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Abstract

We consider a model of a quantum mechanical system coupled to a (massless)
Bose field, called the generalized spin-boson model (A. Arai and M. Hirokawa, J.
Funct. Anal. 151 (1997), 455–503), without infrared regularity condition. We define
a regularized Hamiltonian H(ν) with a parameter ν ≥ 0 such that H = H(0) is the
Hamiltonian of the original model. We clarify a relation between ground states of
H(ν) and those of H by formulating sufficient conditions under which weak limits,
as ν → 0, of the ground states of H(ν)’s are those of H. We also establish existence
theorems on ground states of H(ν) and H under weaker conditions than in the
previous paper mentioned above.

Mathematics Subject Classifications (1991): 81Q10, 47B25, 47N50
Key Words: massless quantum field, Fock space, infrared problem, generalized spin-boson model,
ground state, ground-state energy
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1 Introduction

This work is a continuation of the previous one [15], in which we discussed existence
and uniqueness of ground states of a model which gives an abstract unification of some
quantum field models of particles interacting with a Bose field (we call the model a
generalized spin-boson (GSB) model). In this paper we consider the model under weaker
conditions than in [15] and establish theorems on existence of ground states of the model,
generalizing those of [15].

If the Bose field is massless, then the GSB model can be regarded as an abstract sim-
plified version of models of nonrelativistic quantum electrodynamics [3, 9, 17, 18, 20, 31,
32, 33, 34, 39, 40, 45]. By this reason, it is particularly important to treat the case where
the Bose field is massless. In this case, however, one encounters the “infrared problem”, a
number of problems related to the so-called “infrared catastrophe,” a situation where the
total energy of bosons emitted at low frequency is finite, but the number of such bosons
(“soft bosons”) blows up (e.g., [36, Chapter 4, §4-1-2], [21]; [27, 28] for mathematically
rigorous discussions). Conventionally or heuristically the infrared catastrophe suggests
absence of ground states (or other eigenvectors) of the model under consideration in the
Hilbert space of state vectors where the “bare” boson number operator is defined. It turns
out that it is a very subtle problem whether or not ground states exist in the original
Hilbert space where the unperturbed part of the Hamiltonian of the model is defined
via the usual Fock representation of canonical commutation relations. This aspect was
investigated in [16] in view of absence of ground states.
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In contrast to the paper [16], we analyze, in the present paper, mathematical structures
for existence (in the original Hilbert space) of ground states of the massless model without
infrared regularity condition (for the exact meaning, see the paragraph after Remark 1.2
below). We establish existence theorems of ground states in the massless theory in terms
of quantities defined as the mass-zero limits of those in the massive (regularized) theory.

To outline the present paper in more detail, we first describe the model. Let H be a
complex Hilbert space and Fb the Boson Fock space over L2(Rd):

Fb :=
∞⊕

n=0

⊗n
s L

2(Rd), (1.1)

where ⊗n
s L

2(Rd) denotes the n-fold symmetric tensor product of L2(Rd), d ≥ 1, with
⊗0

sL
2(Rd) := C. The Hilbert space of the quantum field model we consider is

F := H⊗Fb.

Let ω : Rd → [0,∞) be Borel measurable such that 0 < ω(k) < ∞ for almost everywhere
(a.e.) k ∈ Rd with respect to the d-dimensional Lebesgue measure and ω̂ be the multi-
plication operator by the function ω, acting in L2(Rd). We denote by dΓ(ω̂) the second
quantization of ω̂ [42, §X.7]. Let A be a self-adjoint operator on H bounded from below.
Then the unperturbed Hamiltonian of the model is defined by

H0 := A ⊗ I + I ⊗ dΓ(ω̂) (1.2)

with domain D(H0) = D(A ⊗ I) ∩ D(I ⊗ dΓ(ω̂)), where I denotes identity operator and
D(T ) the domain of an operator T . The operator H0 is self-adjoint and bounded from
below.

