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Abstract

We consider two kinds of stability (under a perturbation) of the ground state
of a self-adjoint operator, being concerned with (i) the sector to which the ground
state belongs and (ii) the uniqueness of the ground state. As an application to the
Wigner-Weisskopf model which describes one mode fermion coupled to a quantum
scalar field, we prove in the massive case the following: (a) For a value of the
coupling constant, the Wigner-Weisskopf model has degenerate ground states ; (b)
for a value of the coupling constant, the Wigner-Weisskopf model has a first excited
state with energy level below the bottom of the essential spectrum.

Mathematics Subject Classifications (2000): 81Q10, 47B25, 47N50
Key Words: Fock space, Wigner-Weisskopf model, ground state, ground state energy, stability, conser-
vation law, first excited state

1 Introduction

Let H be a Hilbert space and H0 a self-adjoint operator on H, bounded from below. Let I
be an open interval of R containing the origin 0 and {H (α)}α∈I be a family of self-adjoint
operators acting in H with H(α) bounded from below for every α ∈ I such that

H(0) = H0. (1.1)

For a linear operator T on a Hilbert space, we denote its domain (resp. spectrum,
point spectrum) by D(T ) (resp. σ(T ), σp(T )). If T is self-adjoint and bounded from
below, then

E0(T ) := inf σ(T ) > −∞ (1.2)

is called the ground-state energy of T . We say that T has a ground state if ker(T−E0(T )) 6=
{0} ; a non-zero vector in ker(T −E0(T )) is called a ground state of T . The ground state
of T is said to be unique (resp. degenerate) if dim ker(T − E0(T )) = 1 (resp. ≥ 2).

1



In this paper we are concerned with stabilities of ground states of H(α) in the param-
eter α ∈ I. In particular we are interested in the following two kinds of stability:

(S.1) (Stability in sectors) Suppose that H has an orthogonal decomposition

H = H0 ⊕H1 (1.3)

with Hj (j = 0, 1) being a closed subspace of H such that, for all α ∈ I, H(α) is
reduced by each Hj. In the context of quantum field theory, where H describes the
Hilbert space of state vectors for the model under consideration, each Hilbert space
Hj is called a sector. Suppose that H0 has a ground state in H0. Then a natural
question is: To which sector does the ground states of H(α) belong ?

(S.2) Uniqueness of ground states of H(α).

As for (S.2), there are already fundamental results available (e.g., [Ka, Chapter VII],
[RS4, §XII.2]). We apply these results in a more restricted situation to obtain a stronger
result.

On the other hand, to our best knowledge, the problem (S.1) seems not to have been
considered, at least, on an abstract level.

In Section 2 we prove abstract results on problem (S.1) and degeneracy of ground
states. These results are applied to a special class of self-adjoint operators in Section 3.
In the last section we consider the Wigner-Weisskopf model (WW model) which describes
one mode fermion coupled to a quantum scalar field [WW]. We apply the results of
Section 3 to this model in the massive case to establish the following properties: (a) For
a value of the coupling constant, the WW model has degenerate ground states ; (b) for a
value of the coupling constant, the WW model has a first excited state with energy level
below the bottom of the essential spectrum.

2 Stability of Ground States in Sectors : Abstract

Results

2.1 Main results

We denote the resolvent of H(α) (α ∈ R) by

Rz(α) := (H (α) − z)−1 , z ∈ ρ (H (α)) , (2.1)

where ρ (A) denotes the resolvent set of a closed operator A. We set

E0(α) := E0(H(α)), α ∈ I. (2.2)

Our basic assumptions are as follows:
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(A.1) For all z ∈ C \ R, Rz : α → Rz(α) is continuous on I in operator norm.

(A.2) For each α ∈ I, there exists a constant Cα > 0 such that, for all sufficiently small
|κ|,

E0(α + κ) ≥ Cα. (2.3)

(A.3) For all α ∈ I, E0(α) is an isolated eigenvalue of H(α) (hence H(α) has a ground
state).

