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Non-relativistic Limit of a Dirac-Maxwell
Operator in Relativistic Quantum

Electrodynamics

Asao Arai∗

Department of Mathematics, Hokkaido University

Sapporo 060-0810, Japan

E-mail: arai@math.sci.hokudai.ac.jp

Abstract

The non-relativistic (scaling) limit of a particle-field Hamiltonian H, called a
Dirac-Maxwell operator, in relativistic quantum electrodynamics is considered. It
is proven that the non-relativistic limit of H yields a self-adjoint extension of the
Pauli-Fierz Hamiltonian with spin 1/2 in non-relativistic quantum electrodynamics.
This is done by establishing in an abstract framework a general limit theorem on
a family of self-adjoint operators partially formed out of strongly anticommuting
self-adjoint operators and then by applying it to H.

Keywords: quantum electrodynamics, Dirac operator, Dirac-Maxwell operator, Pauli-
Fierz Hamiltonian, non-relativistic limit, scalig limit, Fock space, strongly anticommuting
self-adjoint operators

1 Introduction

In a previous paper [3], the author analyzed fundamental properties of a particle-field
Hamiltonian H in relativistic quantum electrodynamics (QED), namely, the Hamiltonian
of a Dirac particle — a relativistic charged particle with spin 1/2 — interacting with the
quantum radiation field. For convenience in mentioning the particle-field Hamiltonian, we
call it a Dirac-Maxwell operator. In this paper, we consider the non-relativistic (scaling)
limit of H. We prove that the non-relativistic limit of H yields a self-adjoint extension
of the Pauli-Fierz Hamiltonian with spin 1/2 in non-relativistic QED. This establishes a
mathematically rigorous connection of relativistic QED to non-relativistic QED, which
has not been proved so far. The Dirac-Maxwell operator H is of the form H = HD +

∗Supported by the Grant-in-Aid No. 13440039 for Scientific Research from the JSPS.
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Hrad + HI , where HD is a Dirac opeartor describing the Dirac particle system only, Hrad

is the free Hamiltonian of the quantum radiation field (a quantum version of the Maxwell
Hamiltonian in the Coulomb gauge) and HI is the interaction term beween the Dirac
particle and the quantum radiation field. As for the Dirac operator HD, the non-relativistic
limit has already been investigated and well understood ([11, Chapter 6] and references
therein). We extend the methods used in the case of the Dirac operator HD to the case
of H. This can be done in an abstract framework. We remark that the non-relativistic
limit theory of HD is included in the theory of scaling limits on strongly anticommuting
self-adjoint operators [2]. In view of this structure, we further develop the theory of
scaling limits on strongly anticommuting self-adjoint operators in such a way that it can
be applied to the non-relativistic limit of H. This is an outline of our method taken in
the present paper.

The present paper is organized as follows. In Section 2 we describe the Dirac-Maxwell
operator and the Pauli-Fierz Hamiltonian with spin 1/2. In Section 3 we state the main
results of the present paper. Section 4 is devoted to an abstract analysis of a family of self-
adjoint operators partially formed out of strongly anticommuting self-adjoint operators.
We prove a limit theorem and a resolvent formula. These results are generalizations of
previously known ones ([2], [11, Chapter 6]). In the last section, applying the general
limit theorem established in Section 4, we prove the main results. In Appendix A we
present a method to find a self-adjoint extension S̃ of a Hermitian operator S defined as
a finite sum of self-adjoint operators bounded from below. The self-adjoint extension S̃
may be different from the Friedrichs extension and the one defined as a form sum if S is
symmetric, but not essentially self-adjoint. The method here has an advantage in that S̃
can be approximated by a family {S(κ)}κ>0 of self-adjoint operators (as κ → ∞) which
are defined by “cutting off” S and may be tractable. We apply this abstract method to
the construction of a self-adjoint extension of the Pauli-Fierz Hamiltonian without spin
(Appendix B) and that with spin 1/2 (Section 3.3).

2 The Dirac-Maxwell Operator and The Pauli-Fierz

Hamiltonian

For a linear operator T on a Hilbert space, we denote its domain by D(T ), and its
adjoint by T ∗ ( provided that T is densely defined). For two objects a = (a1, a2, a3) and
b = (b1, b2, b3) such that products ajbj (j = 1, 2, 3) and their sum can be defined, we set
a · b :=

∑3
j=1 ajbj. We use the physical unit system in which c(the speed of light)= 1 and

h̄ = 1 (h̄ := h/(2π); h is the Planck constant).

2.1 The Dirac operator

Let Dj (j = 1, 2, 3) be the generalized partial differential operator in the variable xj, the
j-th component of x = (x1, x2, x3) ∈ R3, and ∇ := (D1, D2, D3). We denote the mass and
the charge of the Dirac particle by m > 0 and q ∈ R \ {0} respectively. We consider the
situation where the Dirac particle is in a potential V which is a Hermitian-matrix-valued
Borel measurable function on R3. Then the Hamiltonian of the Dirac particle is given by

2



the Dirac operator
HD := α · (−i∇) + mβ + V (2.1)

acting in the Hilbert space
HD := ⊕4L2(R3) (2.2)

with domain D(HD) := [⊕4H1(R3)] ∩ D(V ) (H1(R3) is the Sobolev space of order 1),
where αj (j = 1, 2, 3) and β are 4× 4 Hermitian matrices satisfying the anticommutation
relations

{αj, αk} = 2δjk, j, k = 1, 2, 3, (2.3)

{αj, β} = 0, β2 = 1, j = 1, 2, 3, (2.4)

{A,B} := AB + BA and δjk is the Kronecker delta. We assume the following:

Hypothesis (A)

Each matrix element of V is almost everywhere (a.e.) finite with respect to the
three-dimensional Lebesgue measure dx and the subspace ∩3

j=1[D(Dj) ∩ D(V )] is
dense in HD.

Under this hypothesis, HD is a symmetric operator. Detailed analysis of the Dirac operator
is given in [11].

Example 2.1 A typical example for V is

Vem := φ − qα · Aex

with φ : R3 → R an external scalar potential and Aex := (Aex
1 , Aex

2 , Aex
3 ) : R3 → R3 an

external vector potential, where Aex
j and φ are in the set

L2
loc(R

3) :=

{
f : R3 → C; Borel measurable

∣∣∣∣ ∫
|x|≤R

|f(x)|2dx < ∞, ∀R > 0

}
.

Then D(Vem) ⊃ ⊕4C∞
0 (R3), where C∞

0 (R3) is the set of C∞-functions on R3 with compact
support. Hence ∩3

j=1[D(Dj) ∩ D(Vem)] is dense. Thus Vem obeys Hypothesis (A).

2.2 The quantum radiation field

The Hilbert space of one-photon states in momentum representation is given by

Hph := L2(R3) ⊕ L2(R3), (2.5)

where R3 := {k = (k1, k2, k3)|kj ∈ R, j = 1, 2, 3} physically means the momentum space
of photons. Then a Hilbert space for the quantum radiation field in the Coulomb gauge
is given by

Frad := ⊕∞
n=0 ⊗n

s Hph, (2.6)
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the Boson Fock space over Hph, where ⊗n
s Hph denotes the n-fold symmetric tensor product

of Hph and ⊗0
sHph := C. For basic facts on the theory of the Boson Fock space, we refer

the reader to [9, §X.7].
We denote by a(F ) (F ∈ Hph) the annihilation operator with test vector F on Frad;

its adjoint is given by

(a(F )∗Ψ)(n) =
√

nSn(F ⊗ Ψ(n−1)), n ≥ 0, Ψ = {Ψ(n)}∞n=0 ∈ D(a(F )∗),

where Sn is the symmetrization operator on ⊗nHph and Ψ−1 := 0. For each f ∈ L2(R3),
we define

a(1)(f) := a(f, 0), a(2)(f) := a(0, f). (2.7)

The mapping : f → a(r)(f ∗) restricted to S(R3) (the Schwartz space of rapidly decreasing
C∞-functions on R3) defines an operator-valued distribution (f∗ denotes the complex
conjugate of f). We denote its symbolical kernel by a(r)(k): a(r)(f) =

∫
a(r)(k)f(k)∗dk.