We denote by a(f), f ∈ L2(Rd), the smeared annihilation operators on Fb [a(f) is
antilinear in f ] [42, §X.7]. Let λj ∈ L2(Rd), j = 1, · · · , J , with J ∈ N, Bj a closed linear
operator on H and

HI :=
J∑

j=1

(
Bj ⊗ a (λj)

∗ + B∗
j ⊗ a (λj)

)
. (1.3)

Let α ∈ R \ {0} be a constant. Then the total Hamiltonian H of the model is defined by

H := H0 + αHI (1.4)

acting in F .

Remark 1.1 Davies [22] also treats a Hamiltonian of the same form as that of H, but,
with Bj bounded. We do not assume that each Bj is bounded. Hence our Hamiltonian H
is a generalization of Davies’.
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Remark 1.2 If each Bj is symmetric (i.e., Bj ⊂ B∗
j ), then H is the Hamiltonian of the

GSB model in [15]. But, in fact, even if each Bj is not symmetric, H can be written as
a form of the Hamiltonian of the GSB model in [15] (see (2.15) in Section 2). Thus the
class of the above H coincides with that of the GSB model in [15]. A reason we use the
form (1.4) with (1.3) is just that it is notationally convenient in dicussing examples we
give in this paper (see Section 6).

Let
µ := ess.infk∈Rdω(k), (1.5)

where ess.inf means essential infimum. We say that the model has low-energy cutoff if
µ > 0. If the Bose field is massless with ω(k) = |k|, then the model has no low-energy
cutoff. Thus we are primarily interested in the model without low-energy cutoff. In this
case, the behavior of the momentum-cutoff functions λj (j = 1, · · · , J) in the neighborhood
of ω(k) = 0 becomes significant. To explain this point briefly, we introduce a neighboring
set

D0 := {k ∈ Rd|ω(k) ≤ 1} (1.6)

of ω(k) = 0. For a set S, we denote by χS the characteristic function of S. If∫
D0

|λj(k)|2

ω(k)2
dk = +∞, j = 1, · · · , J, (1.7)

i.e., λjχD0/ω 6∈ L2(Rd), j = 1, · · · , J , then the model is said to have infrared singularity
[1, 40, 44]. On the other hand, we say that the model is infraredly regular if λjχD0/ω ∈
L2(Rd), j = 1, · · · , J . Obviously the model with low-energy cutoff is infraredly regular
(but the converse is not true). In the present paper we do not assume the infrared regularity
for the model, otherwise stated.

A conventional picture is that the infrared singularity condition plus some condition
gives absence of ground states of H in F . But this is a subtle problem as we remarked
above. Indeed, there are some models which can have ground states even if the infrared
singularity condition is fulfilled (e.g., [4, 5, 6, 7, 10, 11, 12])(for simple extreme examples,
see Section 6 in the present paper), see also [18, §II].

In Section 2 we first prove self-adjointness of H under some conditions. Then we
estimate the ground-state energy of H from below and above.

We want to analyze the model without infrared regularity from a model with infrared
regularity. We call the latter an infraredly regularized model if it approximates the former
in a suitable sense. A simple way to define such a regularized model is to replace ω by

ων(k) := ω(k) + ν (1.8)

with a constant ν > 0. The parameter ν plays a role of low-energy cutoff. It is obvious
that λjχD0/ω

s
ν ∈ L2(Rd) for all s ≥ 0 and j = 1, · · · , J , and ων(k) → ω(k) (ν ↓ 0) for

a.e.k ∈ Rd. Hence the operator

H(ν) := A ⊗ I + I ⊗ dΓ(ω̂ν) + αHI (1.9)
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may give a Hamiltonian of an infraredly regularized model. We have

H(ν) = H + ν I ⊗ Nb, (1.10)

where
Nb := dΓ(I) (1.11)

is the number operator on Fb. This means that H(ν) can be viewed as an operator
obtained as the perturbation of H by the operator ν I ⊗ Nb. Note that

D(H(ν)) = D(H0) ∩ D(I ⊗ Nb), ν > 0. (1.12)

Remark 1.3 Of course there are other ways of regularizing the model H. For example,
one may replace each λj by λ

(ν)
j := χ{k∈Rd|ω(k)≥ν}λj. In this case ν is a parameter of

infrared cutoff for boson momenta. If ν > 0, then we have λ
(ν)
j /ωs ∈ L2(Rd) for all s > 0.