A solution to the stability problem (S.1) is given in the following theorem:

Theorem 2.1 Assume (A.1)–(A.3) and that H has the orthogonal decomposition (1.3)
such that, for all α ∈ I, H(α) is reduced by H0. Suppose that, for all α ∈ I, the ground
state H(α) is unique and that the ground state of H0 is in H0. Then, for all α ∈ I, the
ground state of H(α) is in H0.

This theorem can be used to show a degeneracy of ground states:

Corollary 2.2 Assume (A.1)–(A.3) and that H has the orthogonal decomposition (1.3)
such that, for all α ∈ I, H(α) is reduced by H0. Suppose that the ground state of H0 is
unique and in H0. Moreover, suppose that there exists an α′ ∈ I such that H(α′) has a
ground state which is not in H0. Then, for some α0 ∈ I \ {0}, the ground state of H(α0)
is degenerate.

Proof. If the conclusion does not hold, then the ground state H(α) is unique for all
α ∈ I. Hence, by Theorem 2.1, the ground state of H(α) is in H0 for all α ∈ I. But this
contradicts the assumption that H(α′) has a ground state which is not in H0.

To prove Theorem 2.1, we establish two lemmas.

Lemma 2.3 Assume (A.1) and (A.2). Then the ground state energy E0(α) is continuous
in α ∈ I.

Proof. Fix α ∈ I arbitrarily. By (A.2), there exists a constant γα ∈ R such that,
for all sufficiently small |κ|, γα ∈ ρ (H (α + κ)) and γα < E0(α + κ). Assumption (A.1)
implies that ‖Rγα(α + κ) − Rγα(α)‖ → 0 (κ → 0). Hence

lim
κ→0

1

E0(α + κ) − γα

= lim
κ→0

‖Rγα(α + κ)‖ = ‖Rγα(α)‖ =
1

E0(α) − γα

,

which implies that limκ→0 E0(α + κ) = E0(α). Thus the desired result follows.

Lemma 2.4 Assume (A.1)–(A.3). Suppose that, for all α ∈ I, the ground state H(α) is
unique. Let Ψ0(α) be a normalized ground state of H(α). Then, for all α ∈ I,

lim
κ→0

(Ψ0(α + κ), Ψ0(α))Ψ0(α + κ) = Ψ0(α). (2.4)
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Proof. For each α ∈ I , we denote by Pα(·) the spectral measure of H(α). Fix α ∈ I
arbitrarily. By (A.3), there exists a constant a, b ∈ R∩ ρ(H(α)) such that a < E0(α) < b
and (a, b)∩ σ(H(α)) = {E0(α)}. By (A.1) and a general fact [RS1, Theorem VIII.23(b)],

‖Pα+κ((a, b)) − Pα((a, b))‖ → 0 (κ → 0). (2.5)

Hence, by [RS4, p.14, Lemma], dim Ran Pα+κ((a, b)) = dim Ran Pα((a, b)) = 1 for all
sufficiently small |κ|. By Lemma 2.3, E0(α+κ) ∈ (a, b) for all |κ| < δ with some constant
δ > 0. Hence, for all |κ| < δ, Pα+κ((a, b)) is the orthogonal projection onto ker(H(α +
κ)−E0(α+κ)), which implies that Pα+κ((a, b))Ψ0(α) = (Ψ0(α+κ), Ψ0(α))Ψ0(α+κ). On
the other hand, (2.5) implies that Pα+κ((a, b))Ψ0(α) → Pα((a, b))Ψ0(α) = Ψ0(α) (κ → 0).
Thus (2.4) follows.

Proof of Theorem 2.1
Let Ψ0(α) be a normalized ground state of H(α). By the uniqueness of the ground

state of H(α), either Ψ0(α) ∈ H0 or Ψ0(α) ∈ H1. By the present assumption, Ψ0(0) ∈ H0.
Suppose that there existed a sequence {αn}∞n=1 such that αn → 0 (n → ∞) and

Ψ0(αn) ∈ H1. Hence (Ψ0(αn), Ψ0(0)) = 0 for all n ≥ 1. Then, by applying Lemma 2.4
to the case α = 0, we have Ψ0(0) = 0. But this is a contradiction. Thus there exists a
constant δ > 0 such that, for all |α| < δ, we have α ∈ I and Ψ0(α) ∈ H0.