We take a nonnegative Borel measurable function ω on R3 to denote the one free
photon energy. We assume that, for a.e. k ∈ R3 with respect to the Lebesgue measure
on R3, 0 < ω(k) < ∞. Then the function ω defines uniquely a multiplication operator on
Hph which is nonnegative, self-adjoint and injective. We denote it by the same symbol ω.
The free Hamiltonian of the quantum radiation field is then defined by

Hrad := dΓ(ω), (2.8)

the second quantization of ω [8, p.302, Example 2] and [9, §X.7]. The operator Hrad

is a nonnegative self-adjoint operator. The symbolical expression of Hrad is Hrad =∑2
r=1

∫
ω(k)a(r)(k)∗a(r)(k)dk.

Remark 2.1 Usually ω is taken to be of the form ωphys(k) := |k|, k ∈ R3, but, in this
paper, for mathematical generality, we do not restrict ourselves to this case.

There exist R3-valued Borel measurable functions e(r) (r = 1, 2) on R3 such that, for
a.e. k

e(r)(k) · e(s)(k) = δrs, e(r)(k) · k = 0, r, s = 1, 2. (2.9)

These vector-valued functions e(r) are called the polarization vectors of a photon.
The time-zero quantum radiation field is given by A(x) := (A1(x), A2(x), A3(x)) with

Aj(x) :=
2∑

r=1

∫
dk

e
(r)
j (k)√

2(2π)3ω(k)

{
a(r)(k)∗e−ik·x + a(r)(k)eik·x

}
, j = 1, 2, 3, (2.10)

in the sense of operator-valued distribution. Let % be a real tempered distribution on R3

such that
%̂√
ω

,
%̂

ω
∈ L2(R3), (2.11)

where %̂ denotes the Fourier transform of %. The quantum radiation field

A% := (A%
1, A

%
2, A

%
3) (2.12)
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with momentum cutoff %̂ is defined by

A%
j (x) :=

2∑
r=1

∫
dk

e
(r)
j (k)√
2ω(k)

{
a(r)(k)∗e−ik·x%̂(k)∗ + a(r)(k)eik·x%̂(k)

}
. (2.13)

Symbolically A%
j (x) =

∫
Aj(x − y)%(y)dy.

2.3 The Dirac-Maxwell operator

The Hilbert space of state vectors for the coupled system of the Dirac particle and the
quantum radiation field is taken to be

F := HD ⊗Frad. (2.14)

This Hilbert space can be identified as

F = L2(R3;⊕4Frad) =
∫ ⊕

R3
⊕4Fraddx (2.15)

the Hilbert space of ⊕4Frad-valued Lebesgue square integrable functions on R3 (the con-
stant fibre direct integral with base space (R3, dx) and fibre ⊕4Frad [10, §XIII.6]). We
freely use this identification. The total Hamiltonian of the coupled system — a particle-
field Hamiltonian — is defined by

H := HD + Hrad − qα · A% = α · (−i∇− qA%) + mβ + V + Hrad. (2.16)

We call H a Dirac-Maxwell operator. The (essential) self-adjointness of H is discussed in
[3].

2.4 The Pauli-Fierz Hamiltonian with spin 1/2

A Hamiltonian which describes a quantum system of non-relativistic charged particles
interacting with the quantum radiation filed is called a Pauli-Fierz Hamiltonian [7]. Here
we consider a non-relativistic charged particle with mass m, charge q and spin 1/2. Sup-
pose that the particle is in an external electromagnetic vector potential Aex = (Aex, φ),
where Aex := (Aex

1 , Aex
2 , Aex

3 ) : R3 → R3 and φ : R3 → R are Borel measurable and a.e.
finite with respect to dx. Let

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
, (2.17)

the Pauli spin matrices, and set

σ := (σ1, σ2, σ3). (2.18)

Then the Pauli-Fierz Hamiltonian of this quantum system is defined by

HPF :=
{σ · (−i∇− qA% − qAex)}2

2m
+ φ + Hrad (2.19)

acting in the Hilbert space

FPF := L2(R3;C2) ⊗Frad = L2(R3;⊕2Frad) =
∫ ⊕

R3
⊕2Fraddx. (2.20)

For the Pauli-Fierz Hamiltonian without spin, see Appendix B.
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3 Main Results

3.1 A Dirac operator coupled to the quantum radiation field

We use the following representation of αj and β [11, p.3]:

αj :=

(
0 σj

σj 0

)
, β :=

(
I2 0
0 −I2

)
, (3.1)

where I2 is the 2× 2 identity matrix. Hence the eigenspaces H±
D of β with eigenvalue ±1

take the forms respectively

H+
D =




f
g
0
0


∣∣∣∣f, g ∈ L2(R3)

 , H−
D =




0
0
f
g


∣∣∣∣f, g ∈ L2(R3)

 . (3.2)

and we have
HD = H+

D ⊕H−
D. (3.3)

Let P± be the orthogonal projections onto H±
D. Then we have

V = V0 + V1 (3.4)

with
V0 = P+V P+ + P−V P−, V1 = P+V P− + P−V P+. (3.5)

Note that
[V0, β] = 0, {V1, β} = 0,

where [A,B] := AB − BA. In operator-matrix form relative to the orthogonal decompo-
sition (3.3), we have

V0 =

(
U+ 0
0 U−

)
, V1 =

(
0 W ∗

W 0

)
, (3.6)

where U± are 2 × 2 Hermitian matrix-valued functions on R3 and W is a 2 × 2 complex
matrix-valued function on R3.

Let
6D(V1) := α · (−i∇− qA%) + V1 (3.7)

Then, recalling that A%
j is H

1/2
rad -bounded [3], we see that 6D(V1) is densely defined and sym-

metric with D(6D(V1)) ⊃
(
∩3

j=1[D(Dj) ∩ D(V )]
)
⊗alg D(H

1/2
rad ), where ⊗alg means algebraic

tensor product.
By (3.3), we have the following orthogonal decomposition of F :

F = F+ ⊕F−, (3.8)

where
F± := H±

D ⊗Frad
∼= FPF. (3.9)
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Relative to this orthogonal decomposition, we can write

6D(V1) =

(
0 DW ∗

DW 0

)
, (3.10)

where

DW := σ · (−i∇− qA%) + W, (3.11)

DW ∗ := σ · (−i∇− qA%) + W ∗ (3.12)

acting in FPF.
For a closable linear operator T on a Hilbert space, we denote its closure by T̄ unless

otherwise stated. Note that DW is densely defined as an operator on FPF and (DW )∗ ⊃
DW ∗ . Hence (DW )∗ is densely defined. Thus DW is closable. Based on this fact, we can
define ˜6D(V1) :=

(
0

(
DW

)∗

DW 0

)
. (3.13)

Lemma 3.1 Under Hypothesis (A), ˜6D(V1) is a self-adjoint extension of 6D(V1).