Let H(ν)′ be the Hamiltonian H with λj replaced by λ
(ν)
j . Then we can show that H(ν)′

converges to H in the norm resolvent sense as ν → 0 (the proof is similar to that of [15,
Lemma 3.5]). On the other hand, as we shall see below (Proposition 3.1), H(ν) converges
to H in the strong resolvent sense as ν → 0. In this respect, the regularization using H(ν)′

is stronger than ours using H(ν). However it turns out that the former regularization is
inconvenient to fromulate conditions for the existence of a ground state of H in terms of
the behavior of the ground-state energy of a regularized Hamiltonian, as the regularization
is removed.

In Section 3 we analyze the regularized Hamiltonian H(ν) including the case ν = 0
with the following aspects: (i) the ground-state energy E0(ν) of H(ν) as a function of
ν ∈ [0,∞); (ii) the ground-state expectation value n(ν) of the number operator I ⊗ Nb

for ν > 0 under the assumption of existence of a ground-state of H(ν); (iii) the infrared
divergence in the sense that n(ν) → ∞ as ν → 0.

Section 4 is devoted to a structural analysis on conditions for H to have a ground
state as a subsequence weak limit of ground states of H(ν)’s as ν → 0. The conditions
are described in terms of the behavior of n(ν) and a correlation function W (ν) [see (4.5)]
as ν → 0 or E ′

0(0+), the right differential of E0(ν) at ν = 0. The analysis clarifies a
relation between ground states of H(ν) and those of H. We also estimate an upper bound
for the correlation function W (ν). We regard the results of this section as some of most
important results of the present paper.

Remark 1.4 Experimentally a quantum state is identified through observations of observ-
ables which give numerical quantities such as energy levels, the mean boson number, and
some correlation functions etc. Thus, from a physical point of view based on this picture,
characterizing existence of ground states in terms of experimentally observed numerical
functions are natural.
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In Section 5 we prove existence of ground states of the Hamiltonian with low-energy
cutoff, which includes the regularized one H(ν) as a special case, and the Hamiltonian
with infrared regularity.

As for the existence of ground states of H and H(ν), the previous paper [15] assumed
that the spectrum of A is purely discrete. But, in the present work, we do not assume it.
This is an important point which improves the existence results of ground states in [15].

In the last section, we discuss some simple examples (the van Hove model, a model of a
quantum harmonic oscillator coupled to a Bose field with a rotating wave approximation
and the Wigner-Weisskopf model) in view of the analysis of Section 4. The van Hove
model is an example which has no ground states if the infrared singularity condition is
fulfilled. On the other hand, the other two models are examples which can have ground
states even if the infrared singularity condition is fulfilled. It is instructive to see, in
each example, the behavior of the derivative of the ground-state energy of the regularized
model as ν → 0.

The present paper has two appendices. Appendix A presents some results on the
ground-state energy for a class of self-adjoint operators on the abstract Hilbert space.
These results are applied to the ground-state energy E0(ν) of H(ν). In Appendix B we
establish a general perturbation theorem on discrete spectrum of a self-adjoint operator.
This is applied to proof of existence of ground states of the Hamiltonian with low-energy
cutoff(Section 5).

Remark 1.5 A general treatment of spectral-theoretical aspects of models of GSB’s type
has been made by Dereziński and Jakšić [24]. An analysis on essential spectrum is given
in [14].

2 Some Fundamental Properties of the Model

2.1 Self-adjointness

The inner product (resp. norm) of a Hilbert space K is denoted ( · , · )K, complex linear
in the second variable (resp. ‖ · ‖K). But, if there is no danger of confusion, then we omit
the subscript K in ( · , · )K and ‖ · ‖K.

For each s ∈ R, we define a Hilbert space

Ms =
{
f : Rd → C, Borel measurable | ωs/2f ∈ L2(Rd)

}
with inner product (f, g)s := (ωs/2f, ωs/2g)L2(Rd) and norm

‖f‖s := ‖ωs/2f‖L2(Rd), f ∈ Ms.