Let
α− := inf{α ∈ I|Ψ0(α) ∈ H0}, α+ := sup{α ∈ I|Ψ0(α) ∈ H0}.

Then, by the above fact, α− < 0 < α+. We first consider the case I = (c, d) with
−∞ < c < 0 < d < ∞. We show that α− = c, α+ = d. Suppose that α+ < d. Then there
exists a sequence {αn}∞n=1 such that αn → α+ (n → ∞) and Ψ0(αn) ∈ H0. Suppose that
Ψ0(α+) ∈ H1. Then (Ψ0(αn), Ψ0(α+)) = 0. Applying Lemma 2.4 to the case α = α+,
we have Ψ0(α+) = 0. But this is a contradiction. Hence Ψ0(α+) ∈ H0. Then, in the
same way as above, we can show that there exists a constant α′ ∈ (α+, d) such that
Ψ0(α

′) ∈ H0. Hence, by the definition of α+, α′ ≤ α+. But this is a contradiction. Thus
α+ = d. Similarly we can show that α− = c. The same method works in the other cases
of I.

The proof of Theorem 2.1 shows in an obvious way that Theorem 2.1 can be generalized
to the case of other eigenvectors of H(α):

Theorem 2.5 Assume (A.1) and that H has the orthogonal decomposition (1.3) such
that, for all α ∈ I, H(α) is reduced by H0. Suppose that, for each α ∈ I, H(α) has an
isolated eigenvalue E(α) such that dim ker(H(α) − E(α)) = 1, E(·) is continuous on I
and ker(H0 − E(0)) ⊂ H0. Then, for all α ∈ I, ker(H(α) − E(α)) ⊂ H0.

2.2 Uniqueness of ground states

We first prove a general fact on the stability of uniqueness of eigenvectors of H(α).
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Proposition 2.6 Assume (A.1). Suppose that, for each α ∈ I, there exist constants
E(α) ∈ R, δα > 0 and Kα > 0 such that

[E(α) − δα, E(α) + δα] ∩ σ(H(α)) = {E(α)} (2.6)

and, for all |κ| < Kα,

[E(α) − δα, E(α) + δα] ∩ σ(H(α + κ)) = {E(α + κ)}, (2.7)

so that E(α) is an eigenvalue of H(α). Suppose that dim ker(H0 − E(0)) = 1. Then, for
all α ∈ I, dim ker(H(α) − E(α)) = 1.

Proof. Let a0 := E(0)−δ0, b := E(0)+δ0. As in the proof of Lemma 2.4, we see that, for
all |α| < δ with some δ > 0 sufficiently small, dim RanPα((a0, b0)) = dim RanP0((a0, b0)) =
1. By (2.7), RanPα((a0, b0)) = ker(H(α)−E(α)), |α| < δ. Hence dim ker(H(α)−E(α)) =
1, |α| < δ. Let

a− := inf{α ∈ I| dim ker(H(α) − E(α)) = 1}
a+ := sup{α ∈ I| dim ker(H(α) − E(α)) = 1}.

By the above fact, we have a− < 0 < a+. Consider the case I = (c, d) with −∞ < c <
0 < d < ∞. We show that a− = c, a+ = d. Suppose that a+ < d. Then there exists
a sequence {αn}∞n=1 such that αn → a+ (n → ∞) and dim ker(H(αn) − E(αn)) = 1.
Suppose that dim ker(H(a+) − E(a+)) ≥ 2. We have for all n ≥ n0 with some n0 ≥ 1

dim RanPαn((E(a+) − δa+ , E(a+) + δa+)) = dim RanPa+((E(a+) − δa+ , E(a+) + δa+)).