Proof: The self-adjointness of 6D(V1) follows from a general theorem (e.g., [11, p.142,
Lemma 5.3]). It is obvious that ˜6D(V1)|D(DW ) ⊕ D(DW ∗) = 6D(V1), where, for a linear
operator T and a subspace D ⊂ D(T ), T |D denotes the restriction of T to D. Hence˜6D(V1) is a self-adjoint extension of 6D(V1).

Remark 3.1 The operator

̂6D(V1) :=

(
0 DW ∗

(DW ∗)∗ 0

)
(3.14)

is also a self-adjoint extension of 6D(V1). But, for simplicity, we consider here only ˜6D(V1).
Discussions on ˜6D(V1) presented below apply also to ̂6D(V1) with suitable modifications.

3.2 A scaled Dirac-Maxwell operator

For a self-adjoint operator A, we denote the spectrum and the spectral measure of A by
σ(A) and EA( · ) respectively. In the case where A is bounded from below, we set

E0(A) := inf σ(A), A′ := A − E0(A) ≥ 0.

Let Λ : (0,∞) → (0,∞) be a nondecreasing function such that Λ(κ) → ∞ as κ → ∞ and
A be a self-adjoint operator on a Hilbert space. Then, for each κ > 0, we define A(κ) by

A(κ) :=



EA′([0, Λ(κ)])A′EA′([0, Λ(κ)]) + E0(A) if A is bounded from below
and E0(A) < 0

E|A|([0, Λ(κ)])AE|A|([0, Λ(κ)]) if A is nonnegative
or A is not bounded from below

(3.15)
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Then A(κ) is a bounded self-adjoint operator with

‖A(κ)‖ ≤ Λ(κ). (3.16)

Proposition 3.2 The following hold:

(i) For all ψ ∈ D(A), s - limκ→∞ A(κ)ψ = Aψ, where s - lim means strong limit.

(ii) For all z ∈ C \ R, s - limκ→∞(A(κ) − z)−1 = (A − z)−1.

Proof: Part (i) follows from the functional calculus of A. Part (ii) follows from (i) and a
general convergence theorem [8, p.292, Theorem VIII.25(a)].

With this preliminary, we define for κ > 0 a scaled Dirac-Maxwell operator

H(κ) := κ ˜6D(V1) + κ2mβ − κ2m + V0,κ + H
(κ)
rad, (3.17)

where

V0,κ :=

(
U

(κ)
+ 0

0 U
(κ)
−

)
. (3.18)

Some remarks may be in order on this definition. The parameter κ in H(κ) means
the speed of light concerning the Dirac particle only. The speed of light related to the
external potential V = V0 + V1 and the quantum radiation field A% is absorbed in them
respectively. The third term −κ2m on the right hand side of (3.17) is a subtraction of
the rest energy of the Dirac particle. Hence taking the scaling limit κ → ∞ in H(κ) in a
suitable sense corresponds in fact to a partial non-relativistic limit of the quantum system
under consideration.

If one considers the non-relativistic limit in a way similar to the usual Dirac operator
HD, then one may define

Ĥ(κ) := κ ˜6D(V1) + κ2mβ − κ2m + V0 + Hrad (3.19)

as a scaled Dirac-Maxwell operator, where no cutoffs on V0 and Hrad are made. In this
form, however, we find that, besides the (essential) self-adjointness problem of Ĥ(κ), the
methods used in the usual Dirac type operators ([11, Chapter 6] or those in [2]) seem not
to work. This is because of the existence of the operator Hrad in Ĥ(κ) which is singular
as a perturbation of H0(κ) := κ ˜6D(V1) + κ2mβ − κ2m +V0 ( if one would try to apply
the methods on sacaling limits discussed in the cited literatures, then one would have to
treat Hrad as a perturbation of H0(κ)). To avoid this difficulty, we replace Hrad in Ĥ(κ)
by a bounded self-adjoint operator which is obtained by cutting off Hrad. This is one of
the basic ideas of the present paper. We apply the same idea to V0 which also may be
singular as a perturbation of κ ˜6D(V1) + κ2mβ − κ2m. In this way we arrive at Definition
(3.17) of a scaled Dirac-Maxwell operator.

Lemma 3.3 Under Hypothesis (A), H(κ) is self-adjoint with D(H(κ)) = D( ˜6D(V1)).

Proof: The operator κ2mβ −κ2m+V0,κ +H
(κ)
rad is a bounded self-adjoint operator. Hence,

by the Kato-Rellich theorem, the assertion follows.
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3.3 Self-adjoint extension of the Pauli-Fierz Hamiltonian

Essential self-adjointness of the the Pauli-Fierz Hamiltonian HPF given by (2.19) and its
generalizations is discussed in [4, 5]. These papers show that, under additional conditions
on %̂, ω, Aex and φ, the Pauli-Fierz Hamiltonians are essentially self-adjoint. In the present
paper, we do not intend to discuss essential self-adjointness problem of the Pauli-Fierz
type Hamiltonians. Instead, we define a self-adjoint extension of HPF, which may not be
known before.

We define

HPF(κ; W,U+) :=

(
DW

)∗
DW

2m
+ U

(κ)
+ + H

(κ)
rad, κ > 0 (3.20)

acting in FPF.

Lemma 3.4 Under Hypotheses (A), HPF(κ; W,U+) is self-adjoint and bounded from be-
low.

Proof: By von Neumann’s theorem (e.g., [9, p.180, Theorem X.25]), the operator (2m)−1
(
DW

)∗
DW

is self-adjoint and nonnegative. The operator U
(κ)
+ + H

(κ)
rad is bounded and self-adjoint.

Hence, by the Kato-Rellich theorem, HPF(κ; W,U+) is self-adjoint and bounded from
below.

A generalization of the Pauli-Fierz Hamiltonian HPF is defined by

HPF(W,U+) :=
DW ∗DW

2m
+ U+ + Hrad (3.21)

acting in FPF.
We formulate additional conditions:

Hypothesis (B)

The function U+ is bounded from below. In this case we set

u0 := E0(U+).

Remark 3.2 Under Hypothesis (A), D(HPF(W,U+)) is not necessarily dense in FPF,

but, D(D̄W ) ∩ D(U+) ∩ D(Hrad) is dense in FPF. Hence D(D̄W ) ∩ D(|U+|1/2) ∩ D(H
1/2
rad )

also is dense in FPF. Therefore we can define a densely defined symmetric form sPF as
follows:

D(sPF) := D(D̄W ) ∩ D(|U+|1/2) ∩ D(H
1/2
rad ) (form domain), (3.22)

sPF(Ψ, Φ) :=
1

2m
(D̄W Ψ, D̄W Φ) + (Ψ, U+Φ) + (H

1/2
rad Ψ, H

1/2
rad Φ), (3.23)

Ψ, Φ ∈ D(sPF). (3.24)

Assume Hypothesis (B) in addition to Hypothesis (A). Then it is easy to see that sPF is

closed. Let H
(f)
PF be the self-adjoint operator associated with sPF. Then H

(f)
PF ≥ u0 and

H
(f)
PF is a self-adjoint extension of HPF(W,U+).
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Theorem 3.5 Under Hypotheses (A) and (B), there exists a self-adjoint extension of
H̃PF(W,U+) of HPF(W,U+) which have the following properties:

(i) H̃PF(W,U+) ≥ u0.

