

,
gl√
ω

〉∣∣∣∣∣ cjcl

 ‖A0u‖

+λ2

 J∑
j,l=1

∣∣∣∣∣
〈

gj√
ω

,
gl√
ω

〉∣∣∣∣∣ cjdl

 ‖A1/2
0 u‖

+

b +
λ2

2

J∑
j,l=1

∣∣∣∣∣
〈

gj√
ω

,
gl√
ω

〉∣∣∣∣∣ djdl

 ‖u‖.

Since A
1/2
0 is infinitesimally small w.r.t. A0, it follows under condition (2.20) that A1 −

λ2RB is relatively bounded w.r.t. A0 with relative bound small than 1. Hence, by the
Kato-Rellich theorem, A(λ) = A0 +A1 −λ2RB is self-adjoint with D(A(λ)) = D(A0) and
bounded from below.

A result on the self-adjointness of H(λ) is given by the following theorem.

Theorem 2.2 Assume Hypotheses I–VI. Then for all λ ∈ Λ, H(λ) is self-adjoint with
D(H(λ)) = D(A0 ⊗ I) ∩ D(I ⊗ Hb) and bounded from below.

This theorem is proved in Section 3.
To establish an existence theorem of a ground state of H(λ) without the assumption

that A has a ground state, we need additional conditions.

Hypothesis VII. The function ω is continuous on IRd with

lim
|k|→∞

ω(k) = ∞

and there exist constants γ > 0 and C > 0 such that

|ω(k) − ω(k′)| ≤ C|k − k′|γ(1 + ω(k) + ω(k′)), k, k′ ∈ Rd.

In general the existence of a ground state of H(λ) may depend on whether

m := ess. inf
k∈IRd

ω(k) (2.22)
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is positive or zero [6], where ess. inf means essential infimum. We say that the Bose field
under the consideration is massive (resp. massless) if m > 0 (resp. m = 0). We first
establish a theorem on the existence of a ground state of H(λ) in the massive case.

For s ≥ 0, we introduce a constant cs(g) by

cs(g) :=
√

2
J∑

j=1

‖[Bj, A1]‖
∥∥∥∥ gj

ωs

∥∥∥∥ (2.23)

provided that gj/ω
s ∈ W . We set

Σλ := inf σess(A(λ)). (2.24)

Remark 2.2 If m > 0, then the condition gj ∈ W implies that gj/ω
s ∈ W for all s > 0.

Hence, in this case, Hypothesis I is replaced by the condition that gj ∈ W (j = 1, · · · , J)
and 〈gj(k), gl(k)〉C N ∈ IR, a.e.k, j, l = 1, · · · , J .

Theorem 2.3 (Enhanced binding in the massive case). Consider the case m > 0. As-
sume Hypotheses I–VII. Suppose that λ ∈ Λ and

Σλ − E0(A(λ)) > m +
1

2
λ2c3/2(g)2 + |λ|c1(g). (2.25)

Then H(λ) has purely discrete spectrum in the interval [E0(H(λ)), E0(H(λ)) + m). In
particular, H(λ) has has a ground state.

Remark 2.3 Condition (2.25) implies that E0(A(λ)) is a discrete eigenvalue of A(λ) and
hence A(λ) has a finite number of ground states.

A new point of Theorem 2.3 is in that the existence of a ground state of A is not
assumed.. Theorem 2.3 is proved in Section 4.

Theorem 2.4 (Enhanced binding in the massless case). Consider the case m = 0. As-
sume Hypotheses I–VII with gj/ω

2 ∈ W (j = 1, · · · , J) in addition. Suppose that

Σλ − E0(A(λ)) >
1

2
λ2c3/2(g)2 + |λ|c1(g). (2.26)

and
λ2c1(g)2

[Σλ − E0(H(λ))]2
+

{
2λ2c1(g)2

[Σλ − E0(H(λ))]2
+ 1

}
λ2

2
c2(g)2 < 1. (2.27)

Then H(λ) has a ground state.

We prove this theorem in Section 5.
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3 Self-adjointness of the Total Hamiltonian

Generally speaking, in considering the enhanced binding problem of a quantum field
model, it would be desirable to establish the self-adjointness of the Hamiltonian of the
model for a wider range of the coupling constant. For this purpose the method used in [4],
which employs the Kato-Rellich theorem, is not useful. Here we take another approach
which is used in [1]: we prove Theorem 2.2 by making a suitable unitary transformation
of H(λ).

We need some lemmas.

Lemma 3.1 Let X and Y be Hilbert spaces. Let {Xj}J
j=1 (resp. {Yj}J

j=1) be a family of
strongly commuting self-adjoint adjoint operators on X (resp. Y). Then {Xj ⊗ Yj}J

j=1 is
a family of strongly commuting self-adjoint operators on X ⊗Y. Moreover, if W (resp. U
) is a self-adjoint operator on X (resp. Y) strongly commuting with each Xj (resp. Yj),
then W ⊗ I (resp. I ⊗ U) strongly commutes with each Xj ⊗ Yj.

Proof. It is a well known fact that each Xj ⊗ Yj is self-adjoint on X ⊗ Y (e.g., [15,
§VIII.10]). Moreover there exists a two-dimensional spectral measure Ej such that, for all
Borel sets I1, I2 ⊂ IR, Ej(I1 × I2) = EXj

(I1) ⊗ EYj
(I2) and Xj ⊗ I =

∫
IR2 xdEj(x, y), Yj =∫

IR2 ydEj(x, y), f(Xj ⊗Yj) =
∫
IR2 f(xy)dEj(x, y). It follows that, for all Borel sets K ⊂ IR,

EXj⊗Yj
(K) = Ej({(x, y) ∈ IR2|xy ∈ K}). On the other hand, the strong commutativity

of Xj’s and that of Yj’s imply that {Ej(·)}J
j=1 is a family of commuting orthogonal pro-

jections. Hence, for all Borel sets I1, I2 ⊂ IR and j, l = 1, · · · , J , EXj⊗Yj
(I1) commutes

with EXl⊗Yl
(I2).

Let W and U be as above. Then EW (I1)EXj
(I2) = EXj

(I2)EW (I1), which implies
the commutativity of EW⊗I and Ej. Hence EW⊗I commutes with EXj⊗Yj

. Thus W ⊗ I
strongly commutes with Xj ⊗ Yj. Similarly one can show that I ⊗ U strongly commutes
with Xj ⊗ Yj.

The following fact is well known or easy to prove (e.g., [3, Lemma 2.33]).

Lemma 3.2 Let {Sj}J
j=1 be a family of strongly commuting self-adjoint operators on a

Hilbert space. Then S :=
∑J

j=1 Sj is essentially self-adjoint and, for all t ∈ IR,

eitS̄ =
J∏

j=1

eitSj , (3.1)

where S̄ denotes the closure of S and the order of the factors on the right hand side (r.h.s.)
is arbitrary.

Lemma 3.3 Let X be a separable complex Hilbert space and hj ∈ X (j = 1, · · · , J) such
that 〈hj, hl〉X ∈ IR, j, l = 1, · · · , J . Then {φ(hj)}J

j=1 is a family of strongly ommuting
self-adjoint operators on Fb(X ).

Proof. By the present assumption, = 〈hj, hl〉 = 0. Hence, by the Weyl relations (2.7),
eitφ(hj) commutes with eisφ(hl) for all s, t ∈ IR and j, l = 1, · · · , J . Hence, by a general
criterion [15, Theorem VIII.13], φ(hj) strongly commutes with φ(hl) (j, l = 1, · · · , J).
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Let

Tj := Bj ⊗ φ
(
i
gj

ω

)
. (3.2)

Then the operator

T :=
J∑

j=1

Tj (3.3)

is a symmetric operator with D(T ) ⊃ ∩J
j=1D(Bj) ⊗alg F0(W). We denote the closure of

T by the same symbol T .

Lemma 3.4 Assume Hypotheses I and IV. Then:

(i) {Tj}J
j=1 is a family of strongly commuting self-adjoint operators.

(ii) T is essentially self-adjoint on ∩J
j=1D(Tj) and, for all s ∈ IR,

eisT =
J∏

j=1

eisTj , (3.4)

where the order of the factors on the r.h.s. is arbitrary.

Proof. (i) By Lemmas 3.1, 3.3 and Hypothesis IV, {Tj}J
j=1 is a family of strongly com-

muting self-adjoint operators.
(ii) By part (i) and Lemma 3.2, T is essentially self-adjoint and (3.4) holds.

Lemma 3.5 Assume Hypotheses I, III and IV. Then T strongly commutes with A0 ⊗ I.

Proof. By Lemma 3.1 and Hypothesis III, A0 ⊗ I strongly commutes with each Tj, which
implies that, for all s, t ∈ IR, eitA0⊗IeisTj = eisTjeitA0⊗I . By this equation and (3.4),
eitA0⊗IeisT = eisT eitA0⊗I . Hence, by a general criterion [15, Theorem VIII.13], T strongly
commutes with A0 ⊗ I.

The following fact is well known (e.g., [3, p.516, Lemma 12-5]).