Hence, for all n ≥ n0, dim RanPαn((E(a+) − δa+ , E(a+) + δa+)) ≥ 2. By (2.7),

RanPαn((E(a+) − δa+ , E(a+) + δa+)) = ker(H(αn) − E(αn)), n ≥ n0,

which implies dim RanPαn((E(a+) − δa+ , E(a+) + δa+)) = 1. But this is a contradiction.
Thus a+ = d. Similarly we can show that a− = c. The same method works in the other
cases of I.

We consider a sufficient condition for (2.6) and (2.7) to hold in the case E(α) = E0(α).
Let

E1(α) := inf{σ(H(α)) \ {E0(α)}}. (2.8)

Proposition 2.7 Assume (A.1) and (A.2). Suppose that, for every α ∈ I, there exists
a constant Lα > 0 such that

α ± Lα ∈ I, (2.9)

inf
0≤|κ|≤Lα

{E1 (α + κ) − E0 (α + κ)} > E0 (α) − inf
0≤|κ|≤Lα

E0 (α + κ) . (2.10)

Then H(α) satisfies (2.6) and (2.7).
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Proof. Fix α ∈ I arbitrarily. By (2.10), there is a real constant Mα such that

inf
0≤|κ|≤Lα

{E1 (α + κ) − E0 (α + κ)} > Mα > E0 (α) − inf
0≤|κ|≤Lα

E0 (α + κ) . (2.11)

Hence, for every κ with 0 ≤ |κ| ≤ Lα, we have

Mα < E1 (α + κ) − E0 (α + κ) . (2.12)

In particular, putting κ = 0, we have

E0 (α) + Mα < E1 (α) . (2.13)

By the second inequality in (2.11), there exists a constant δα such that

0 < δα < Mα + inf
0≤|κ|≤Lα

E0 (α + κ) − E0(α). (2.14)

By (2.12) and (2.14), we have

E0(α) + δα < Mα + inf
0≤|κ′|≤Lα

E0 (α + κ′)

≤ (E1 (α + κ) − E0 (α + κ)) + E0 (α + κ)

= E1 (α + κ)

for 0 ≤ |κ| ≤ Lα, which, together with Lemma 2.3 and (2.9), implies (2.6) and (2.7).

Propositions 2.6 and 2.7 immediately yield the following theorem.

Theorem 2.8 Let the assumption of Proposition 2.7 be satisfied. Suppose that the ground
state of H0 is unique. Then, for all α ∈ I, the ground state of H(α) is unique.

A sufficient condition for (2.9) and (2.10) to hold is given in the following proposition.

Proposition 2.9 Assume (A.1) and (A.2). Suppose that E0(α) < E1(α) for all α ∈ I,
and E1(α) is continuous in α ∈ I. Then (2.9) and (2.10) hold.

Proof. Fix α ∈ I arbitrarily. Let ε be such that

0 < ε <
E1(α) − E0(α)

3
. (2.15)

By Lemma 2.3, there exists a constant K0,α > 0 such that if 0 ≤ |κ| ≤ K0,α, then
α ± K0,α ∈ I and

|E0(α) − E0(α + κ)| < ε. (2.16)
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Since E1(α) is continuous in α ∈ I by the present assumption, there exists a constant
K1,α > 0 such that if 0 ≤ |κ| ≤ K1,α, then α ± K1,α ∈ I and

|E1(α) − E1(α + κ)| < ε. (2.17)

Let

Lα := min{K0,α , K1,α}. (2.18)

Then α ± Lα ∈ I, i.e., (2.9) holds. By Lemma 2.3, there exists a constant κ0 with
0 ≤ |κ0| ≤ Lα such that

inf
0≤|κ|≤Lα

E0(α + κ) = E0(α + κ0).