(ii) D(|H̃PF(W,U+)|1/2) ⊂ D(DW ) ∩ D(|U+|1/2) ∩ D(H
1/2
rad )

(iii) For all z ∈ (C \ R) ∪ {ξ ∈ R|ξ < u0},

s - lim
κ→∞

(HPF(κ; W,U+) − z)−1 = (H̃PF(W,U+) − z)−1,

where s - lim means strong limit.

(iv) For all ξ < u0 and Ψ ∈ D(|H̃PF(W,U+)|1/2),

s - lim
κ→∞

(HPF(κ; W,U+) − ξ)1/2Ψ = (H̃PF(W,U+) − ξ)1/2Ψ.

Proof: We need only to apply Theorem A.1 in Appendix A to the following case:

H = FPF, N = 2, A =

(
DW

)∗
DW

2m
, B1 = U+, B2 = Hrad, L = Λ.

Remark 3.3 As for conditions for ρ̂ and ω for Theorem 3.5 to hold, we only need con-
dition (2.11); no additional conditions is necessary.

Remark 3.4 In the same manner as in Theorem 3.5, we can define a self-adjoint exten-
sion of the Pauli-Fierz Hamiltonian without spin (see Appendix B).

Remark 3.5 Under Hypotheses (A), (B) and that D(HPF(W,U+)) is dense, HPF(W,U+)
is a symmetric operator bounded from below. Hence it has the Friedrichs extension
ĤPF(W,U+). But it is not clear that, in the case where HPF(W,U+) is not essentially

self-adjoint, H̃PF(W,U+) = ĤPF(W,U+) or H̃PF(W,U+) = H
(f)
PF (Remark 3.2) or both of

them do not hold.

3.4 Main theorems

We now state main results on the non-relativistic limit of H(κ).

Theorem 3.6 Let Hypotheses (A) and (B) be satisfied. Suppose that

lim
κ→∞

Λ(κ)2

κ
= 0. (3.25)

Then, all z ∈ C \ R,

s - lim
κ→∞

(H(κ) − z)−1 =

 (
H̃PF(W,U+) − z

)−1
0

0 0

 . (3.26)
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In the case where U+ is not necessarily bounded from below, we have the following.

Theorem 3.7 Let Hypothesis (A) and (3.25) be satisfied. Suppose that HPF(W,U+) is
essentially self-adjoint. Then, all z ∈ C \ R,

s - lim
κ→∞

(H(κ) − z)−1 =

 (
HPF(W,U+) − z

)−1
0

0 0

 . (3.27)

Remark 3.6 Under additional conditions on %, ω,W and U+, one can prove that
HPF(W,U+) is essentially self-adjoint for all values of the coupling constant q [4, 5].

We now apply Theorems 3.6 and 3.7 to the case where V = Vem = φ − qα · Aex

(Example 2.1), i.e., the case where W = −qσ · Aex and U± = φI2. We assume the
following.

Hypothesis (C)

(C.1) The subspace ∩3
j=1[D(Dj) ∩ D(Aex

j ) ∩ D(φ)] is dense in L2(R3).

(C.2) φ is bounded from below. In this case we set φ0 := inf σ(φ).

Under Hypothesis (C), we have a self-adjoint opeartor

H̃PF := H̃PF(−qσ · Aex, φ), (3.28)

which is a self-adjoint extension of the original Pauli-Fierz Hamiltonian HPF given by
(2.19).

Let
HDM(κ) := κ6D(−qα · Aex) + κ2mβ − κ2m + φ(κ) + H

(κ)
rad, (3.29)

Then HDM(κ) is the Dirac-Maxwell operator H(κ) with V1 = −qα · Aex and V0 = φ.
Theorems 3.6 and 3.7 immediately yield the following results on the non-relativistic limit
of HDM(κ).

Corollary 3.8 Let Hypothesis (C) and (3.25) be satisfied. Then, for all z ∈ C \ R,

s - lim
κ→∞

(HDM(κ) − z)−1 =

 (
H̃PF − z

)−1
0

0 0

 . (3.30)

Corollary 3.9 Assume (C.1) and (3.25). Suppose that HPF is essentially self-adjoint.
Then, all z ∈ C \ R,

s - lim
κ→∞

(HDM(κ) − z)−1 =

 (
HPF − z

)−1
0

0 0

 . (3.31)

Thus a mathematically rigorous connection of relativistic QED to non-relativistic QED
is established.
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4 Limit Theorem on Strongly Anticommuting Self-

adjoint Operators

In this section we prove a limit theorem concerning strongly anticommuting self-adjoint
operators. For a review of the fundamental abstract theory of strongly anticommuting
self-adjoint operators, see [1].

Definition 4.1 Let A and B be self-adjoint operators on a Hilbert space H.

(i) We say that A and B strongly commute if their spectral measures EA and EB

commute (i.e., for all Borel sets J,K ⊂ R, EA(J)EB(K) = EB(K)EA(J)).

(ii) We say that A and B strongly anticommute if, for all ψ ∈ D(A) and t ∈ R,
e−itBψ ∈ D(A) and Ae−itBψ = eitBAψ (i.e. eitBA ⊂ Ae−itB).

Let A 6= 0 and B be strongly anticommuting self-adjoint operators on a Hilbert space
H. We assume that B is injective. For each κ > 0, we define

T0(κ) := κA + κ2(B − |B|). (4.1)

The operator κA + κ2B is an abstract form of Dirac-type operators and −κ2|B| is a
“renormalization” term. It is shown that T0(κ) is essentially self-adjoint (Lemma 3.1 in
[2]). We consider a perturbation of T0(κ). Let C(κ) (κ > 0) be a symmetric operator on
H and

T (κ) := T0(κ) + C(κ). (4.2)

The main purpose of this section is to consider the limit κ → ∞ of T (κ) in the strong
resolvent sense under a general condition for C(κ). A basic assumption for C(κ) is as
follows:

Hypothesis (I)

D(T0(κ)) ⊂ D(C(κ)) and T (κ) is self-adjoint with D(T (κ)) = D(T0(κ)).

To state the main result we need some preliminaries. Let B = UB|B| be the polar
decomposition. Then UB is self-adjoint and unitary and σ(UB) = {±1}, where, for a
linear operator T , σ(T ) denotes the spectrum of T (see p.141 in [2]). The operators

PB
± :=

1

2
(I ± UB), (4.3)

are respectively the orthogonal projections onto the eigenspaces

H± := ker(UB ∓ I) (4.4)

of UB with eigenvalues ±1 and we have the orthogonal decomposition

H = H+ ⊕H−. (4.5)

12



It is known that A and |B| strongly commute (Lemma 2.2(v) in [2]). Hence the product
spectral measure E := EA⊗E|B| of A and |B| can be defined with spectral representations

A =
∫
R2

λdE(λ, µ), |B| =
∫
R2

µdE(λ, µ).

With the spectral measure E, we can define a nonnegative self-adjoint operator

K0 :=
1

2

∫
R2

λ2

µ
dE(λ, µ) ≥ 0. (4.6)

Note that

K0 =
A2|B|−1

2
on D(A2|B|−1) ∩ D(|B|−1A2). (4.7)

It is shown that K0 is reduced by H± (see Lemma 2.4 in [2]). We denote K0,± the reduced
part of K0 to H± respectively. Thus we have

K0 =

(
K0,+ 0

0 K0,−

)
, (4.8)

where the operator-matrix representation is relative to the orthogonal decomposition (4.5):

PB
+ =

(
I 0
0 0

)
, PB

− =

(
0 0
0 I

)
. (4.9)

We define
K(κ) := K0 + PB

+ C(κ)PB
+ . (4.10)

Hypothesis (II)

Let κ0 > 0 be a constant.