Lemma 3.6 Let X be a Hilbert space and S be a nonnegative, injective self-adjoint op-
erator on X . Let g ∈ D(S). Then

eiφ(ig)D(dΓ(S)) = D(dΓ(S)) (3.5)

and

eiφ(ig)dΓ(S)e−iφ(ig) = dΓ(S) + φ(Sg) +
1

2
〈g, Sg〉 . (3.6)

Suppose that Hypotheses I and IV hold. Then, by Lemma 3.4, we can define a unitary
operator

U(λ) := e−iλT . (3.7)

We set
L := A0 ⊗ I + I ⊗ Hb, (3.8)
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which is nonnegative.
We introduce an operator

H̃(λ) := A(λ) ⊗ I + I ⊗ Hb + δA1(λ), (3.9)

where
δA1(λ) := U(λ)(A1 ⊗ I)U(λ)−1 − A1 ⊗ I. (3.10)

Lemma 3.7 Assume Hypotheses I–IV. Then, for all λ ∈ IR,

U(λ)D(L) = D(L) (3.11)

and, for all Ψ ∈ D(L),
U(λ)H(λ)U(λ)−1 = H̃(λ)Ψ. (3.12)

Proof. By Hypothesis IV, there exists a J-dimensional spectral measure E such that,
for all Borel sets Ij ⊂ IR (j = 1, · · · , J), E(I1 × · · · × IJ) = EB1(I1) · · ·EBJ

(IJ) and
Bj =

∫
IRJ ξjdE(ξ) (ξ = (ξ1, · · · , ξJ) ∈ IRJ). Let u, v ∈ D(A0) and ψ, ϕ ∈ D(Hb). Set

Ψ = u ⊗ ψ and Φ = v ⊗ ϕ. Then Ψ, Φ ∈ D(L) and

〈I ⊗ HbΨ, U(λ)Φ〉 =
∫
IRJ

〈
Hbψ, e−iφ(iGξ)ϕ

〉
d 〈u,E(ξ)v〉 ,

where Gξ = λ
∑J

j=1 ξjgj/ω ∈ W . By Lemma 3.6, we have

〈
Hbψ, e−iφ(iGξ)ϕ

〉
=

〈
ψ, e−iφ(iGξ)(Hb + φ(ωGξ) +

1

2
〈Gξ, ωGξ〉)ϕ

〉
.

Hence

〈I ⊗ HbΨ, U(λ)Φ〉 =

〈
Ψ, U(λ)

I ⊗ Hb + λ
J∑

j=1

Bj ⊗ φ(gj) + λ2RB ⊗ I

 Φ

〉
. (3.13)

This extends to all Ψ, Φ ∈ D(A0) ⊗alg D(Hb). Using the well known estimates

‖a(f)ψ‖ ≤
∥∥∥∥∥ f√

ω

∥∥∥∥∥ ‖H1/2
b ψ‖, (3.14)

‖a(f)∗ψ‖ ≤
∥∥∥∥∥ f√

ω

∥∥∥∥∥ ‖H1/2
b ψ‖ + ‖f‖‖ψ‖, ψ ∈ D(H

1/2
b ), f ∈ D(ω−1/2), (3.15)

and Hypothesis III, we can show that

‖Bj ⊗ φ(gj)Ψ‖ ≤ C‖(L + 1)Ψ‖, Ψ ∈ D(L), (3.16)

where C > 0 is a constant. By (2.21), RB is A0-bounded. Hence∥∥∥∥∥∥
I ⊗ Hb + λ

J∑
j=1

Bj ⊗ φ(gj) + λ2RB ⊗ I

 Ξ

∥∥∥∥∥∥ ≤ C ′‖(L + 1)Ξ‖, Ξ ∈ D(L), (3.17)
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where C ′ > 0 is a constant. By this estimate and the fact that D(A0) ⊗alg D(Hb) is
a core for L, (3.13) extends (via a limiting argument) to all Φ ∈ D(L). Moreover,
D(A0) ⊗alg D(Hb) is a core for I ⊗ Hb, (3.13) extends also to all Ψ ∈ D(I ⊗ Hb). Thus,
for all Φ ∈ D(L), the vector U(λ)Φ is in D(I ⊗ Hb) and

I ⊗ HbU(λ)Φ = U(λ)

I ⊗ Hb + λ
J∑

j=1

Bj ⊗ φ(gj) + λ2RB ⊗ I

 Φ. (3.18)

The strong commutativity of A0 ⊗ I and T (Lemma 3.5) implies that U(λ)D(A0 ⊗ I) ⊂
D(A0 ⊗ I). Thus U(λ)D(L) ⊂ D(L). Since U(λ) is unitary, it follows that D(L) ⊂
U(λ)−1D(L) = U(−λ)D(L). Since λ ∈ IR is arbitrary, we obtain (3.11). Eq.(3.18)
implies (3.12).

In view of Lemma 3.7, we first prove the self-adjointness of H̃(λ) (Theorem 3.11 below).
We denote by [Bj, A1] the closure of [Bj, A1]|D(A0) which, by Hypothesis V, is bounded

with D
(
[Bj, A1]

)
= H.

Lemma 3.8 Assume Hypotheses I and V. Then D(I ⊗H
1/2
b )) ⊂ D

(
[Bj, A1] ⊗ φ(igj/ω)

)
and, for all Ψ ∈ D(I ⊗ H

1/2
b ),

‖[Bj, A1] ⊗ φ(igj/ω)Ψ‖ ≤ ‖[Bj, A1]‖
(√

2
∥∥∥∥ gj

ω3/2

∥∥∥∥ ‖I ⊗ H
1/2
b Ψ‖ +

1√
2

∥∥∥∥gj

ω

∥∥∥∥ ‖Ψ‖
)

. (3.19)

Proof. By (3.14) and (3.15), we have

‖φ(f)ψ‖ ≤
√

2

∥∥∥∥∥ f√
ω

∥∥∥∥∥ ‖H1/2
b ψ‖ +

1√
2
‖f‖‖ψ‖, f ∈ D(ω−1/2), ψ ∈ D(H

1/2
b ). (3.20)

Hence, for all Ψ ∈ D(A0) ⊗alg D(H
1/2
b ),

‖[Bj, A1] ⊗ φ(igj/ω)Ψ‖ ≤ ‖[Bj, A1]‖‖I ⊗ φ(igj/ω)Ψ‖
≤ ‖[Bj, A1]‖(

√
2‖gj/ω

3/2‖‖I ⊗ H
1/2
b Ψ‖ + ‖gj/ω‖‖Ψ‖/

√
2).

Hence (3.19) holds for all Ψ ∈ D(A0) ⊗alg D(H
1/2
b ). Since D(A0) ⊗alg D(H

1/2
b ) is a

core for I ⊗ H
1/2
b , (3.19) extends to all Ψ ∈ D(I ⊗ H

1/2
b ) showing D(I ⊗ H

1/2
b )) ⊂

D([Bj, A1] ⊗ φ(igj/ω)) as well.

We set

Y :=
J∑

j=1

[Bj, A1] ⊗ φ
(
i
gj

ω

)
. (3.21)

By Lemma 3.8, we have
D(I ⊗ Hb) ⊂ D(Y ).

Lemma 3.9 Assume Hypotheses I–III and Hypothesis V. Then, for all Ψ, Φ ∈ D(L)

〈TΨ, A1 ⊗ IΦ〉 − 〈A1 ⊗ IΨ, TΦ〉 = 〈Ψ, Y Φ〉 . (3.22)
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Proof. It is easy to see that, for all Ψ, Φ ∈ D(A0) ⊗alg D(Hb), (3.22) holds. By (3.16), T
is L-bounded. By Hypothesis II, one can show that A1 ⊗ I is L-boounded. By Lemma
3.8, Y also is L-bounded. Since D(A0) ⊗alg D(Hb) is a core for L, (3.22) extends to all
Ψ, Φ ∈ D(L).

Lemma 3.10 Assume Hypotheses I–V. Then, D(L) ⊂ D(δA1(λ)) and, for all Ψ ∈ D(L),

‖δA1(λ)Ψ‖ ≤ |λ|
(
c3/2(g)‖I ⊗ H

1/2
b Ψ‖ +

1

2
c1(g)‖Ψ‖

)
, (3.23)

where cs(g) is defined by (2.23).

Proof. Let A1(λ) = U(λ)A1 ⊗ IU(λ)−1 and Ψ, Φ ∈ D(L). Then, applying Proposition
A.1 in Appendix A with H = −λT , S = A1 ⊗ I and K = A0 ⊗ I, we see that the
function:t 7→ 〈Φ, A1(tλ)Ψ〉 (t ∈ IR) is differentiable and

d

dt
〈Φ, A1(tλ)Ψ〉 = −iλ{

〈
TU(tλ)−1Φ, A1 ⊗ IU(tλ)−1Ψ

〉
−

〈
A1 ⊗ IU(tλ)−1Φ, TU(tλ)−1Ψ

〉
},

which, together with Lemma 3.9, yields that

d

dt
〈Φ, A1(tλ)Ψ〉 = −iλ

〈
U(tλ)−1Φ, Y U(tλ)−1Ψ

〉
.

Integrating this equation from t = 0 to t = 1, we obtain

〈Φ, δA1(λ)Ψ〉 = −iλ
∫ 1

0

〈
U(tλ)−1Φ, Y U(tλ)−1Ψ

〉
dt.