Hence we have

|E0(α) − inf
0≤|κ|≤Lα

E0(α + κ)| = |E0(α) − E0(α + κ0)| < ε. (2.19)

Since E1(α)−E0(α) is continuous in α ∈ I, there exists a constant κ1 with 0 ≤ |κ1| ≤ Lα

such that

inf
0≤|κ|≤Lα

{E1 (α + κ) − E0 (α + κ)} = E1(α + κ1) − E0(α + κ1),

Hence we have by (2.15), (2.16), (2.17) and (2.19)

inf
0≤|κ|≤Lα

{E1 (α + κ) − E0 (α + κ)}

= E1(α + κ1) − E0(α + κ1)

= (E1 (α + κ1) − E1 (α)) + (E0 (α) − E0 (α + κ1)) + (E1 (α) − E0 (α))

≥ −2ε + (E1 (α) − E0 (α))

> ε

> |E0(α) − inf
0≤|κ|≤Lα

E0(α + κ)|.

Thus (2.10) follows.

Theorem 2.8 and Proposition 2.9 imply the following theorem:

Theorem 2.10 Assume (A.1), (A.2) and that E0(α) < E1(α) for all α ∈ I and E1(α) is
continuous in α ∈ I. Suppose that the ground state of H0 is unique. Then, for all α ∈ I,
the ground state of H(α) is unique.
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3 A Special Class of Self-adjoint Operators

Let HI be a symmetric operator on H satisfying the following condition:

(B.1) D(H0) ⊂ D(HI) and there exist constants a, b > 0 such that, for all ψ ∈ D(H0),

‖HIψ‖ ≤ a‖H0ψ‖ + b‖ψ‖. (3.1)

We define

T (α) := H0 + αHI (3.2)

with α ∈ R a coupling constant. Let Ia be an open interval from −1/a to 1/a:

Ia :=
(
−1

a
,

1

a

)
. (3.3)

By the Kato-Rellich theorem (e.g., [RS2, Theorem X.12]), for all α ∈ Ia, T (α) is self-
adjoint with D(T (α)) = D(H0) and bounded from below with

E0(T (α)) ≥ E0 − max

{
b|α|

1 − a|α|
, |α|(a|E0| + b)

}
, (3.4)

where
E0 := E0(H0). (3.5)

We assume the following:

(B.2) For all α ∈ Ia, E0(T (α)) is an isolated eigenvalue of T (α).

Theorem 3.1 Assume (B.1), (B.2) and that H has the orthogonal decomposition (1.3)
such that, for all α ∈ Ia, T (α) is reduced by H0. Suppose that, for all α ∈ Ia, the ground
state T (α) is unique and that the ground state of H0 is in H0. Then, for all α ∈ Ia, the
ground state of T (α) is in H0.

Corollary 3.2 Assume (B.1), (B.2) and that H has the orthogonal decomposition (1.3)
such that, for all α ∈ Ia, T (α) is reduced by H0. Suppose that the ground state of H0 is
unique and in H0. Moreover, suppose that there exists an α′ ∈ Ia such that T (α′) has a
ground state which is not in H0. Then, for some α0 ∈ Ia \ {0}, the ground state of T (α0)
is degenerate.

We prove these results by applying Theorem 2.1 and Corollary 2.2. To do this we need
a lemma.

Let
Qz(α) := (T (α) − z)−1, z ∈ ρ(T (α)). (3.6)
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Lemma 3.3 Assume (B.1). Then, for all z ∈ C \ R, the operator-valued function:
α → Qz(α) is continuous on Ia in operator norm topology.

Proof. Fix α ∈ Ia and z ∈ C\R arbitrarily. Since D(T (α)) = D (T (α + κ)) = D(H0)
for every κ ∈ R with α + κ ∈ I, we have

Qz(α + κ) − Qz(α) = −κQz(α + κ)HIQz(α). (3.7)

For Ψ ∈ D(H0), we have by the triangle inequality and (3.1)

‖H0Ψ‖ ≤ ‖T (α)Ψ‖ + |α|‖HIΨ‖
≤ ‖T (α)Ψ‖ + a|α|‖H0Ψ‖ + b|α|‖Ψ‖.