(II.1) For all κ ≥ κ0, C(κ) is reduced by H± so that it has the operator-matrix represen-
tation

C(κ) =

(
C+(κ) 0

0 C−(κ)

)
, (4.11)

where C±(κ) are the reduced parts of C(κ) to H± respectively.

(II.2) For all κ ≥ κ0, D(K
1/2
0 ) ⊂ D(C(κ)) and there exist nonnegative constants a(κ)

and b(κ) such that

‖C(κ)f‖ ≤ a(κ)‖K1/2
0 f‖ + b(κ)‖f‖, f ∈ D(K

1/2
0 ). (4.12)

Lemma 4.2 Let Hypothesis (II) be satisfied and let

K+(κ) := K0,+ + C+(κ). (4.13)

Then, for all κ ≥ κ0, K(κ) is self-adjoint with D(K(κ)) = D(K0) and bounded from
below. Moreover, K(κ) is reduced by H± with

K(κ) = K+(κ) ⊕ K0,− =

(
K+(κ) 0

0 K0,−

)
. (4.14)
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Proof: By (II.2), D(K0) ⊂ D(C(κ)) ⊂ D(PB
+ C(κ)PB

+ ). Hence D(K(κ)) = D(K0). Let
f ∈ D(K0). Then we have for all ε > 0

‖K1/2
0 f‖2 ≤ ‖f‖‖K0f‖ ≤ ε2‖K0f‖2 +

‖f‖2

4ε2
.

Hence

‖K1/2
0 f‖ ≤ ε‖K0f‖ +

‖f‖
2ε

. (4.15)

This estimate and (4.12) imply

‖C(κ)f‖ ≤ a(κ)ε‖K0f‖ +

(
a(κ)

2ε
+ b(κ)

)
‖f‖. (4.16)

By the reducibility of C(κ) by H±, we have ‖PB
+ C(κ)PB

+ f‖ ≤ ‖C(κ)f‖. Since ε > 0 is
arbitrary, it follows from the Kato-Rellich theorem that K(κ) is self-adjoint and bounded
from below. The last assertion is easy to prove.

Hypothesis (III)

Under Hypothesis (II) (so that, by Lemma 4.2, for all κ ≥ κ0, K+(κ) is self-adjoint),
there exists a self-adjoint operator K+ on H+ such that, for all z ∈ C \ R,

s - lim
κ→∞

(K+(κ) − z)−1 = (K+ − z)−1. (4.17)

The main result of this section is the following:

Theorem 4.3 Assume Hypotheses (I)–(III). Suppose that

lim
κ→∞

a(κ)3

κ
= 0, lim

κ→∞

b(κ)2

κ
= 0, lim

κ→∞

a(κ)2b(κ)

κ
= 0 (4.18)

and
M := inf σ(|B|) > 0. (4.19)

Then, for all z ∈ C \ R,

s - lim
κ→∞

(T (κ) − z)−1 =

(
(K+ − z)−1 0

0 0

)
. (4.20)

We prove Theorem 4.3 by a series of lemmas. In what follows, we assume (4.19).
Then |B|−1 is bounded with

‖|B|−1‖ ≤ 1

M
. (4.21)

For z ∈ C \ R, we define

K(κ, z) := K(κ) − z − z2

2κ2
|B|−1. (4.22)

and set

d(κ, z) :=
|z|2

2κ2M |Im z|
> 0. (4.23)
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Lemma 4.4 Assume Hypothesis (II) and (4.19). Let z ∈ C \ R, κ ≥ κ0 and

L(κ, z) := 1 − z2

2κ2
|B|−1(K(κ) − z)−1. (4.24)

Let
d(κ, z) < 1. (4.25)

Then the following hold:

(i) L(κ, z) is bijective with

L(κ, z)−1 =
∞∑

n=0

(
z2

2κ2

)n (
|B|−1(K(κ) − z)−1

)n
(4.26)

in operator norm topology and

‖L(κ, z)−1‖ ≤ 1

1 − d(κ, z)
. (4.27)

(ii) K(κ, z) is bijective and

K(κ, z)−1 = (K(κ) − z)−1L(κ, z)−1 (4.28)

=
∞∑

n=0

(
z2

2κ2

)n

(K(κ) − z)−1
(
|B|−1(K(κ) − z)−1

)n
(4.29)

in operator norm topology with

‖K(κ, z)−1‖ ≤ r(κ, z), (4.30)

where

r(κ, z) :=
1

|Im z|(1 − d(κ, z))
. (4.31)

Proof: (i) We have by (4.21)∥∥∥∥∥ z2

2κ2
|B|−1(K(κ) − z)−1

∥∥∥∥∥ ≤ d(κ, z) < 1.

Hence, by C. Neumann’s theorem, the bijectivity of L(κ, z) follows with Neumann ex-
pansion (4.26). Inequality (4.27) follows from the general fact that, for all bounded
linear operators T with ‖T‖ < 1, ‖(1 − T )−1‖ ≤ (1 − ‖T‖)−1. (ii) We have K(κ, z) =
L(κ, z)(K(κ) − z), which implies that K(κ, z) is bijective with (4.28). Expansion (4.29)
follows from (4.28) and (4.26). Using (4.27) and (4.28), we obtain (4.30).

The following fact is an important key to the analysis here.
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Theorem 4.5 Assume Hypotheses (I), (II) and (4.19). Let z ∈ C \ R and d(κ, z) < 1

with κ ≥ κ0. Then the operator 1 +
C(κ)

2κ2
(κA + z)|B|−1K(κ, z)−1 is bijective and

(T (κ) − z)−1 =
(
PB

+ +
1

2κ2
(κA + z)|B|−1

)
K(κ, z)−1

×
(

1 +
C(κ)

2κ2
(κA + z)|B|−1K(κ, z)−1

)−1

. (4.32)

Proof: Informal (heuristic) manupilations to obtain (4.32) are similar to the case of an
abstract Dirac operator [11, p.180, Theorem 6.4] or to a case previously discussed by the
present author [2, p.155, Theorem 4.3]. But, for completeness (since the assumption here
is slightly different from those in [2, 11]), we give an outline of proof. Introducing an
operator

W (κ, z) := 1 + C(κ)(T0(κ) − z)−1,

which is well-defined by Hypothesis (I), we have

T (κ) − z = W (κ, z)(T0(κ) − z).

This implies that W (κ, z) is bijective and

(T (κ) − z)−1 = (T0(κ) − z)−1W (κ, z)−1.

On the other hand, we have

(T0(κ) − z)−1 =
1

2κ2
(S0(κ) + z)|B|−1K0(κ, z)−1, (4.33)

where

S0(κ) := κA + κ2(B + |B|),

K0(κ, z) := K0 − z − z2

2κ2
|B|−1 = K(κ, z) − PB

+ C(κ)PB
+ ,

see p.147, (3.17) and (3.18) in [2]. Hence

(T (κ) − z)−1 =
1

2κ2
(S0(κ) + z)|B|−1K0(κ, z)−1W (κ, z)−1. (4.34)

Let
X(κ, z) := 1 + PB

+ C(κ)PB
+ K0(κ, z)−1.