For a linear operator T , we denote its spectrum by σ(T ). If T is a self-adjoint operator
bounded from below, then we define

E0(T ) := inf σ(T ), (2.1)
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the ground-state energy of T .
We define

Ã := A − E0(A), (2.2)

which is a nonnegative self-adjoint operator.
The basic hypothesises for the model are the following (H.1) and (H.2):

(H.1) λj ∈ M−1 ∩M0, j = 1, · · · , J .

(H.2) D(Ã1/2) ⊂ D(Bj) ∩ D(B∗
j ), j = 1, · · · , J, and there exist constants aj,± ≥ 0,

bj,± ≥ 0, j = 1, · · · , J, such that, for all u ∈ D(Ã1/2),∥∥∥∥∥(B∗
j ± Bj)√

2
u

∥∥∥∥∥
2

≤ a2
j,±‖Ã1/2u‖2 + b2

j,±‖u‖2, j = 1, · · · , J, (2.3)

and

|α|

 J∑
j=1

(aj,+ + aj,−) ‖λj‖−1

 < 1. (2.4)

Assume (H.2) and set

aj :=
√

a2
j,+ + a2

j,−, bj :=
√

b2
j,+ + b2

j,−, j = 1, · · · , J. (2.5)

Then, by the identity (the parallelogram law)

‖Bju‖2 + ‖B∗
j u‖2 =

∥∥∥∥∥B∗
j + Bj√

2
u

∥∥∥∥∥
2

+

∥∥∥∥∥B∗
j − Bj√

2
u

∥∥∥∥∥
2

,

we have for all u ∈ D(Ã1/2),

‖Bju‖2 + ‖B∗
j u‖2 ≤ a2

j‖Ã1/2u‖2 + b2
j‖u‖2,

j = 1, · · · , J, (2.6)

For a vector v = (vj)
J
j=1 ∈ RJ and f = (fj)

J
j=1 ∈ ⊕JL2(Rd), we define

Mv(f) :=
J∑

j=1

vj‖fj‖L2(Rd). (2.7)

We set
v(a) := (aj,+ + aj,−)J

j=1, v(b) := (bj,+ + bj,−)J
j=1. (2.8)

For positive constants ε, ε′, we introduce

F
(a,b)
ε,ε′ (λ, ω) := Mv(a)(λ/

√
ω) +

ε√
2
Mv(a)(λ) +

√
2ε′Mv(b)(λ/

√
ω), (2.9)

G
(a,b)
ε,ε′ (λ, ω) :=

1

4
√

2ε
Mv(a)(λ) +

1

2
√

2ε′
Mv(b)(λ/

√
ω) +

Mv(b)(λ)√
2

, (2.10)

We define
H̃0 := H0 − E0(A) = Ã ⊗ I + I ⊗ dΓ(ω̂) ≥ 0. (2.11)
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Proposition 2.1 Assume (H.1) and (H.2). Then D(H0) ⊂ D(HI), H is self-adjoint on
D(H) = D(H0) and bounded from below. Moreover, H is essentially self-adjoint on every
core of H0.

Proof. Using (2.6), we can show in the same way as in the proof of [15, Proposition
1.1] that Bj ⊗ a(λj)

∗ and B∗
j ⊗ a(λj) are H0-bounded, so that D(H0) ⊂ D(HI). Let

φ(f) :=
a(f)∗ + a(f)√

2
, f ∈ L2(Rd), (2.12)

and

Sj :=
Bj + B∗

j√
2

, SJ+j :=
i(B∗

j − Bj)√
2

, (2.13)

gj := λj, gJ+j := iλj, j = 1, · · · , J. (2.14)

Then we have

HI =
2J∑
j=1

Sj ⊗ φ(gj). (2.15)

Hence H is of the form of the Hamiltonian of the GSB model introduced in [15]. Hence
we can apply the estimate (2.9) in [15] to obtain the following inequality:

‖HIΨ‖F ≤ F
(a,b)
ε,ε′ (λ, ω)‖H̃0Ψ‖F + G

(a,b)
ε,ε′ (λ, ω)‖Ψ‖F , Ψ ∈ D(H0). (2.16)

Condition (2.4) implies that |α|F (a,b)
ε,ε′ (λ, ω) < 1 for all sufficiently small ε and ε′. Hence,

by the Kato-Rellich theorem, we obtain the desired results.