Hence

‖H0Ψ‖ ≤ 1

1 − a|α|
‖T (α)Ψ‖ +

b|α|
1 − a|α|

‖Ψ‖,

where |α| satisfies that 0 < |α| < 1/a. Putting this into (3.1), we obtain

‖HIΨ‖ ≤ a

1 − |α|a
‖T (α)Ψ‖ +

(
ab|α|

1 − a|α|
+ b

)
‖Ψ‖, (3.8)

which implies that HIQz(α) is bounded. Since ‖Qz(α + κ)‖ ≤ 1/|=z|, we obtain

‖Qz(α + κ) − Qz(α)‖ ≤ |κ|
|=z|

‖HIQz(α)‖ → 0

as κ → 0. Hence the desired result follows.

Proof of Theorem 3.1
By th present assumption, (3.4) and Lemma 3.3, the assumption of Theorem 2.1 with

H(α) = T (α) and I = Ia is satisfied. Thus the assertion follows.

Remark 3.1 Assume (B.1) and fix α ∈ Ia arbitrarily. Then T (α + κ) is an analytic
family of type (A) near κ = 0. This follows from (3.8) and a general fact [RS4, p.16,
Lemma].

We can obtain results on uniqueness of ground states of T (α) by applying the results
in §2.2 to the operator T (α). But we omit writing down them.
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4 Application to the WW Model

In this section we apply the main results of Section 3 to the WW model. We first recall
the definition of the WW model.

We take a Hilbert space of bosons to be

Fb := Fb

(
L2

(
Rd

))
:=

∞⊕
n=0

[
⊗n

symL2
(
Rd

)]
(4.1)

(d ∈ N) the symmetric Fock space over L2(Rd) (⊗n
s K denotes the n-fold symmetric tensor

product of a Hilbert space K, ⊗0
sK := C). In this paper, we set both of h̄ (the Planck

constant divided by 2π) and c (the speed of light) one, i.e., h̄ = c = 1.
Let ω : Rd → [0,∞) be Borel measurable such that 0 < ω(k) < ∞ for almost

everywhere (a.e.) k ∈ Rd with respect to the d-dimensional Lebesgue measure and

Hb := dΓ(ω),

the second quantization of the multiplication operator on L2(Rd) by the function ω [RS2,
§X.7].

Let λ be a function on Rd. We assume the following (W.1) and (W.2):

(W.1) The function λ is continuous on Rd, not identically zero with λ, λ/ω ∈ L2(Rd).

(W.2) The function ω(k) is continuous with

lim
|k|→∞

ω(k) = ∞, (4.2)

and there exist constants γω > 0 and Cω > 0 such that

|ω(k) − ω(k′)| ≤ Cω|k − k′|γω (1 + ω (k) + ω (k′)) , k, k′ ∈ Rd. (4.3)

We define a matrix c by

c :=

(
0 0
1 0

)
. (4.4)

The Hamiltonian HWW(α) of the WW model is defined by

HWW(α) := H0 + αHI (4.5)

acting in
H = C2 ⊗Fb (4.6)
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with

H0 := µ0c
∗c ⊗ I + I ⊗ Hb, (4.7)

HI := c∗ ⊗ a (λ) + c ⊗ a (λ)∗ , (4.8)

where µ0, α ∈ R\{0} are constant parameters and a(·) (resp. I) denotes the annihilation
operator on Fb (resp. identity operator). It is easy to prove the following fact:

Lemma 4.1 (i) The operator HI is infinitesimally small with respect to H0.

(ii) For all α ∈ R, HWW(α) is self-adjoint with D(HWW(α)) = D(H0) and bounded from
below.

The WW model has a conservation law for a kind of the particle number in the sense
described below. Let σ3 be the third of the Pauli matrices:

σ3 :=

(
1 0
0 −1

)
(4.9)

and define

NP :=
1 + σ3

2
⊗ I + I ⊗ Nb, (4.10)

where Nb := dΓ(I) is the boson number operator. The operator NP was introduced in
[HS95, §6]. Let P (`) be the orthogonal projection onto the `-particle space of Fb (` ≥ 0).
Then we have

Nb =
∑
`=0

`P (`). (4.11)

The spectral resolution of NP is given by

NP =
∑
`=0

`P`, (4.12)

where

P` :=


1 − σ3

2 ⊗ P (0) if ` = 0,

1 + σ3
2 ⊗ P (`−1) + 1 − σ3

2 ⊗ P (`) if ` ∈ N.