Using (4.33), we have

W (κ, z) = X(κ, z) +
C(κ)

2κ2
(κA + z)|B|−1K0(κ, z)−1,

where we have used that B + |B| = 2PB
+ |B| and C(κ)PB

+ = PB
+ C(κ)PB

+ . Note that

K(κ, z) = X(κ, z)K0(κ, z).
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This implies that X(κ, z) is bijective with

X(κ, z)−1 = K0(κ, z)K(κ, z)−1.

Hence we obtain

W (κ, z) =

(
1 +

C(κ)

2κ2
(κA + z)|B|−1K0(κ, z)−1X(κ, z)−1

)
X(κ, z)

=

(
1 +

C(κ)

2κ2
(κA + z)|B|−1K(κ, z)−1

)
X(κ, z),

which implies that

Y (κ, z) := 1 +
C(κ)

2κ2
(κA + z)|B|−1K(κ, z)−1

is also bijective with

W (κ, z)−1 = X(κ, z)−1Y (κ, z)−1 = K0(κ, z)K(κ, z)−1Y (κ, z)−1.

Putting this equation into (4.34), we obtain (4.32).

Lemma 4.6 Assume Hypothesis (II) and (4.19). Let ε > 0. Then, for all f ∈ D(K0),

‖C(κ)|B|−1f‖ ≤ εa(κ)

M
‖K0f‖ +

1

M

(
a(κ)

2ε
+ b(κ)

)
‖f‖. (4.35)

Proof: We see by functional calculus that, for all f ∈ D(K0), |B|−1f ∈ D(K0) and
K0|B|−1f = |B|−1K0f . Using this fact, (4.16) and (4.21), we obtain (4.35).

Lemma 4.7 Assume (4.19). Then D(K0) ⊂ D(A|B|−1) and

‖A|B|−1f‖ ≤ ε‖K0f‖ +
1

εM
‖f‖, f ∈ D(K0), (4.36)

where ε > 0 is arbitrary.

Proof: Let g ∈ D := D(A2|B|−1) ∩ D(|B|−1A2), we have

‖A|B|−1g‖2 = 2(|B|−1g,K0g) ≤ 2‖g‖
M

‖K0g‖

≤ ε2‖K0g‖2 +
1

ε2M2
‖g‖2,

where ε > 0 is arbitrary. Hence

‖A|B|−1g‖ ≤ ε‖K0g‖ +
1

εM
‖g‖.

Since D is a core of K0 (p.143, Lemma 2.4 in [2]) and |B|−1 is bounded, the assertion
follows from a limiting argument.
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Lemma 4.8 Assume Hypothesis (II) and (4.19). Then D(K0) ⊂ D(C(κ)A|B|−1) and

‖C(κ)A|B|−1f‖ ≤
(√

2a(κ)√
M

+ εb(κ)

)
‖K0f‖ +

b(κ)

εM
‖f‖, f ∈ D(K0), (4.37)

where ε > 0 is arbitrary.

Proof: Let f ∈ D(K0). Then it follows from the functional calculus on the product

spectral measure E and (4.12) that f ∈ D(K
1/2
0 A|B|−1) ⊂ D(C(κ)A|B|−1) and

‖C(κ)A|B|−1f‖ ≤ a(κ)‖K1/2
0 A|B|−1f‖ + b(κ)‖A|B|−1f‖

= a(κ)‖
√

2|B|−1/2K0f‖ + b(κ)‖A|B|−1f‖

≤
√

2a(κ)√
M

‖K0f‖ + b(κ)‖A|B|−1f‖.

This estimate and (4.36) give (4.37).

Lemma 4.9 Assume Hypothesis (II) and (4.19). Let δ > 0 be a constant such that
a(κ)δ < 1. Then, for all f ∈ D(K0) and κ ≥ κ0,

‖K0f‖ ≤ 1

1 − a(κ)δ
‖K(κ, z)f‖

+
1

1 − a(κ)δ

(
|z| + |z|2

2κ2M
+

a(κ)

2δ
+ b(κ)

)
‖f‖. (4.38)

Proof: Using (4.16), we have

‖K0f‖ ≤ ‖K(κ)f‖ + ‖C(κ)PB
+ f‖

≤ ‖K(κ)f‖ + a(κ)δ‖K0f‖ +

(
a(κ)

2δ
+ b(κ)

)
‖f‖,

where δ > 0 is arbitrary. Taking δ > 0 such that a(κ)δ < 1, we obtain

‖K0f‖ ≤ 1

1 − a(κ)δ
‖K(κ)f‖ +

1

1 − a(κ)δ

(
a(κ)

2δ
+ b(κ)

)
‖f‖. (4.39)

On the other hand, we have

‖K(κ)f‖ ≤ ‖K(κ, z)f‖ +

(
|z| + |z|2

2κ2M

)
‖f‖.

Thus (4.38) follows.
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Lemma 4.10 Assume Hypothesis (II), (4.19) and (4.25). Let δ > 0 be a constant such
that a(κ)δ < 1 and ε > 0. Let

G1(κ, z, ε, δ) :=
εa(κ)

M(1 − a(κ)δ)

{
1 + r(κ, z)

(
|z| + |z|2

2κ2M
+

a(κ)

2δ
+ b(κ)

)}

+r(κ, z)

(
a(κ)

2εM
+

b(κ)

M

)
. (4.40)

Then C(κ)|B|−1K(κ, z)−1 is bounded with

‖C(κ)|B|−1K(κ, z)−1‖ ≤ G1(κ, z, ε, δ). (4.41)

Proof: This follows from Lemma 4.6 and Lemma 4.9.

Lemma 4.11 Assume Hypothesis (II), (4.19) and (4.25). Let δ > 0 be a constant such
that a(κ)δ < 1 and ε > 0. Let

G2(κ, z, ε, δ) :=
1

1 − a(κ)δ

×
(√

2a(κ)√
M

+ εb(κ)

) {
1 + r(κ, z)

(
|z| + |z|2

2κ2M
+

a(κ)

2δ
+ b(κ)

)}

+
r(κ, z)b(κ)

εM
. (4.42)

Then C(κ)A|B|−1K(κ, z)−1 is bounded with

‖C(κ)A|B|−1K(κ, z)−1‖ ≤ G2(κ, z, ε, δ). (4.43)

Proof: This follows from Lemma 4.8 and Lemma 4.9.

Lemma 4.12 Assume Hypotheses (II), (III) and (4.19). Then

s - lim
κ→∞

PB
+ K(κ, z)−1 =

(
(K+ − z)−1 0

0 0

)
. (4.44)

Proof: Let
K := K+ ⊕ K0,+.

By Lemma 4.4, we have

K(κ, z)−1 = (K(κ) − z)−1 + (K(κ) − z)−1V (κ)

with V (κ) :=
∑∞

n=1

(
z2

2κ2

)n

(|B|−1(K(κ) − z)−1)n . Hence

K(κ, z)−1 − (K − z)−1 = (K(κ) − z)−1 − (K − z)−1 + (K(κ) − z)−1V (κ).
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It is easy to see that ‖V (κ)‖ → 0 as κ → ∞. By Hypothesis (III), we have

s - lim
κ→∞

(K(κ) − z)−1 = (K − z)−1.

Hence
s - lim

κ→∞
K(κ, z)−1 = (K − z)−1,

which implies that

s - lim
κ→∞

PB
+ K(κ, z)−1 = PB

+ (K − z)−1 =

(
(K+ − z)−1 0

0 0

)
.

Thus (4.44) holds.

Proof of Theorem 4.3

By Lemmas 4.10 and 4.11, we have∥∥∥∥∥C(κ)

2κ2
(κA + z)|B|−1K(κ, z)−1

∥∥∥∥∥ ≤ G2(κ, z, ε, δ)

2κ
+

|z|
2κ2

G1(κ, z, ε, δ).