2.2 Ground-state energy

For a self-adjoint operator T on a Hilbert space X , we denote by PT its spectral measure
and by Q(T ) its form domain: Q(T ) := D(|T |1/2). The sesquilinear form qT associated
with T is deifned by

qT (ψ, φ) :=
∫
R

λd(ψ, PT (λ)φ)X , ψ, φ ∈ Q(T ).

Assume (H.1) and (H.2). Then we can define a sesquilinear form q(u, v) with form
domain Q(q) := Q(A) by

q(u, v) := qA(u, v) −
J∑

j=1

α2‖λj‖2
−1(Bju,Bjv)H, u, v ∈ Q(q). (2.17)
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Lemma 2.2 Assume (H.1) and (H.2). Then there exists a unique self-adjoint operator
L on H such that Q(L) = Q(q) and

qL(u, v) = q(u, v), u, v ∈ Q(L).

Moreover, L is bounded from below with

L ≥ E0(A) −
J∑

j=1

α2b2
j‖λj‖2

−1,

and every core of A is a form core of L.

Proof. By (2.6), we have

J∑
j=1

α2‖λj‖2
−1‖Bju‖2

H ≤

 J∑
j=1

α2a2
j‖λj‖2

−1

 ‖Ã1/2u‖2
H +

 J∑
j=1

α2b2
j‖λj‖2

−1

 ‖u‖2
H.

By (2.4),
J∑

j=1

α2a2
j‖λj‖2

−1 ≤ α2

 J∑
j=1

(aj,+ + aj,−)‖λj‖−1

2

< 1. (2.18)

Hence, by the KLMN theorem [42, Theorem X.17], there exists a unique self-adjoint
operator L̂ with Q(L̂) = D(Ã1/2) = Q(q) such that

qL̂(u, v) = ‖Ã1/2u‖2
H −

J∑
j=1

α2‖λj‖2
−1‖Bju‖2

H = q(u, v) − E0(A).

and L̂ ≥ −∑J
j=1 α2b2

j‖λj‖2
−1. Putting L := L̂ + E0(A), we obtain the desired results.

A lower bound for the ground-state energy E0(H) of H is given in the following propo-
sition.

Proposition 2.3 Assume (H.1) and (H.2). Then

H ≥ L ⊗ I (2.19)

in the sense of sesquilinear form. In particular,

E0(L) ≤ E0(H) (2.20)

and

E0(A) −
J∑

j=1

α2b2
j‖λj‖2

−1 ≤ E0(H). (2.21)
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Proof. Let Fb,0 be the subspace of finite-particle vectors in Fb:

Fb,0 := {ψ = {ψ(n)}∞n=0 ∈ Fb|ψ(n) = 0 for all but finitely many n’s}

and
D0,∞ := {ψ ∈ Fb,0|ψ(n) ∈ C∞

0 (Rdn) for all n ≥ 1},
where C∞

0 (Rdn) is the space of infinitely differentiable functions on Rdn with compact
support. Then, for each k ∈ Rd, we can define a linear operator a(k) on Fb with D(a(k)) =
D0,∞ by

(a(k)ψ)(n)(k1, · · · , kn) :=
√

n + 1ψ(n+1)(k, k1, · · · , kn),

for a.e. (k1, · · · , kn) ∈ Rνn (cf. [42, §X.7]). For all f ∈ L2(Rd) and ψ ∈ D0,∞, we have

a(f)ψ =
∫
Rd

f(k)∗a(k)ψdk,

where the integral is taken in the sense of Fb-valued strong Bochner integral.
We denote by L2

loc(R
d) the space of Borel measurable functions f on Rd such that,

for all R > 0,
∫
|k|≤R |f(k)|2dk < ∞. We first consider the case ω ∈ L2

loc(R
d). Then

(ψ, dΓ(ω̂)ψ) =
∫
Rd

ω(k)‖a(k)ψ‖2dk, ψ ∈ D0,∞.

Let Ψ ∈ D(A) ⊗alg D0,∞, where ⊗alg means algebraic tensor product. Then we have

(Ψ, HΨ) = qL⊗I(Ψ, Ψ) +
∫
Rd

ω(k)
∥∥∥(I ⊗ a(k) + αλj(k)ω(k)−1Bj ⊗ I)Ψ

∥∥∥2
dk.