(4.13)

It is easy to see that, for every α ∈ R and each ` ∈ {0} ∪ N,

P`HWW(α) ⊂ HWW(α)P`. (4.14)

Hence HWW(α) is reduced by P`H.
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Let
H0 := (P0 + P1)H (4.15)

and
H1 := H⊥

0 (the orthogonal complement of H0). (4.16)

Then
H = H0 ⊕H1. (4.17)

The following lemma easily follows:

Lemma 4.2 (i) For each α ∈ R, HWW(α) is reduced by Hj, j = 1, 2.

(ii) H0 has a unique ground state in H0.

Let
EWW

0 (α) := E0 (HWW (α)) (4.18)

and

µ := ess. inf
k∈Rd

ω(k) ≥ 0. (4.19)

We say that the WW model is massive (resp. massless) if µ > 0 (resp. µ = 0).

Proposition 4.3 ([Ar99, Remark 3.1], [AH99, Proposition 6.10(i)])

σ (HWW (α)) = [EWW

0 (α) + µ , ∞),

where σess(·) denotes essential spectrum.

We define

Dα
µ(z) := −z + µ0 − α2

∫
Rd

dk
|λ(k)|2

ω(k) − z
, z ∈ Cµ := C \ [µ , ∞) (4.20)

The limit

Cµ := lim
t↓0

∫
Rd

dk
|λ(k)|2

ω(k) − µ + t
(4.21)

exists or is infinity. In the former case, Cµ > 0 by (W.1). It is easy to see that Dα
µ(x) is

monotone decreasing in x < µ. Hence the limit

dα
µ := lim

x↑µ
Dα

µ(x) (4.22)

exists or is −∞ and
dα

µ = −µ + µ0 − α2Cµ.
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Let

β0 :=


µ0 − µ

Cµ

if 0 < Cµ < ∞,

0 if Cµ = ∞.

(4.23)

and

Aµ :=
{
α ∈ R | −∞ ≤ dα

µ < 0
}

= {α ∈ R|α2 > β0}. (4.24)

For all α ∈ Aµ, there exists a unique zero EWW(α) of Dα
µ(z):

EWW (α) = µ0 − α2
∫
Rd

dk
|λ(k)|2

ω(k) − EWW (α)
. (4.25)

Proposition 4.4 ([H99, Theorem 2.3 (b),(c)]) Let α ∈ Aµ. Assume either (i) µ > 0 or
(ii) µ = 0 with ∇ω ∈ L∞(Rd). Then there exists a constant αWW ∈ Aµ∩ (0,∞) such that,
for all |α| > αWW,

{EWW

0 (α), EWW (α) , 0} ⊂ σp (HWW (α))

with
EWW

0 (α) < min {EWW (α) , 0}
and

Ψ0(α) /∈ H0.

Let
EWW

1 (α) := inf {σ (HWW (α)) \ {EWW

0 (α)}} (4.26)

and
ε0 := min{0, µ0}, ε1 := max{0, µ0}. (4.27)

Note that, if EWW
1 (α) is an eigenvalue of HWW (α), then each eigenvector corresponding

to it physically describes one of the first excited states of the WW model.

Theorem 4.5 Let µ > 0. Then :

(i) There exists a constant α0 ∈ Aµ such that HWW(α0) has degenerate ground states.