Hence

| 〈Φ, δA1(λ)Ψ〉 | ≤ |λ|
∫ 1

0
‖Φ‖‖Y U(tλ)−1Ψ‖dt,

which implies that

‖δA1(λ)Ψ‖ ≤ |λ|
∫ 1

0
‖Y U(tλ)−1Ψ‖dt.

We have

‖Y U(tλ)−1Ψ‖ ≤
J∑

j=1

‖[Bj, A1]‖‖I ⊗ φ(igj/ω)U(tλ)−1Ψ‖

=
J∑

j=1

‖[Bj, A1]‖‖I ⊗ φ(igj/ω)Ψ‖,

where we have used the strong commutativity of I ⊗ φ(igj/ω) and U(tλ)−1. Hence

‖δA1(λ)Ψ‖ ≤ |λ|
J∑

j=1

‖[Bj, A1]‖‖I ⊗ φ(igj/ω)Ψ‖. (3.24)

Using this estimate and (3.20), we obtain (3.23).

Let
L(λ) := A(λ) ⊗ I + I ⊗ Hb. (3.25)

12



Theorem 3.11 Assume Hypotheses I-VI. Then, for all λ ∈ Λ, H̃(λ) is self-adjoint with
D(H̃(λ)) = D(L) and bounded from below. Moreover, every core of L(λ) is a core of
H̃(λ).

Proof. We can write
H̃(λ) = L(λ) + δA1(λ). (3.26)

Let λ ∈ Λ. Then, by the definition of Λ, L(λ) is self-adjoint and bounded from below.

It is easy to see that I ⊗ H
1/2
b is infinitesimally small with respect to (w.r.t.) I ⊗ Hb.

Since A(λ) ⊗ I is bounded from below, it follows that I ⊗ H
1/2
b is infinitesimally small

with respect to (w.r.t.) L(λ). Therefore, by Lemma 3.10, δA1(λ) is infinitesimally small
w.r.t. L(λ). Thus, by the Kato-Rellich theorem (e.g., [16, p.162, Theorem X.12] ), H̃(λ)
is self-adjoint on D(L(λ)) = D(A0 ⊗ I)∩D(I ⊗Hb), bounded from below and every core
of L(λ) is a core of H̃(λ).

Proof of Theorem 2.2

We have D(L(λ)) = D(L). By Lemma 3.7 and Theorem 3.11, H(λ) is self-adjoint on
D(L) and bounded from below.

Corollary 3.12 Assume Hypotheses I-VI. Then, for all λ ∈ Λ,

E0(A(λ)) − λ2

4
c3/2(g)2 − |λ|

2
c1(g) ≤ E0(H(λ)) ≤ E0(A(λ)) +

1

2
|λ|c1(g). (3.27)

Proof. By Lemma 3.7 and Theorem 2.2, we have

E0(H(λ)) = E0(H̃(λ)). (3.28)

Hence we need only to prove (3.27) with E0(H(λ)) replaced by E0(H̃(λ)).
Let Ψ ∈ D(L) with ‖Ψ‖ = 1. Then, using (3.23), we have〈

Ψ, H̃(λ)Ψ
〉

≥ 〈Ψ, A(λ) ⊗ IΨ〉 + 〈Ψ, I ⊗ HbΨ〉 − ‖δA1(λ)Ψ‖

≥ E0(A(λ)) + ‖I ⊗ H
1/2
b Ψ‖2 − |λ|c3/2(g)‖I ⊗ H

1/2
b Ψ‖ − |λ|

2
c1(g)

≥ E0(A(λ)) −
λ2c3/2(g)2

4
− |λ|

2
c1(g),

which, combined with the variational principle, yields the first inequality in (3.27).
Let Ω ∈ Fb(W) be the Fock vacuum: Ω(0) = 1, Ω(n) = 0, n ≥ 1. Then we have

HbΩ = 0. (3.29)

Hence, for all u ∈ D(A0) with ‖u‖ = 1, we have by the variational principle

E0(H̃(λ)) ≤ 〈u, A(λ)u〉 + 〈u ⊗ Ω, δA1(λ)u ⊗ Ω〉 .

By (3.23) and the Schwarz inequality, we have

〈u ⊗ Ω, δA1(λ)u ⊗ Ω〉 ≤ 1

2
|λ|c1(g).
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Hence

E0(H̃(λ)) ≤ 〈u,A(λ)u〉 +
1

2
|λ|c1(g).

Applying the variational principle again, we obtain (3.27) with E0(H(λ)) replaced by
E0(H̃(λ)).

4 Existence of a Ground State in the Massive Case

In the present case, methods used in [4, 5] is not applied directly to proving Theorem 2.3,
because the existence of a ground state of A is not assumed. Thus we need a new idea.
We note Lemma 3.7, which tells us that H(λ) has a ground state if and only if H̃(λ) does.
Hence one may prove the existence of a ground state of H(λ) by proving that of H̃(λ).
We use this structure.

Throughout this section we assume Hypothesis I–VII.
For a parameter V > 0, we define a lattice

ΓV :=
2πZZd

V
=

{
k = (k1, · · · , kd)

∣∣∣∣ kj =
2πnj

V
, nj ∈ ZZ, j = 1, · · · , d

}
.

We denote by `2(ΓV ) the Hilbert space of square sumable sequences indexed by ΓV :

`2(ΓV ) :=

f : ΓV → C
∣∣∣∣ ∑

k∈ΓV

|f(k)|2 < ∞

 .

Each element f in `2(ΓV ) can be identified with a piecewise constant function in L2(IRd)
which is a constant on each cube

C(k, V ) :=
[
k1 −

π

V
, k1 +

π

V

)
× · · · ×

[
kd −

π

V
, kd +

π

V

)
⊂ IRd

centered about a lattice point k ∈ ΓV . In this identification, `2(ΓV ) is a closed subspace
of L2(IRd). Then, putting

WV := ⊕N`2(ΓV ). (4.1)

we have a natural orthogonal decomposition

W = WV ⊕W⊥
V .

Hence
Fb(W) = Fb(WV ) ⊗Fb(W⊥

V ). (4.2)

We define
ω

V
(k) = ω(k

V
), k ∈ IRd

with k
V

a lattice point closed to k:

k
V
∈ ΓV , |kj − (k

V
)j| ≤

π

V
, j = 1, · · · , d, k ∈ C(kV , V ).
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Let
Hb,V := dΓ(ω

V
),

the second quantization of ω
V
.

For technical reasons, we assume the following as a preliminary hypothesis:

Hypothesis VIII. Each gj : IRd → CN is continuous with gj, gj/ω
3/2 ∈ W and

〈gj(k), gl(k)〉C N ∈ IR, j, l = 1, · · · , J, k ∈ IRd.

Let C, γ be the constants in Hypothesis VII. In what follows we assume that m > 0
(m is defined by (2.22)) and

CV := Cdγ/2
(

π

V

)γ (
1 +

1

2m

)
< 1. (4.3)

Condition (4.3) is equivalent to V > V0, where V0 is the constant defined by

CV0 = 1. (4.4)

For a constant K > 0, we define a function gj,K,V :IRd → CN (j = 1, · · · , J) by

gj,K,V (k) :=
∑

`∈ΓV ,|`i|≤K,i=1,···,d
gj(`)χC(`,V )

(k), k ∈ IRd, (4.5)

where χS denotes the characteristic fucntion of the set S. We introduce a lattice approx-
imation version for H(λ):

HK,V (λ) := A ⊗ I + I ⊗ Hb,V + λ
J∑

j=1

Bj ⊗ φ(gj,K,V ). (4.6)

As in the case of Tj, one can show that {Bj ⊗φ(igj,K,V /ωV )}J
j=1 is a family of strongly

commuting self-adjoint operators. Hence

TK,V :=
J∑

j=1

Bj ⊗ φ
(
i
gj,K,V

ωV

)
(4.7)

is self-adjoint. We set
UK,V (λ) := e−iλTK,V . (4.8)

Let

AK,V (λ) := A − λ2

2

J∑
j,l=1

〈
gj,K,V√

ωV

,
gl,K,V√

ωV

〉
BjBl, (4.9)

LK,V (λ) := AK,V (λ) ⊗ I + I ⊗ Hb,V , (4.10)

δA1,K,V (λ) := UK,V (λ)A1 ⊗ IUK,V (λ)−1 − A1 ⊗ I. (4.11)

and

H̃K,V (λ) := LK,V (λ) + δA1,K,V (λ). (4.12)
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Lemma 4.1 For all λ ∈ IR,
UK,V (λ)D(L) = D(L) (4.13)

and, for all Ψ ∈ D(L),

UK,V (λ)HK,V (λ)UK,V (λ)−1 = H̃K,V (λ)Ψ. (4.14)

Proof. By [4, Lemma 3.1], we have

D(Hb,V ) = D(Hb), (4.15)

which implies that
D(A ⊗ I + I ⊗ Hb,V ) = D(L). (4.16)

Then, in a way similar to the proof of Lemma 3.7, one can prove (4.13) and (4.14).