Since the second term on the right hand side is nonnegative, we obtain

(Ψ, HΨ) ≥ qL⊗I(Ψ, Ψ). (2.22)

The condition ω ∈ L2
loc(R

d) implies that D0,∞ is a core of dΓ(ω̂). Hence D(A) ⊗alg D0,∞
is a core of H0. Hence, by Proposition 2.1, D(A) ⊗alg D0,∞ is a core of H. Thus (2.22)
extends to all Ψ ∈ D(H) = D(H0), implying (2.19).

We next consider the case where ω 6∈ L2
loc(R

d). We define ω(n) := (1+n−1ω)−1ω, n ≥ 1,
and denote by Hn (resp. Ln) the operator H (resp. L) with ω replaced by ω(n). We have

ω(n) ∈ L2
loc(R

d), λj/
√

ω(n) ∈ L2(Rd), and ω(n) ≤ ω, ω(n)(k) ↑ ω(k) (n → ∞) for a.e. k.
By the preceding result, we have qLn⊗I(Ψ, Ψ) ≤ (Ψ, HnΨ), Ψ ∈ D(H0). It is easy to see
that, for all Ψ ∈ D(H0), qLn⊗I(Ψ, Ψ) → qL⊗I(Ψ, Ψ), ‖HnΨ−HΨ‖ → 0 as n → ∞. Hence
qL⊗I(Ψ, Ψ) ≤ (Ψ, HΨ), Ψ ∈ D(H0), which implies (2.19).

Inequality (2.20) follows from (2.19) and the variational principle. Estimate (2.21) is
obtained from (2.20) and Lemma 2.2.

We next consider upper bounds of E0(H). For this purpose, we define a nonlinear
functional F on D(A) by

F (u) := (u, Au) − α2

∥∥∥∥∥
∑J

j=1(u,Bju)λj√
ω

∥∥∥∥∥
2

L2(Rd)

, u ∈ D(A), (2.23)
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and set
F0 := inf

u∈D(A);‖u‖=1
F (u). (2.24)

Proposition 2.4 Assume (H.1) and (H.2). Then

E0(H) ≤ F0. (2.25)

Proof. Let u ∈ D(A) and ψ ∈ D(dΓ(ω̂)) with ‖u‖ = 1 = ‖ψ‖. Then ‖u ⊗ ψ‖ = 1 and
we have

(u ⊗ ψ,Hu ⊗ ψ) = (u,Au) + (ψ,HVH(g)ψ)

where
HVH(g) := dΓ(ω) + αφ(g)

with g :=
∑J

j=1

√
2(u, Bju)λj. By the variational principle, we have E0(H) ≤ (u⊗ψ,Hu⊗

ψ). Hence
E0(H) ≤ (u, Au) + (ψ,HVH(g)ψ).

On the other hand, HVH(g) is a Hamiltonian of the so-called van Hove model or a fixed
source model (e.g., [25, Chaper 1, §e] and references therein). Properties of this model
are well known, including the case without low-energy cutoff(e.g., [13]). In particular,

E0(HVH(g)) = −α2

2

∥∥∥∥∥ g√
ω

∥∥∥∥∥
2

L2(Rd)

= −α2

∥∥∥∥∥
∑J

j=1(u,Bju)λj√
ω

∥∥∥∥∥
2

L2(Rd)

.

Thus (2.25) follows.

Remark 2.1 The operator HVH(g) is a special case of H. Namely, if we take H = C,
then the Hamiltonian H with A = 0, J = 1, B1 = 1 and λ1 = g yields HVH(g).

Remark 2.2 Since F (u) ≤ (u, Au), u ∈ D(A), we have

F0 ≤ E0(A). (2.26)

Hence, by (2.25),
E0(H) ≤ E0(A). (2.27)

Suppose, in addition to (H.1) and (H.2), that A has a normalized ground state u0: Au0 =
E0(A)u0 such that, for some j, (u0, Bju0) 6= 0 and that λ1, · · · , λJ are linearly independent.
Then we have

F (u0) = E0(A) − α2

∥∥∥∥∥
∑J

j=1(u0, Bju0)λj√
ω

∥∥∥∥∥
2

L2(Rd)

< E0(A).