(ii) There exists a constant α1 ∈ Aµ such that EWW
1 (α1) is an eigenvalue of HWW(α1) and

EWW

1 (α1) < EWW

0 (α1) + µ = inf σ (HWW (α1)) . (4.28)

Moreover, if 0 < µ < |µ0|, then

EWW

1 (α1) < ε1. (4.29)
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Proof. (i) Since µ > 0, it follows from [AH97, Theorem 1.2] that, for all α ∈ R,
HWW(α) has a ground state and EWW

0 (α) is an isolated eigenvalue of HWW(α). These facts
together with Lemmas 4.1, 4.2, Proposition 4.4 imply that the assumption of Corollary
3.2 with T (α) = HWW(α) is satisfied. Hence there exists a constant α0 6= 0 such that
the ground state of HWW(α0) is degenerate. If α0 6∈ Aµ so that dα0

µ ≥ 0, then, by [AH99,
Theorem 6.14(i)], HWW(α0) has a unique ground state. But this is a contradiction.

(ii) By Lemma 4.3, we have for all α ∈ R

EWW

0 (α) < EWW

1 (α) ≤ EWW

0 (α) + µ.

Suppose that, for all α ∈ R \ {0},

EWW

1 (α) = inf σess (HWW(α)) = EWW

0 (α) + µ.

By an application of Lemma 2.4, EWW
0 (α) is continuous in α ∈ R. Hence so is EWW

1 (α).
Then, by an application of Theorem 2.10, for all α ∈ R, the ground state of HWW(α) is
unique. But this contradicts part (i). Hence there exists a constant α1 6= 0 such that
(4.28) holds and EWW

1 (α1) is an eigenvalue of HWW(α1). We show that α1 ∈ Aµ. If
µ0 < 0, then dα

µ < 0 for all α ∈ R, which implies Aα
µ = R (µ0 < 0). Hence α1 ∈ Aµ. Let

µ0 > 0. Suppose that dα1
µ ≥ 0. Then, by [AH99, Theorem 6.14(i)] we have EWW

1 (α1) =
EWW

0 (α1) + µ, which contradicts (4.28). Hence dα1
µ < 0. Therefore α1 ∈ Aµ.

Finally we prove (4.29). Let µ < |µ0|. Since 0 ∈ σp (HWW (α)) for all α ∈ R by [AH99,
Proposition 6.13], we have

EWW

1 (α1) < EWW

0 (α1) + µ ≤ 0 + µ = µ.

We first consider the case 0 < µ0. In this case, ε0 = 0, ε1 = µ0. Hence EWW
1 (α1) < ε1.

We next consider the case µ0 < 0. In this case, ε0 = µ0 and ε1 = 0. Since α1 ∈ Aµ(i.e.,
dα1

µ < 0), we have by [AH99, Proposition 6.13 (ii)] 0, EWW(α1) ∈ σp (HWW (α)) with
EWW(α1) < 0. Since µ0 < 0, we have

Dα1
µ (µ0) = −α2

1

∫
Rd

dk
|λ(k)|2

ω(k) − µ0

< 0.

This implies that EWW(α1) < µ0, since Dα1
µ (x) is monotone decreasing in x < µ and

Dα1
µ (EWW (α1)) = 0. Hence we have

EWW

1 (α1) < EWW

0 (α1) + µ ≤ EWW(α1) + µ < µ0 + µ < 0 = ε1.

Thus (4.29) follows.

Remark 4.1 Generally speaking, in a quantum field model, it is difficult to prove the
existence of an eigenvalue corresponding to the first excited states of the model. There
are many papers stating the possibility of the existence of the first excited states, but, to
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authors’ best knowledge, there is few papers pointing out the real existence of those. In
this sense, Theorem 4.5-(ii) has a meaning. Moreover, note that, if 0 < µ < |µ0| = ε1−ε0,
then ε1 is an embedded eigenvalue of H0. In this case too, Theorem 4.5-(ii) holds, showing
that, in the WW model, the embedded eigenvalue does not necessarily disappear under
the perturbation αHI . The phenomena mentioned in Theorem 4.5 do not occur in the
region of the coupling constant treated by Hübner and Spohn [HS95, §6] and ourselves in
[AH99, Theorem 6.14(i)].

Remark 4.2 We may expect that, in the massless case too (i.e. µ = 0), Theorem 4.5-(i)
holds.
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