Lemma 4.2 For all sufficiently large V , D(L) ⊂ D(δA1,K,V (λ)) and, for all Ψ ∈ D(L),

‖δA1,K,V (λ)Ψ‖ ≤ |λ|
(
c3/2,K,V (g)‖I ⊗ H

1/2
b,V Ψ‖ +

1

2
c1,K,V (g)‖Ψ‖

)
, (4.17)

where cs,K,V (g) is the constant cs(g) with gj (resp. ω) replaced by gj,K,V (res. ωV ).

Proof. Similar to the proof of Lemma 3.10.

Let

gj,K(k) := χ[−K,K](k1) · · ·χ[−K,K](kd)gj(k), k ∈ IRd, j = 1, · · · , J. (4.18)

Then the following hold [4, Lemma 3.2]:

lim
V →∞

‖gj,K,V − gj,K‖ = 0, (4.19)

lim
K→∞

‖gj,K − gj‖ = 0, (4.20)

lim
V →∞

∥∥∥∥∥gj,K,V√
ω

V

− gj,K√
ω

∥∥∥∥∥ = 0, (4.21)

lim
K→∞

∥∥∥∥∥gj,K√
ω

− gj√
ω

∥∥∥∥∥ = 0. (4.22)

Let

AK(λ) := A − λ2

2

J∑
j,l=1

〈
gj,K√

ω
,
gl,K√

ω

〉
BjBl. (4.23)

Lemma 4.3 Let λ ∈ Λ. Then, there exists a constant K0(λ) > 0 such that, for all
K > K0(λ), AK(λ) is self-adjoint with D(AK(λ)) = D(A0) and bounded from below.
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Proof. We write
AK(λ) = A(λ) + λ2DK , (4.24)

where

DK :=
1

2

J∑
j,l=1

cj,l(K,V )BjBl (4.25)

with

cj,l(K) :=

〈
gj√
ω

,
gl√
ω

〉
−

〈
gj,K√

ω
,
gl,K√

ω

〉
.

By (2.21),

‖BjBlu‖ ≤ (cjcl + ε)‖A0u‖ +

(
(cjdl + cldj)

2

4ε
+ djdl

)
‖u‖, u ∈ D(A0),

where ε > 0 is arbitrary. Since A(λ) is self-adjoint with D(A(λ)) = D(A0), it follows from
the closed graph theorem that there exists constant ν(λ) > 0 and µ(λ) > 0 such that, for
all u ∈ D(A0),

‖A0u‖ ≤ ν(λ)‖A(λ)u‖ + µ(λ)‖u‖ (4.26)

Hence, for all u ∈ D(A0),

‖DKu‖ ≤ αK(λ)‖A(λ)u‖ + βK(λ)‖u‖, (4.27)

where

αK(λ) :=
ν(λ)

2

J∑
j,l=1

|cj,l(K)|(cjcl + ε),

βK(λ) :=
µ(λ)

2

J∑
j,l=1

|cj,l(K)|
(

(cjdl + cldj)
2

4ε
+ djdl

)
.

By (4.22), limK→∞ αK(λ) = 0. Hence there exists a constant K0(λ) > 0 such that, for all
K > K0(λ), λ2αK(λ) < 1. Then, by the Kato-Rellich theorem, AK(λ) is self-adjoint with
D(AK(λ)) = D(A(λ)) = D(A0) and bounded from below.

In what follows we assume that K > K0(λ) (λ ∈ Λ).

Lemma 4.4 Let λ ∈ Λ. Then, for all sufficiently large V , AK,V (λ) is self-adjoint with
D(AK,V (λ)) = D(A0) and bounded from below.

Proof. We write
AK,V (λ) = AK(λ) + λ2DK,V , (4.28)

where

DK,V :=
1

2

J∑
j,l=1

cj,l(K,V )BjBl

with

cj,l(K,V ) :=

〈
gj,K√

ω
,
gl,K√

ω

〉
−

〈
gj,K,V√

ωV

,
gl,K,V√

ωV

〉
.
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In the same way as in the proof of Lemma 4.3 [use (4.21)], we can show that λ2DK,V is
relatively bounded w.r.t. AK(λ) with relative bound small than 1 for all sufficiently large
V . Thus, by the Kato-Rellich theorem, the assertion holds.

Lemma 4.5 Let λ ∈ Λ. Then, for all sufficiently large V > 0, H̃K,V (λ) and HK,V (λ) are

self-adjoint with D(H̃K,V (λ)) = D(HK,V (λ)) = D(A0 ⊗ I)∩D(I ⊗Hb) and bounded from
below.

Proof. Similar to the proof of Theorem 2.2.

The following fact is well-known:

Lemma 4.6 The operator Hb,V is reduced by Fb(WV ) and its reduced part is equal to the
second quantization of ω|WV in Fb(WV ).

Let
FV := H⊗Fb(WV ). (4.29)

Then we have the orthogonal decomposition

F = FV ⊕F⊥
V , (4.30)

where
F⊥

V = ⊕∞
n=1FV ⊗

[
⊗n

s W⊥
V )

]
. (4.31)

Lemma 4.7 The operator H̃K,V (λ) is reduced by FV and

H̃K,V (λ)|F⊥
V ≥ E0(HK,V (λ)) + m. (4.32)

Proof. It is easy to see that gj,K,V /ωV ∈ WV . Hence, under the identifications (4.29)
and (4.30), we have Bj ⊗ φ(igj,K,V /ωV ) = [B ⊗ φ(igj,K,V /ωV )] ⊕ 0. It follows that TK,V

is reduced by FV and so is UK,V (λ), which implies that δA1,K,V (λ) is reduced by FV . By

this fact and Lemma 4.6, H̃K,V (λ) is reduced by FV . Then a method similar to the proof
of [4, Lemma 3.10] yields (4.32).

Let
Σλ,K := inf σess(AK(λ)).

Lemma 4.8 There exists a constant εK > 0 such that limK→∞ εK = 0 and

Σλ ≤ Σλ,K + εK (4.33)

Proof. By (4.27) and a general theorem [16, p.168, Theorem X.18], one can show that

(1 − aK)A(λ) − [µ − E0(A(λ))]aK ≤ AK(λ) ≤ (1 + aK)A(λ) + [µ − E0(A(λ))]aK (4.34)

with

aK := λ2

{
αK(λ)

(
1 +

|E0(A(λ))|
µ

)
+

βK(λ)

µ

}
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where µ > 0 is arbitrary. For all sufficiently large K, we have 1 − aK > 0. We fix such
a K. Then it follows from the first inequality in (4.34) and the min-max principle [17,
p.76, Theorem XIII.1] that

(1 − aK)Σλ ≤ Σλ,K + [µ − E0(A(λ))]aK ,

which implies that
Σλ ≤ Σλ,K + εK

with εK := aK [Σλ + µ − E0(A(λ))]. We have limK→∞ εK = 0.

Let
Σλ,K,V := inf σess(AK,V (λ)).

Lemma 4.9 There exists a constant ηK,V > 0 such that limV →∞ ηK,V = 0 and

Σλ,K ≤ Σλ,K,V + ηK,V (4.35)

Proof. Similar to the proof of Lemma 4.8.

Lemma 4.10

lim
K→∞

E0(AK(λ)) = E0(A(λ)), (4.36)

lim
V →∞

E0(AK,V (λ)) = E0(AK(λ)). (4.37)

Proof. By (4.34) and the variational principle,

(1 − aK)E0(A(λ)) − µaK ≤ E0(AK(λ)) ≤ (1 + aK)E0(A(λ)) + µaK ,

which implies (4.36). Similarly one can prove (4.37).

Lemma 4.11 Suppose that the same hypothesis as in Theorem 2.3 and Hypothesis VIII
hold. Then, for all sufficiently large K and V , HK,V (λ) has purely discrete spectrum in
[E0(HK,V (λ)), E0(HK,V (λ)) + m).

Proof. By Lemma 4.1, we need only to show that H̃K,V (λ) has purely discrete spectrum

in [E0(HK,V (λ)), E0(HK,V (λ)) + m) [note that E0(hK,V ) = E0(H̃K,V (λ)) = E0(HK,V (λ))].

By Lemma 4.7, it is sufficient to show that the reduced part hK,V := H̃K,V (λ)|FV has
such a property. By Lemma 4.2, we have

| 〈Ψ, δA1,K,V (λ)Ψ〉 | ≤ ε 〈Ψ, I ⊗ Hb,V Ψ〉 + bε‖Ψ‖2, Ψ ∈ D(I ⊗ Hb,V ), (4.38)

where ε > 0 is arbitrary and

bε :=

(
λ2c3/2,K,V (g)2

4ε
+

1

2
|λ|c1,K,V (g)

)
. (4.39)
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By condition (2.25) and Lemmas 4.8–4.10, we have

Σλ,K,V − E0(AK,V (λ)) > m + 2bε (4.40)

if ε < 1 is sufficiently close to 1 and K and V are sufficiently large. Note that the spectrum
of h0 := Hb,V |Fb(WV ) is purely discrete with Ran(Eh0([0, s]) being finite dimensional for
all s > 0. Hence we can apply Theorem B.3 with Remark B.1 in Appendix B to conclude
that hK,V has purely discrete spectrum in [E0(hK,V ), E0(hK,V ) + m).