Hence, in this case,
E0(H) < E0(A), (2.28)

i.e., the interaction makes the ground-state energy strictly lower.

Remark 2.3 A special choice of H, A and Bj yields the standard spin-boson (SSB) model
[15]. Some approximate expressions for the ground state energy of the SSB model are
found in [29, 46]. Recently [30] gives an exact and explicit representation for that.
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3 Analysis of the Regularized Hamiltonian

Throughout this section, we assume (H.1) and (H.2).

3.1 Strong resolvent convergence

Let H(ν) be defined by (1.10). It is easy to see that (H.1) is satisfied with ω replaced by
ων . Hence Proposition 2.1 holds with H replaced by H(ν).

We denote by
Ω := {1, 0, 0, · · ·} ∈ Fb (3.1)

the Fock vacuum in Fb. We define

Ffin(ων) := L{Ω, a(f1)
∗ · · · a(fn)∗Ω |n ∈ N, fj ∈ D(ω̂ν), j = 1, · · · , J} , (3.2)

where L{· · ·} denotes the subspace algebraically spaned by the vectors in the set {· · ·}.
The subspace Ffin(ων) is dense in Fb and a core for dΓ(ω̂ν). Note that D(ω̂) = D(ω̂ν), so
that

Ffin(ω) = Ffin(ων). (3.3)

We introduce a dense subspace Dω in F by

Dω := D(A) ⊗alg Ffin(ω). (3.4)

Proposition 3.1 (i) Dω is a common core of {H(ν)}ν≥0 and, for all Ψ ∈ Dω,

lim
ν→0

‖H(ν)Ψ − HΨ‖ = 0. (3.5)

(ii) For all z ∈ C \ R and Ψ ∈ F ,

lim
ν↓0

‖(H(ν) − z)−1Ψ − (H − z)−1Ψ‖ = 0. (3.6)

Proof. (i) The subspace Dω is a core of H0. Hence, Proposition 2.1, it is a core of
H(ν) for all ν ≥ 0. Eq.(3.5) easily follows from the equation H(ν)Ψ − HΨ = νI ⊗ NbΨ.

(ii) This follows from part (i) and an application of a general convergence theorem [41,
Theorem VIII.25 (a)].

3.2 Ground-state energy

For notational simplicity, we denote by E0(ν) the ground-state energy of H(ν):

E0(ν) := E0(H(ν)) = inf σ(H(ν)). (3.7)
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Let F (ν) is the functional F with ω replaced by ων :

F (ν)(u) := (u,Au) − α2

∥∥∥∥∥
∑J

j=1(u,Bju)λj√
ων

∥∥∥∥∥
2

L2(Rd)

(3.8)

and set
F0(ν) := inf

u∈D(A);‖u‖=1
F (ν)(u). (3.9)

Then, by Propositions 2.3 and 2.4, we have

E0(A) −
J∑

j=1

α2b2
j

∥∥∥∥∥ λj√
ων

∥∥∥∥∥
2

L2(Rd)

≤ E0(ν) ≤ F0(ν) ≤ E0(A). (3.10)

Basic analytical properties of E0(ν) as a function of ν ≥ 0 are summarized in the
following proposition.

Proposition 3.2 (i) The function E0(ν) is monotone nondecreasing in ν ≥ 0.

(ii) The function E0(ν) is concave, i.e., for all ν, ν ′ ∈ [0,∞) and t ∈ [0, 1],

tE0(ν) + (1 − t)E0(ν
′) ≤ E0(tν + (1 − t)ν ′). (3.11)

(iii) The function E0(ν) is continuous on [0,∞). In particular,

lim
ν↓0

E0(ν) = E0(0). (3.12)

(iv) For all ν > 0,

E ′
0(ν ± 0) := lim

ε↓0

E0(ν ± ε) − E0(ν)

±ε
(3.13)

exist and
E ′

0(ν + 0) ≤ E ′
0(ν − 0). (3.14)

(v)
lim

ν→∞
E0(ν) = E0(A). (3.15)