Let 0 < α < 1 be fixed and set δ = α/a(κ) so that a(κ)δ = α < 1. Let κ1 > 0 be a
constant such that d(κ1, z) < 1 and κ1 ≥ max{κ0, 1}. Let κ ≥ κ1. Then

G1(κ, z, ε, δ) ≤ C1[a(κ) + a(κ)3 + a(κ)b(κ) + b(κ)],

G2(κ, z, ε, δ) ≤ C2[a(κ) + a(κ)3 + a(κ)b(κ) + b(κ) + b(κ)a(κ)2 + b(κ)2],

where C1 and C2 are constants independent of κ ≥ κ1. Hence, under condition (4.18), we
have

lim
κ→∞

G1(κ, z, ε, δ)

κ2
= 0,

G2(κ, z, ε, δ)

κ
= 0.

Hence

lim
κ→∞

∥∥∥∥∥C(κ)

2κ2
(κA + z)|B|−1K(κ, z)−1

∥∥∥∥∥ = 0,

which implies that

lim
κ→∞

(
1 +

C(κ)

2κ2
(κA + z)|B|−1K(κ, z)−1

)−1

= 1 (4.45)

in operator-norm topology. By Lemmas 4.7 and 4.9, we have

‖A|B|−1K(κ, z)−1‖ ≤ ε

1 − a(κ)δ
+

r(κ, z)ε

1 − a(κ)δ

(
|z| + |z|2

2κ2M
+

a(κ)

2δ
+ b(κ)

)
+

r(κ, z)

εM
.

Hence, in the same way as above, we can show that

lim
κ→∞

1

2κ2
(κA + z)|B|−1K(κ, z)−1 = 0

in operator-norm topology. These facts together with Theorem 4.5 and Lemma 4.12 imply
(4.20).

Remark 4.1 Higher order corrections to the limiting formula (4.20) can be computed by
using Theorem 4.5 and (4.29).
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5 Proof of The Main Theorems

5.1 Proof of Theorem 3.6

We apply Theorem 4.3. For this purpose, we first prove the following lemma.

Lemma 5.1 The self-adjoint operator ˜6D(V1) strongly anticommutes with mβ.

Proof: We have for all t ∈ R

e−itmβ =

(
e−itmI2 0

0 eitmI2

)
.

This implies that, for all Ψ ∈ D
( ˜6D(V1)

)
= D

(
DW

)
⊕ D

((
DW

)∗)
, e−itmβΨ ∈ D( ˜6D(V1))

and ˜6D(V1)e
−itmβΨ = eitmβ ˜6D(V1)Ψ. Hence ˜6D(V1) strongly anticommutes with mβ. Let

A = ˜6D(V1), B = mβ, C(κ) = V0,κ + H
(κ)
rad.

Then |B| = m and we can write

H(κ) = κA + κ2(B − |B|) + C(κ).

By Lemma 5.1, A and B strongly anticommute. Hence H(κ) is of the form T (κ) in
Section 4. We need only to check that T (κ) = H(κ) satisfies the assumption of Theorem
4.3. Since C(κ) is bounded, Hypothesis (I) holds. In the present case we have PB

± = P±
and C(κ) is reduced by F± with

C(κ) =

(
U

(κ)
+ + H

(κ)
rad 0

0 U
(κ)
− + H

(κ)
rad

)
. (5.1)

Hence Hypothesis (II.1) holds.
In the present case we have

K0 =
˜6D(V1)

2

2m
=


(DW )∗DW

2m
0

0
DW (DW )∗

2m

 . (5.2)

By (3.16), ‖C(κ)Ψ‖ ≤ 2Λ(κ)‖Ψ‖ for all Ψ ∈ F . Hence Hypothesis (II.2) holds with

a(κ) = 0, b(κ) = 2Λ(κ). (5.3)

By (5.1) and (5.2), we have

K+(κ) = HPF(κ; W,U+).

By Theorem 3.5, Hypothesis (III) holds with K+ = H̃PF(W,U+). By (5.3) and (3.25),
(4.18) holds. Thus the assumption of Theorem 4.3 is satisfied. Hence we can apply
Theorem 4.3 to obtain (3.26).
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5.2 Proof of Theorem 3.6

Hypotheses (I) and (II) hold in this case too. But it is not immediately obvious if Hy-
pothesis (III) holds, since, in this case, we can not use Theorem 3.5. We note that

lim
κ→∞

HPF(κ; W,U+)Ψ = HPF(W,U+)Ψ, Ψ ∈ D(HPF(W,U+)).

By the assumption on the essential self-adjointness of HPF(W,U+), we can apply a general
convergence theorem [8, p.292, Theorem VIII.25(a)] to conclude that, for all z ∈ C \ R,

s - lim
κ→∞

(HPF(κ; W,U+) − z)−1 =
(
HPF(W,U+) − z

)−1
.

Hence Hypothesis (III) holds with K+ = HPF(W,U+). Then, in the same way as in the
proof of Theorem 3.5, we obtain Theorem 3.6.

Appendix

A A Class of Self-adjoint Extensions of Hermitian

Operators

We say that a linear operator S on a Hilbert space H is Hermitian if (ψ, Sφ) = (Sψ, φ) for
all ψ, φ ∈ D(S). In this definition, we do not assume the denseness of D(S). A densely
defined Hermitian operator is called a symmetric operator.

In this appendix we present a class of self-adjoint extensions of Hermitian operators.
To the author’s best knowledge, this class is new. Let H be a complex Hilbert space.
Let A be a nonnegative self-adjoint operator on H and Bj (j = 1, 2, · · · , N, N ∈ N) be
self-adjoint operators bounded from below with Bj ≥ bj (bj ∈ R is a constant) such that

∩N
j=1

[
D

(
A1/2

)
∩ D

(
|Bj|1/2

)]
is dense in H. Let

c0 :=
N∑

j=1

bj.

Then the operator

S := A +
N∑

j=1

Bj

is Hermitian and bounded from below with S ≥ c0.

Remark A.1 If S is densely defined (i.e., D(S) = ∩N
j=1[D(A) ∩ D(Bj)] is dense), then

S is a symmetric operator bounded from below and hence S has a self-adjoint extension
SF, called the Friedrichs extension (e.g., [9, p.177, Theorem X.23]).
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Remark A.2 The operator S has another type of self-fadjoint extension Sf which is given
by the form sum Sf := A+̇B1+̇ · · · +̇BN , i.e., the self-adjoint operator associated with the
densely defined symmetric closed form s0 given by

D(s0) := ∩N
j=1

[
D

(
A1/2

)
∩ D

(
|Bj|1/2

)]
(form domain),

s0(ψ, φ) := (A1/2ψ,A1/2φ) +
N∑

j=1

(B̂1/2ψ, B̂1/2φ) + c0(ψ, φ), ψ, φ ∈ D(s0),

where
B̂j := Bj − bj

and ( · , · ) denotes the inner product of H.

Here we want to construct a self-adjoint extension of S which may be different from SF and
Sf if S is symmetric, but not essentially self-adjoint. For this purpose we first introduce
an approximate or a “cutoff” version of S.

Remark A.3 If each Bj is bounded, then, by the Kato-Rellich theorem, S is self-adjoint.
Thus the arguments below are nontrivial only if A and at least one of Bj (j = 1, · · · , N)
are unbounded.