Proof of Theorem 2.3
Let

HK(λ) := A ⊗ I + I ⊗ Hb + λ
J∑

j=1

Bj ⊗ φ(gj,K).

Then, in the same way as in [4, Lemma 3.5], one can show that HK,V (λ) converges
to HK(λ) in the norm resolovent sense as V → ∞. Hence, by Lemma 4.11 and an
application of [4, Lemma 3.12], we conclude that HK(λ) has purely discrete spectrum in
[E0(HK(λ)), E0(HK(λ)) + m).

In the same way as in [4, Lemma 3.11], one can show that HK(λ) converges to H(λ)
in the norm resolovent sense as K → ∞. Hence, by the preceding result and [4, Lemma
3.12] again, we see that H(λ) has purely discrete spectrum in [E0(H(λ)), E0(H(λ)) + m).

Finally we consider the case where each gj is not necessarily continuous. In this

case we can take a sequence of continuous functions {g(n)
j }∞n=1 such that g

(n)
j ∈ W such

that ‖g(n)
j − gj‖ → 0 (n → ∞). Let Hn be the operator H(λ) with gj replaced g

(n)
j

(j = 1, · · · , J). Then one can show that Hn converges to H(λ) in the norm resolovent
sense as n → ∞. By the result of the last paragraph, Hn has purely discrete spectrum
in [E0(Hn), E0(Hn) + m). Hence, by [4, Lemma 3.12] once again, we see that H(λ) has
purely discrete spectrum in [E0(H(λ)), E0(H(λ)) + m).

5 Existence of a Ground State in the Massless Case

This section is devoted to proof of Theorem 2.4. Throughout the section, all the hypothe-
ses of Theorem 2.4 are assumed. For each constant M > 0, we define ωM : IRd → [M,∞)
by

ωM(k) := ω(k) + M, k ∈ IRd,

so that infk∈IRd ωM(k) = M > 0. We set

g
(M)
j :=

ωM

ω
gj,

which is in W . We introduce a “regularized” version of the Hamiltonian H(λ):

HM := A ⊗ I + I ⊗ Hb,M + λ
J∑

j=1

Bj ⊗ φ(g
(M)
j ),

where
Hb,M := dΓ(ωM).
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Let
AM := A − λ2R

(M)
B

with

R
(M)
B :=

1

2

J∑
j,l=1

〈
g

(M)
j√
ωM

,
g

(M)
l√
ωM

〉
BjBl

and
H̃M := AM ⊗ I + I ⊗ Hb,M + δA1(λ).

Then, by Lemma 3.7,
U(λ)HMU(λ)−1 = H̃M .

By applying the Lebesgue dominated convergence theorem, one can show that

lim
M→0

∥∥∥∥∥∥g
(M)
j

ωs
M

− gj

ωs

∥∥∥∥∥∥ = 0 (5.1)

for all s ≥ 0 such that gj/ω
s+1 ∈ W . We write

AM = A(λ) + WM

with
WM := λ2

(
RB − R

(M)
B

)
.

We put

cM := λ2
J∑

j,l=1

∣∣∣∣∣∣
〈

gj√
ω

,
gl√
ω

〉
−

〈
g

(M)
j√
ωM

,
g

(M)
l√
ωM

〉∣∣∣∣∣∣ .
Then we can show that

‖WMu‖ ≤ cM(a‖A(λ)u‖ + b‖u‖), u ∈ D(A0),

where a and b are constants independent of M (cf. the proof of Lemma 4.3). In the same
way as in Lemma 4.10, one can show that

lim
M→0

E0(AM) = E0(A(λ)). (5.2)

By this fact, (5.1) and (2.26), we can take M > 0 (sufficiently small) satisfying

Σλ − E0(AM) > M +
1

2
λ2c

(M)
3/2 (g)2 + |λ|c(M)

1 (g), (5.3)

where c(M)
s (g) is the cs(g) with ω and gj replaced by ωM and g

(M)
j respectively. It follows

from Theorem 2.3 that HM has a ground state and so does H̃M . We denote a normalized
ground state of H̃M by ΨM .

Lemma 5.1 For all f ∈ W with ωf ∈ W, I ⊗ a(f)ΨM ∈ D(H̃M) and

(H̃M − E0(H̃M))I ⊗ a(f)ΨM

=

−a(ωMf) −
J∑

j=1

λ√
2

〈
f,

gj

ω

〉
U(λ)[Bj, A1]U(λ)−1

 ΨM .
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Proof. Similar to the proof of [4, Lemma 4.1] except that, in the present case, one uses
an easily proven formula

U(λ)I ⊗ a(f)U(λ)−1 = I ⊗ a(f) − λ√
2

〈
f,

gj

ω

〉
Bj ⊗ I

on D(A0 ⊗ I) ∩ D(I ⊗ Hb,M).

We set
Nb := dΓ(I),

the number operator on Fb(W). Then we have for all f ∈ W and ψ ∈ D(N
1/2
b )

‖a(f)ψ‖ ≤ ‖f‖‖N1/2
b ψ‖, ‖a(f)∗ψ‖ ≤ ‖f‖‖N1/2

b ψ‖ + ‖f‖,

which implies that

‖φ(f)ψ‖ ≤
√

2‖f‖‖N1/2
b ψ‖ +

1√
2
‖f‖‖ψ‖. (5.4)

Now we can apply Theorem B.4 in Appendix B with (K,B,C) = (A(λ), Hb, δA1(λ))
so that H = H̃(λ). By (2.25), Hypothesis (B.1) holds. Hypothesis (B.2) is satisfied with
m = M , Km = AM , Bm = Hb,M , ψ0 = Ω (the Fock vacuum) and D = F0(W)∩D(Hb). We
denote by PΩ the orthogonal projection onto the one-dimensional subspace {αΩ|α ∈ C}
and set P⊥

Ω . := I − PΩ. By (3.23) and the fact that Hb,MΩ = 0 and HbΩ = 0, we have
for all u ∈ D(A0) with ‖u‖ = 1

〈
u ⊗ Ω, H̃Mu ⊗ Ω

〉
≤ 〈u,AMu〉 +

|λ|
2

c1(g),

which implies that E0(H̃M) ≤ E0(AM)+ |λ|c1(g)/2. By (5.2), for every η > 0, there exists
a constant M0 > 0 such that |E0(AM)−E0(A(λ))| < η for all M < M0. By this fact and
(2.26), we have

E0(H̃M) ≤ η + E0(A(λ)) +
|λ|
2

c1(g) < Σλ.

for all M < M0, where we take η sufficiently small. Thus, if we show that

1

(Σλ − E0(H̃M))2
‖δA1(λ)ΨM‖2 + ‖I ⊗ P⊥

Ω ΨM‖2 < δ (5.5)

for some δ < 1, then H̃(λ) has a ground state and so does H(λ).
Let us prove (5.5). Using estimate (5.4) and (3.24), we have

‖δA1(λ)ΨM‖ ≤ |λ|c1(g)‖N1/2
b ΨM‖ +

|λ|c1(g)

2
.

It is well known or easy to see that Nb ≥ P⊥
Ω . Hence

‖I ⊗ P⊥
Ω ΨM‖2 ≤ ‖N1/2

b ΨM‖2.
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Therefore, if (
2|λ|2c1(g)2

[Σλ − E0(H̃M)]2
+ 1

)
‖N1/2

b ΨM‖2 +
|λ|2c1(g)2

[Σλ − E0(H̃M)]2
< δ, (5.6)

then (5.5) follows.

To estimate ‖N1/2
b ΨM‖,we follow the method given in the proof of [4, Lemma 4.3].

Indeed, by Lemma 5.1, we can show that

‖N1/2
b ΨM‖ ≤ |λ|√

2

 J∑
j=1

∥∥∥∥ gj

ωωM

∥∥∥∥ ‖[Bj, A1]‖

 .

Hence, if

(
2|λ|2c1(g)2

[Σλ − E0(H̃M)]2
+ 1

)
λ2

2

 J∑
j=1

∥∥∥∥ gj

ωωM

∥∥∥∥ ‖[Bj, A1]‖

2

+
|λ|2c1(g)2

[Σλ − E0(H̃M)]2
< δ, (5.7)

then (5.6) follows. In the same way as in [4, Lemma 4.11], we can show that

lim
M→0

E0(HM) = E0(H(λ)).

We have E0(HM) = E0(H̃M). Hence condition (2.27) implies (5.7) with M > 0 sufficiently
small. This completes the proof of Theorem 2.4.

6 The Pauli-Fierz Type Model

In this section, we apply Theorem 2.4 to a model of the Pauli-Fierz type in non-relativistic
QED . Namely we consider the case where the system S is a system of n non-relativistic
quantum particles moving in IRd under the influence of a potential V : IRdn → IR (d, n ∈
IN). We set ν := nd. We assume for simplicity that

ν ≥ 3, V ∈ C∞
0 (IRν), V− := min{V, 0} 6= 0.

The Hilbert space of the particle system is taken to be

H = L2(IRν).