Let L : (0,∞) → (0,∞) be a nondecreasing function such that L(κ) → ∞ as κ → ∞
and

B̂j(κ) := E
B̂j

([0, L(κ)])B̂jEB̂j
([0, L(κ)]), κ > 0,

where E
B̂j

is the spectral measure of B̂j. It is easy to see that each B̂j(κ) is a nonnegative

bounded self-adjoint operator with ‖B̂j(κ)‖ ≤ L(κ). Let

S(κ) := A +
N∑

j=1

B̂j(κ) + c0.

Then, by the Kato-Rellich theorem, S(κ) is self-adjoint with S(κ) ≥ c0. Moreover, for all
ψ ∈ ∩N

j=1[D(A) ∩ D(Bj)], we have

s - lim
κ→∞

S(κ)ψ = Sψ.

In this sense S(κ) may be regarded as an approximate version of S.

Theorem A.1 Let A, Bj, S and S(κ) be as above. Then there exists a unique self-adjoint
extension S̃ of S such that the following properties hold:

(i) S̃ ≥ c0.

(ii) D(|S̃|1/2) ⊂ ∩N
j=1

[
D(A1/2) ∩ D(B̂

1/2
j )

]
.
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(iii) For all z ∈ (C \ R) ∪ {ξ ∈ R|ξ < c0},

s - lim
κ→∞

(S(κ) − z)−1 = (S̃ − z)−1.

(iv) For all ξ < c0 and ψ ∈ D(|S̃|1/2),

s - lim
κ→∞

(S(κ) − ξ)1/2ψ = (S̃ − ξ)1/2ψ.

Proof: For each κ > 0, we define a symmetric form sκ with form domain D(s) =
D(A1/2) by

sκ(ψ, φ) := (A1/2ψ,A1/2φ) +
N∑

j=1

(ψ, B̂j(κ)φ) + c0(ψ, φ), ψ, φ ∈ D(A1/2).

This is the densely defined closed symmetric form associated with the self-adjoint operator
S(κ). Since (ψ, B̂j(κ)ψ) is nondecreasing in κ for all ψ ∈ H with

0 ≤ (φ, B̂j(κ)φ) ≤ (B̂
1/2
j φ, B̂

1/2
j φ), φ ∈ D(B̂

1/2
j ),

it follows that, for all κ, κ′ > 0 with κ < κ′,

c0 ≤ sκ ≤ sκ′ ≤ s0.

Hence we can apply a general convergence theorem on nondecreasing symmetric forms
([6, p.461, Theorem 3.13]) to conclude that there exists a self-adjoint operator S̃ on H
such that (i), (iii) and (iv) hold with sκ ≤ s, where s is the symmetric form associated
with S̃, so that D(|S̃|1/2) ⊂ D(A1/2). To show that S̃ is a self-adjoint extension of S, let
ψ ∈ D(S) = ∩N

j=1[D(A) ∩ D(Bj)] and φ ∈ D(S̃) = D(S̃ − c0 + 1). Then

(ψ, (S̃ − c0 + 1)φ) = ((S(κ) − c0 + 1)ψ, (S(κ) − c0 + 1)−1(S̃ − c0 + 1)φ).

Note that s - limκ→∞(S(κ) − c0 + 1)ψ = (S − c0 + 1)ψ and, by property (iii),

s - lim
κ→∞

(S(κ) − c0 + 1)−1 = (S̃ − c0 + 1)−1.

Hence

(ψ, (S̃ − c0 + 1)φ) = ((S − c0 + 1)ψ, (S̃ − c0 + 1)−1(S̃ − c0 + 1)φ) = ((S − c0 + 1)ψ, φ),

which implies that ψ ∈ D(S̃ − c0 + 1) = D(S̃) and (S̃ − c0 + 1)ψ = (S − c0 + 1)ψ,
i.e., S̃ψ = Sψ. Thus S̃ is a self-adjoint extension of S. We next prove (ii). It follows
from the inequality sκ ≤ s as shown above and the nondecreasingness of sκ in κ that
D(s) ⊂ D(sκ) = D(A1/2) and that, for all ψ ∈ D(s) = D(|S̃|1/2), limκ→∞ sκ(ψ, ψ) exists.
This implies that limκ→∞ (B̂j(κ)1/2ψ, B̂j(κ)1/2ψ) exists (j = 1, · · · , N). By using the
spectral representation for (B̂j(κ)1/2ψ, B̂j(κ)1/2ψ) and the monotone convergence theorem,

we see that ψ ∈ D(B̂
1/2
j ), j = 1, · · · , N . Thus part (ii) follows. The uniqueness of S̃ follows

from property (iii).

Remark A.4 The self-adjoint extension S̃ may depend on the choice of the function L.
Unfortunately we have been unable to make clear whether S# = S̃ or not (# = F, f) in
the case where S is symmetric, but not essentially self-adjoint.
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B Self-adjoint Extension of the Pauli-Fierz Hamilto-

nian Without Spin

Let Aex and φ be as in Example 2.1 in Section 2 and

Pj := −iDj − qA%
j − qAex

j .

We set P = (P1, P2, P3). Then the Pauli-Fierz Hamiltonian without spin is given by

hPF :=
P 2

2m
+ φ + Hrad

acting in the Hilbert space L2(R3) ⊗ Frad = L2(R3;Frad) =
∫ ⊕
R3 Fraddx. It is easy to

see that hPF is Hermitian. We assume Hypothesis (C) in Section 3. Then each Pj is

symmetric. Hence we can define a nonnegative self-adjoint operator K
(f)
PF as the form sum

K
(f)
PF :=

1

2m

{(
P̄1

)∗
P̄1+̇

(
P̄2

)∗
P̄2+̇

(
P̄3

)∗
P̄3

}
,

which is a self-adjoint extension of KPF,0 := (2m)−1P 2. Hence KPF,0 has a self-adjoint
extension which is nonnegative. Let KPF be any self-adjoint extension of KPF,0 such that

KPF ≥ 0 and D(K
1/2
PF ) ∩ D(|φ|1/2) ∩ D(H

1/2
rad ) is dense. Then we define

hPF(κ) := KPF + H
(κ)
rad + φ(κ),

where

H
(κ)
rad := EHrad

([0, L(κ)])HradEHrad
([0, L(κ)]),

φ(κ) := (φ − φ0)χ[0,L(κ)](φ − φ0) + φ0,

where χ[0,L(κ)] is the characteristic function of the interval [0, L(κ)]. Since H
(κ)
rad + φ(κ) is

bounded and symmetric, hPF(κ) is self-adjoint and bounded from below with hPF(κ) ≥ φ0.

Theorem B.1 Assume Hypothesis (C) in Section 3. Then there exists a unique self-
adjoint extension h̃PF of hPF such that the following properties hold:

(i) h̃PF ≥ φ0.

(ii) D(|h̃PF|1/2) ⊂ D(K
1/2
PF ) ∩ D(|φ|1/2) ∩ D(H

1/2
rad ).

(iii) For all z ∈ (C \ R) ∪ {ξ ∈ R|ξ < φ0},

s - lim
κ→∞

(hPF(κ) − z)−1 = (h̃PF − z)−1.

(iv) For all ξ < φ0 and Ψ ∈ D(|h̃PF|1/2),

s - lim
κ→∞

(hPF(κ) − ξ)1/2Ψ = (h̃PF − ξ)1/2Ψ.

Proof: We only need to apply Theorem A.1 to the following case:

H = L2(R3;Frad), A = KPF, N = 2, B1 = φ, B2 = Hrad.
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