Hence the Hamiltonian of the particle system is

Hp := −∆ + αV

acting in L2(IRν), where ∆ is the generalized Laplacian on L2(IRν) and α > 0 is a param-
eter. We write x = (x1, · · · , xν) ∈ IRν and define

pj := −iDj
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with Dj being the generalized partial differential operator in the variable xj. By the
Cwikel-Lieb-Rosenbljum bound [17, Theorem XIII.12], Hp has no ground state for all
sufficiently small α.

Let gj : IRd → IRN (j = 1, · · · , ν) be such that

gj,
gj

ω2
∈ W . (6.1)

We take as the total Hamiltonian of the composed system

HPF(λ) := Hp ⊗ I + I ⊗ Hb + λ
ν∑

j=1

pj ⊗ φ(gj).

This model is a concrete realization of the abstract model H(λ) with the following choice:

A0 = −∆, A1 = αV, J = ν, Bj = pj.

It is straightforward to see that Hypotheses I–V hold with

[Bj, A1]|D(A0) = −iαDjV.

Suppose that, for all ξ = (ξ1, · · · , ξν) ∈ IRν ,

1

2

ν∑
j,l=1

〈
gj√
ω

,
gl√
ω

〉
ξjξl = G(g)ξ2 (6.2)

with G(g) > 0 a constant independent of ξ. This condition is satisfied in the original
Pauli-Fierz model without A2-term in the dipole approximation [2] (see Example 6.2
below). Condition (6.2) implies that

1

2

ν∑
j,l=1

〈
gj√
ω

,
gl√
ω

〉
pjpl = −G(g)∆.

Hence, in the present case, A(λ) takes the following form:

A(λ) = −(1 − λ2G(g))∆ + αV

Therefore, in the present case,

Λ = (−λ(g), 0) ∪ (0, λ(g)) 6= ∅,

where

λ(g) :=
1√

G(g)
.

Thus Hypothesis VI holds.
Also we have

cs(g) =
√

2|α|
ν∑

j=1

‖DjV ‖∞
∥∥∥∥ gj

ωs

∥∥∥∥ , (6.3)

where ‖F‖∞ := supx∈IRν |F (x)| (F : IRν → C).
We set

V0 := inf
x∈IRν

V (x) < 0.

We first consider the massive case.
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Theorem 6.1 Consider the case m > 0. Let ν ≥ 3 and Hypothesis VII be satified.
Suppose that

α|V0| >
1

2
λ(g)2c3/2(g)2 + λ(g)c1(g) (6.4)

and the constant m satisfies

α|V0| > m +
1

2
λ(g)2c3/2(g)2 + λ(g)c1(g). (6.5)

Then there exists a constant δ such that, for all |λ| ∈ (λ(g) − δ, λ(g)), HPF(λ) has purely
discrete spectrum in the interval [E0(HPF(λ)), E0(HPF(λ)) + m). In particular, HPF(λ)
has a ground state.

Proof. Let 0 < |λ| < λ(g). By [17, Theorem XIII.15],

Σλ = inf σess(A(λ)) = 0.

Therefore, by Theorem 2.3, we need only to show

−E0(A(λ)) > m +
1

2
λ2c3/2(g)2 + |λ|c1(g) (6.6)

for all |λ| sufficiently close to λ(g). We can take a constant ε > 0 such that E :=
V0 + ε < 0. Then DE := {x ∈ IRν |V (x) < E} is a non-empty bounded open set.
Let dE := infu∈C∞

0 (DE),‖u‖=1 〈u,−∆u〉. Then, by the strict positivity of the Dirichlet
Laplacian in a bounded open set, dE > 0. By the variational principle and the fact that
〈u, V u〉 ≤ E‖u‖2, u ∈ C∞

0 (DE),

E0(A(λ)) ≤ (1 − λ2G(g))dE + αE. (6.7)

Note that −αE = α|V0| − αε. Hence, by (6.5), for all sufficiently small ε > 0 and |λ|
sufficiently close to λ(g),

−αE − (1 − λ2G(g))dE > m +
1

2
λ(g)2c3/2(g)2 + λ(g)c1(g). (6.8)

Hence

−E0(A(λ)) > m +
1

2
λ(g)2c3/2(g)2 + λ(g)c1(g)

> m +
1

2
λ2c3/2(g)2 + |λ|c1(g).

Thus (6.6) holds.

We next consider the massless case.

Theorem 6.2 Consider the case m = 0. Let ν ≥ 3. Assume Hypothesis VII and (6.4).
Suppose in addition that

4λ(g)2c1(g)2

α2V 2
0

+
1

2

(
8λ(g)2c1(g)2

α2V 2
0

+ 1

)
λ(g)2c2(g)2 < 1. (6.9)

Then there exists a constant δ such that, for all |λ| ∈ (λ(g)−δ, λ(g)), HPF(λ) has a ground
state.
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Proof. Let 0 < |λ| < λ(g). By Theorem 2.4 and by the proof of Theorem 6.1, we need
only to check that

λ2c1(g)2

E0(HPF(λ))2
+

1

2

(
2λ2c1(g)2

E0(HPF(λ))2
+ 1

)
λ2c2(g)2 < 1 (6.10)

for all |λ| sufficiently close to λ(g). By (6.7) and Corollary 3.12, we have

E0(HPF(λ)) ≤ (1 − λ2G(g))dE + αE +
λ(g)

2
c1(g)

≤ (1 − λ2G(g))dE − α

2
|V0| + αε, (6.11)

where, in the last step, we have used (6.4). For all |λ| sufficiently close to λ(g) and
sufficiently small ε, the right hand side of (6.11) is negative. Hence, if we show that

λ2c1(g)2

[α|V0|
2

− αε − (1 − λ2G(g))dE]2
+

1

2

 2λ2c1(g)2

[α|V0|
2

− αε − (1 − λ2G(g))dE]2
+ 1

 λ2c2(g)2 < 1,

(6.12)
for all |λ| sufficiently close to λ(g) and sufficiently small ε, then (6.10) follows. It is easy
to see that (6.9) implies (6.12) for all |λ| sufficiently close to λ(g) and sufficiently small
ε > 0.

Remark 6.1 Theorems 6.1 and 6.2 give only sufficient conditions for HPF(λ) to have a
ground state with |λ| in an “intermediate” region. Suppose that Hp has no ground state.
Then it would be an interesting problem to investigate if there is a constant λ0 > 0 such
that, for all |λ| ∈ (0, λ0), HPF(λ) has no ground state. Unfortunately we have been unable
to give an answer to this problem.

Example 6.1 Assume Hypothesis VII. Let κ > 0 and Hκ
PF(λ) be the HPF(λ) with ω

replaced by κω. Then conditions (6.4) and (6.9) take the following forms respectively:

α|V0| >
1

2κ2
λ(g)2c3/2(g)2 +

1√
κ
λ(g)c1(g), (6.13)

4λ(g)2c1(g)2

κα2V 2
0

+
1

2κ3

(
8λ(g)2c1(g)2

κα2V 2
0

+ 1

)
λ(g)2c2(g)2 < 1. (6.14)

For a given α|V0|, these inequalities are satisfied if κ is sufficiently large. Thus Hκ
PF(λ) has

a ground state for all sufficiently large κ and |λ| <
√

κλ(g) sufficiently close to
√

κλ(g).
This result is somewhat analogous to the results by Hiroshima and Spohn [14, Lemma
3.3, Theorem 3.4], except that the regime of the coupling constant is different.

Example 6.2 Consider the original Pauli-Fierz model with one non-relativistic particle
in IR3 so that n = 1, d = 3 and N = 2. We take ω(k) = |k|, k ∈ IR3, and the momentum
cutoff function gj : IR3 → IR2 (j = 1, 2, 3) as

gj(k) =

 χ[σ,L](|k|)√
(2π)3|k|

e
(1)
j (k),

χ[σ,L](|k|)√
(2π)3|k|

e
(2)
j (k)

 ,
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where χ[σ,L] is the characteristic function of the interval [σ, L] (σ > 0 is an infrared cutoff

and L > σ is an ultraviolet cutoff) and e(r) = (e
(r)
1 , e

(r)
2 , e

(r)
3 ) : IR3 → IR3 (r = 1, 2) is Borel

measurable such that〈
e(s)(k), e(r)(k)

〉
= δsr,

〈
e(r)(k), k

〉
= 0, r, s = 1, 2, a.e.k ∈ IR3.

By the identity
2∑

r=1

e
(r)
j (k)e

(r)
l (k) = δjl −

kjkl

|k|2
, a.e.k

and the easily proven fact that∫
IR3

f(|k|)kjkldk =
1

3
δjl

∫
IR3

f(|k|)k2dk

for all f : [0,∞) → C such that
∫
IR3 f(|k|)k2dk < ∞, we can show that〈

gj

ωs
,

gl

ωs

〉
=

2

3(2π)3
δjl

∫
IR3

χ[σ,L](|k|)
|k|2s+1

dk

=

 δjl
8π

3(2π)3
log L

σ
; s = 1

δjl
8π

3(2π)3
1

2(1−s)

(
L2(1−s) − σ2(1−s)

)
; s 6= 1

.

Hence, in the present example, we have

G(g) =
4π

(2π)3
(L − σ), λ(g) =

√
(2π)3

4π

1√
L − σ

,

c1(g) =
√

2|α|

 3∑
j=1

‖DjV ‖∞

 √
8π

3(2π)3

√
log

L

σ
,

c3/2(g) =
√

2|α|

 3∑
j=1

‖DjV ‖∞

 √
8π

3(2π)3

√
1

σ
− 1

L
,

c2(g) =
√

2|α|

 3∑
j=1

‖DjV ‖∞

 √
8π

3(2π)3

1√
2

√
1

σ2
− 1

L2
.

From these formulas, we see that

λ(g)c1(g) ∼ const.

√
log L

L
,

λ(g)c3/2(g) ∼ const.
1√
L

,

λ(g)c2(g) ∼ const.
1√
L

as L → ∞, where “const.” denotes a constant independent of L sufficiently large. Hence,
for all sufficiently large L, all the assumptions of Theorem 6.2 are satisfied. Thus, in the
present example, HPF(λ) has a ground state for all sufficiently large L and |λ| < λ(g)
sufficiently close to λ(g). A possible physical picture of this result is that the coupling
of non-relativistic quantum particles to photons with larger momenta makes higher the
possibility for HPF(λ) to have a ground state.
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Appendix

A Weak Differentiability of a Heisenberg Operator

Let X be a Hilbert space. Let H be a self-adjoint operator and S a symmetric operator
on X . Then the Heisenberg operator (“time evolution”) of S with respect to H is defined
by

S(t) := eitHSe−itH , t ∈ IR. (A.1)

Proposition A.1 Suppose that there exists a self-adjoint operator K on X such that the
following (K.1) and (K.2) hold:

(K.1) K strongly commutes with H.

(K.2) D(K) ⊂ D(S) and there exist constants a, b ≥ 0 such that

‖Sψ‖ ≤ a‖Kψ‖ + b‖ψ‖, ψ ∈ D(K).

Then, for all ψ, φ ∈ D(K) ∩ D(H), the function: t 7→ 〈ψ, S(t)φ〉 (t ∈ IR) is differentiable
and

d

dt
〈ψ, S(t)φ〉 = i{

〈
He−itHψ, Se−itHφ

〉
−

〈
Se−itHψ,He−itHφ

〉
}. (A.2)

Proof. It follows from the strong commutativity of K with H and the two-variable func-
tional calculus that eitHD(K) ∩ D(H) = D(K) ∩ D(H) for all t ∈ IR. Let f(t) :=
〈ψ, S(t)φ〉, Fε := (e−iεH − 1)/ε and Gε := e−iεH − 1 with ε ∈ IR \ {0}. Then

f(t + ε) − f(t)

ε
=

〈
Fεe

−itHψ, Se−itHGεφ
〉

+
〈
Fεe

−itHψ, Se−itHφ
〉

+
〈
Se−itHψ, e−itHFεφ

〉
.

The first term on the right hand side is estimated as follows:

|
〈
Fεe

−itHψ, Se−itHGεφ
〉
| ≤ ‖Fεψ‖(a‖Ke−itHGεφ‖ + b‖Gεφ‖)

= ‖Fεψ‖(a‖GεKφ‖ + b‖Gεφ‖),

where, in the last step, we have used the strong commutativity of K and H. Note that
Fεψ → −iHψ and Gεφ → 0 strongly as ε → 0. Hence

lim
ε→0

〈
Fεe

−itHψ, Se−itHGεφ
〉

= 0

and (A.2) follows.

B Ground States of Self-adjoint Operators

In this section we establish two abstract theorems on existence of ground states of a self-
adjoint operator on an abstract Hilbert space. They reveal general structures of methods
used in previous papers [7, 12, 13] to prove the existence of ground states of particle-field
interaction models.
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B.1 Existence of a Ground State of a Self-adjoint Operator

For a self-adjoint operator S on a Hilbert space X , we denote the form domain of S by
Q(S):

Q(S) :=
{
ψ ∈ X

∣∣∣∣ ∫
IR
|λ|d‖ES(λ)ψ‖2 < ∞

}
= D(|S|1/2), (B.1)

where ES(·) denotes the spectral measure of S (see Section 2 for notations). For ψ, φ ∈
Q(S), we define 〈ψ, Sφ〉 by

〈ψ, Sφ〉 :=
∫
IR

λd 〈ψ,ES(λ)φ〉 .

For symmetric operators A, B and a subspace D ⊂ D(A)∩D(B), we mean by “A ≤ B
on D” that 〈ψ,Aψ〉 ≤ 〈ψ,Bψ〉 for all ψ ∈ D.

Let H and K be separable Hilbert spaces. Let A and B be self-adjoint operators on
H and K respectively. We assume the following:

Hypothesis A. The operator A is bounded from below and B is nonnegative with
E0(B) = 0.

We set
T0 := A ⊗ I + I ⊗ B, (B.2)

which is self-adjoint and bounded from below by E0(A).
For a sesquilinear form Z on a Hilbert space, we denote its form domain by Q(Z).
Let Z be a symmemtric sesquilinear form on H⊗K obeying the following conditions:

(i) Q(Z) ⊃ Q(I ⊗ B);

(ii) There exist constants a ∈ [0, 1) and b ≥ 0 such that, for all ψ ∈ Q(I ⊗ B),

|Z(ψ, ψ)| ≤ a 〈ψ, I ⊗ Bψ〉 + b‖ψ‖2.

Lemma B.1 Assume Hypothesis A and and let Z be as above. Then there exists a unique
self-adjoint operator T on H⊗K such that Q(T ) = Q(T0) and

〈ψ, Tφ〉 = 〈ψ, T0φ〉 + Z(ψ, φ), ψ, φ ∈ Q(T0).

T is bounded from below by E0(A) − b and every domain of essential self-adjointness for
T0 is a form core for T .

Proof. Let Â := A − E0(A), which is nonnegative. By the present assumption, we have
for all ψ ∈ Q(T0),

|Z(ψ, ψ)| ≤ a
〈
ψ, (Â ⊗ I + I ⊗ B)ψ

〉
+ b‖ψ‖2.

Note that Â ⊗ I + I ⊗ B ≥ 0. Hence we can apply the KLMN theorem [16, Theorem
X.17] to conclude that there exists a unique self-adjoint operator T ′ on H⊗K such that
Q(T ′) = Q(Â⊗I +I⊗B) = Q(T0) and T ′ = Â⊗I +I⊗B +Z in the sense of sesquilinear
form on Q(T0) with T ′ ≥ −b. Then the operator T defined by T := T ′ + E0(A) is the
desired one.
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Lemma B.2 Under the same hypothesis as in Lemma B.1,

|E0(T ) − E0(A)| ≤ b. (B.3)

Proof. By the variational principle and Lemma B.1, we have

E0(T ) ≥ E0(A) − b. (B.4)

On the other hand, for all f ∈ D(A) and g ∈ D(B) with ‖f‖ = 1 and ‖g‖ = 1, we have

E0(T ) ≤ (f,Af) + (1 + a)(g,Bg) + b,

which, together with the variational principle, implies that E0(T ) ≤ E0(A) + b, where we
have used the condition E0(B) = 0. Hence (B.3) follows.

We set
Σ := inf σess(A) (B.5)

and, for s > 0,

β(s) :=
E0(T ) − E0(A) + b + s

1 − a
. (B.6)

By (B.3), we have

β(s) ≥ s

1 − a
> 0. (B.7)

Theorem B.3 Assume Hypothesis A and let Z be as above. Suppose that

Σ − E0(T ) > b (B.8)

and, for some s0 > 0, Ran(EB([0, β(s0)]) is finite dimensional. Let m be a constant such
that

Σ − E0(T ) > m + b, (B.9)

0 < m < s0. (B.10)

Then T has purely discrete spectrum in the interval [E0(T ), E0(T ) + m). In particular, T
has a ground state.

Remark B.1 By Lemma B.2, condition (B.8) is satisfied if

Σ − E0(A) > 2b. (B.11)

Proof. Let
Â := A − E0(A), Tm := T − E0(T ) − m.

Then we have on D(T0)

Tm = Â ⊗ I + I ⊗ B + Z + E0(A) − E0(T ) − m

≥ Â ⊗ I + I ⊗ (1 − a)B − α0,
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where
α0 := E0(T ) − E0(A) + b + m ≥ m.

Since we have (B.9)
α0 < Σ − E0(A),

one can take a constant δ > 0 such that α0 ≤ δ < Σ − E0(A). Let Pδ := EÂ([0, δ]) and
P⊥

δ := I − Pδ = EÂ((δ,∞)), so that Pδ + P⊥
δ = I. Then we have

Â ⊗ I + I ⊗ (1 − a)B − α0

= PδÂ ⊗ I + P⊥
δ Â ⊗ I + Pδ ⊗ (1 − a)B + P⊥

δ ⊗ (1 − a)B − α0Pδ ⊗ I − α0P
⊥
δ ⊗ I.

Note that
PδÂ ⊗ I ≥ 0, P⊥

δ Â ⊗ I ≥ δP⊥
δ ⊗ I, P⊥

δ ⊗ (1 − a)B ≥ 0.

Hence

Â ⊗ I + I ⊗ (1 − a)B − α0 ≥ (δ − α0)P
⊥
δ ⊗ I + Pδ ⊗ [(1 − a)B − α0]

≥ (Pδ ⊗ [(1 − a)B − α0],

where we have used the condition δ ≥ α0. Hence we have on D(T0)

Tm ≥ Pδ ⊗ [(1 − a)B − α0] ≥ Pδ ⊗ [(1 − a)B − α0]−,

where [(1−a)B−α0]− means the negative part of (1−a)B−α0. Let Jm := ETm([−m, 0)).
(i) The case where Ran(Jm) is finite dimensional. In this case Tm has a purely discrete

spectrum in [−m, 0). This means that the spectrum of T in [E0(T ), E0(T ) + m) is purely
discrete. In particular T has a ground state.

(ii) The case where Ran(Jm) is infinite dimensional. Note that

[(1 − a)B − α0]− = EB([0, β(m))[(1 − a)B − α0]EB([0, β(m)).

By condition (B.10) and the present assumption, Ran(EB([0, β(m)))) is finite dimensional.
Hence [(1− a)B − α0]− is trace class. Therefore Pδ ⊗ [(1− a)B − α0]− is trace class. Let
{ψn}∞n=1 be a complete orthonormal system of Ran(Jm). Then, for all N ∈ IN,

0 ≥
N∑

n=1

〈ψn, Tmψn〉 ≥
N∑

n=1

〈ψn, Pδ ⊗ [(1 − a)B − α0]−ψn〉

≥ Tr{Pδ ⊗ [(1 − a)B − α0]−}.

Hence
∑N

n=1 〈ψn, Tmψn〉 is convergent as N → ∞, which implies JmTmJm is trace class
and hence it is compact. Thus Tm has purely discrete spectrum in [−m, 0), which implies
that T has purely discrete spectrum in [E0(T ), E0(T ) + m). In particular T has a ground
state.
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B.2 A Limit Theorem on Ground States

Let K be a self-adjoint operator on H bounded from below and B be a nonnegative self-
adjoint operator on K with E0(B) = 0. Let C be a symmetric operator on H ⊗ K with
D(K ⊗ I) ∩ D(I ⊗ B) ⊂ D(C) such that

H := K ⊗ I + I ⊗ B + C (B.12)

is self-adjoint and bounded from below.
Let

Σ := inf σess(K). (B.13)

Hypothesis (B.1). Σ > E0(K).

Hypothesis (B.2). There are a family {Km}m∈(0,m0] of symmetric operators on H with
D(K) ⊂ ∩m∈(0,m0]D(Km) and a family {Bm}m∈(0,m0] of nonnegative self-adjoint
operators on K with E0(Bm) = 0 such that the following hold:

(i) There exists a constant cm > 0 such that, for all u ∈ D(K),

‖(K − Km)u‖ ≤ cm(‖Ku‖ + ‖u‖)

and limm→0 cm = 0.

(ii) There exists a non-zero vector ψ0 such that, for all m ∈ (0,m0], Bmψ0 = 0. We
denote the orthogonal projection onto the one-dimensional subspace {αψ0|α ∈ C}
by P0.

(iii) For each m ∈ (0,m0], D(Km ⊗ I) ∩ D(I ⊗ Bm) ⊂ D(C) and the operator

Hm := Km ⊗ I + I ⊗ Bm + C (B.14)

is self-adjoint and bounded from below.

(iv) There exists a dense subspace D ⊂ [∩m∈(0,m0]D(Bm)] ∩ D(B) such that, for all
ψ ∈ D, limm→0 Bmψ = Bψ and D(K) ⊗alg D is a core of H, where ⊗alg means
algebraic tensor product.

For an orthogonal projection P on a Hilbert space, we set

P⊥ := I − P.

Theorem B.4 Assume Hypotheses (B.1) and (B.2). Suppose that

inf
m∈(0,m0]

E0(Hm) > −∞, sup
m∈(0,m0]

E0(Hm) < Σ. (B.15)

Suppose that, for all m ∈ (0, m0], Hm has a ground state Ψm with ‖Ψm‖ = 1 and there
exists a constant δ < 1 independent of m ∈ (0,m0] such that

1

(Σ − E0(Hm))2
‖CΨm‖2 + ‖I ⊗ P⊥

0 Ψm‖2 < δ. (B.16)
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Then there exists a subsequence {Ψmj
}∞j=1 with

m1 > m2 > · · · > mj > mj+1 > · · · , lim
j→∞

mj = 0

such that the weak limit Ψ0 := w- limj→∞ Ψmj
is a ground state of H.

Proof. We divide the proof of this theorem into two steps.
(1) By Hypothesis (B.2)-(i), there exists a positive constant ε0 < m0 such that, for

all 0 < m < ε0, cm < 1. Then, by the Kato-Rellich theorem, Km = K + (Km − K) is
self-adjoint with D(Km) = D(K) and bounded from below. We can take a constant ξ
such that max{supm∈(0,m0] E0(Hm), E0(K)} < ξ < Σ and

1

(ξ − E0(Hm))2
‖CΨm‖2 + ‖I ⊗ P⊥

0 Ψm‖2 ≤ δ. (B.17)

Let
PK := EK([E0(K), ξ]).

Then, by Hypothesis (B.1), dim RanPK < ∞.
Let Km(β) := K + βLm with Lm := (Km − K)/cm and β ∈ C. Since Lm is relatively

bounded with respect to K, it follows from [17, p.16, Lemma] that Km(β) is an analytic
family of type (A) near β = 0. Hence it is an analytic family in the sense of Kato [17,
p.17, Theorem XII.9] and Km(β) is self-adjoint for real β with |β| sufficiently small. We
define

Qm(β) := EKm(β)([E0(K), ξ])

and
Qm := EKm([E0(K), ξ]).

Then Qm(β) is analytic near β = 0. In particular,

lim
β→0

‖Qm(β) − PK‖ = 0

and hence dim RanQm(β) = dim RanPK < ∞ for all sufficiently small |β|. Note that
Km(cm) = Km. Therefore, for every ε > 0, there exists a constant η0 > 0 such that, for
all m ∈ (0, η0),

‖Qm − PK‖ < ε (B.18)

and dim RanQm = dim RanPK .
(2) By the weak compactness of the unit ball of a Hilbert space and condition (B.15),

there exists a subsequence {Ψmj
}∞j=1 (m1 > m2 > · · · > mj > mj+1 > · · · , limj→∞ mj = 0)

such that the weak limit Ψ0 := w- limj→∞ Ψmj
and E0 := limj→∞ E0(Hmj

) exist. By
Hypothesis (B.2)-(iii), we have limm→0 HmΨ = HΨ for all Ψ ∈ D(K) ⊗alg D. Hence, by
an applicaiton of [4, Lemma 4.9], if we show that Ψ0 6= 0, then we can conclude that Ψ0

is a ground state with E0 = E0(H).
We have dim RanP0 = 1. Hence, to show that Ψ0 6= 0, we need only to prove

〈Ψm, PK ⊗ P0Ψm〉 ≥ 1 − δ′ (B.19)
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with a constant δ′ < 1 independent of m. Then, passing to the subsequence {Ψmj
}j and

taking the limit j → ∞, we obtain 〈Ψ0, PK ⊗ P0Ψ0〉 ≥ 1 − δ′ > 0, which implies that
Ψ0 6= 0.

To prove (B.19), we first prove

〈Ψm, Qm ⊗ P0Ψm〉 ≥ 1 − δ. (B.20)

Then, by (B.18), we obtain (B.19) for all m < η0 with δ′ = δ + ε < 1 and hence the proof
is completed.

Now we note that (B.20) is equivalent to〈
Ψm, (Q⊥

m ⊗ P0 + I ⊗ P⊥
0 )Ψm

〉
≤ δ. (B.21)

This is seen by using the identity 1 =
〈
Ψm, (Qm + Q⊥

m) ⊗ (P0 + P⊥
0 )Ψm

〉
. We prove

(B.21). We have
(Q⊥

m ⊗ P0)Hm = Q⊥
mKm ⊗ P0 + Q⊥

m ⊗ P0C.

Hence

0 = (Q⊥
m ⊗ P0)(Hm − E0(Hm))Ψm

= (Q⊥
m(Km − E0(Hm)) ⊗ P0)Ψm + (Q⊥

m ⊗ P0)CΨm,

which implies that〈
Ψm, (Q⊥

m ⊗ P0)CΨm

〉
= −

〈
Ψm, Q⊥

m(Km − E0(Hm)) ⊗ P0Ψm

〉
≤ −(ξ − E0(Hm))

〈
Ψm, Q⊥

m ⊗ P0Ψm

〉
.

Hence 〈
Ψm, Q⊥

m ⊗ P0Ψm

〉
≤ − 1

ξ − E0(Hm)

〈
Ψm, (Q⊥

m ⊗ P0)CΨm

〉
≤ 1

ξ − E0(Hm)
‖Q⊥

m ⊗ P0Ψm‖‖CΨm‖.

Hecne 〈
Ψm, Q⊥

m ⊗ P0Ψm

〉
≤ 1

(ξ − E0(Hm))2
‖CΨm‖2,

which, together with (B.17), yields (B.21).
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