Proof. Parts (i)–(iv) follow from a simple application of Proposition A.1 in Appendix
A with T = H and S = I ⊗ Nb (note that D(H) ∩ D(I ⊗ Nb) = D(H0) ∩ D(I ⊗ Nb) is a
core of H0 and hence of H). As for part (iv), we first note that

lim
ν→∞

∥∥∥∥∥ λj√
ων

∥∥∥∥∥
2

L2(Rd)

= 0
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and, for all u ∈ D(A),

lim
ν→∞

∥∥∥∥∥
∑J

j=1(u,Bju)λj√
ων

∥∥∥∥∥
2

L2(Rd)

= 0.

Hence, by (3.10),

E0(A) ≤ lim inf
ν→∞

E0(ν) ≤ lim sup
ν→∞

E0(ν) ≤ (u,Au)

for all u ∈ D(A) with ‖u‖ = 1. Since E0(A) = infu∈D(A);‖u‖=1(u,Au), (3.15) follows.

3.3 The ground-state expectation value of the number operator

In what follows, we assume the following in addition to (H.1) and (H.2):

(H.3) There exists a constant ν0 > 0 such that, for all ν ∈ (0, ν0), H(ν) has a ground
state Ψ0(ν) with ‖Ψ0(ν)‖ = 1.

For a linear operator X on F with D(X) ⊃ D(H0) ∩ D(I ⊗ Nb), we define

〈X〉ν := (Ψ0(ν), XΨ0(ν)), ν ∈ (0, ν0), (3.16)

the ground-state expectation value of X. We set

n(ν) := 〈I ⊗ Nb〉ν , ν ∈ (0, ν0), (3.17)

and define

n := lim sup
ν↓0

n(ν), (3.18)

n := lim inf
ν↓0

n(ν). (3.19)

Proposition 3.3 (i) limν↓0 ν · n(ν) = 0.

(ii) limν↓0 〈H〉ν = E0(0).

(iii) For all ν ∈ (0, ν0),
n(ν) ≥ E ′

0(ν + 0). (3.20)

In particular,
n ≥ lim inf

ν↓0
E ′

0(ν + 0), n ≥ lim sup
ν↓0

E ′
0(ν + 0). (3.21)

(iv) If the right differential

E ′
0(0+) := lim

ν↓0

E0(ν) − E0(0)

ν
(3.22)

of E0(ν) at ν = 0 exists, then
n ≤ E ′

0(0+). (3.23)
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(v) n < ∞ if and only if E0(ν) − 〈H〉ν = O(ν) (ν ↓ 0), where O(·) is Landau’s symbol.

Proof. We need only apply Proposition A.3 in Appendix A with T = H and S = I⊗Nb.

3.4 Upper bound for n(ν)

We define
Rj(ν) := ‖Bj ⊗ IΨ0(ν)‖2. (3.24)

Note that, if Ψ0(ν) ∈ D((B∗
j ⊗ I)(Bj ⊗ I)), then Rj(ν) = (Ψ0(ν), (B∗

j ⊗ I)(Bj ⊗ I)Ψ0(ν)),
i.e., Rj(ν) is the ground-state expectation value of (B∗

j ⊗ I)(Bj ⊗ I) or the correlation
function of (B∗

j ⊗ I) and (Bj ⊗ I) in the ground state Ψ0(ν).

Proposition 3.4 For all ν ∈ (0, ν0),

n(ν) ≤ α2

 J∑
j=1

∥∥∥∥∥λj

ων

∥∥∥∥∥ √
Rj(ν)

2

. (3.25)

Proof. Similar to the proof of [15, Lemma 4.3].

This proposition immediately yields the following fact:

Corollary 3.5 Suppose that, for each j = 1, · · · , J ,

Kj := lim sup
ν↓0

∥∥∥∥∥λj

ων

∥∥∥∥∥ √
Rj(ν) (3.26)

is finite. Then

n ≤ α2

 J∑
j=1

Kj

2

< ∞. (3.27)

Remark 3.1 Suppose that {λ1, · · · , λJ , ω} obeys the infrared singularity condition (1.7).
Then limν↓0 ‖λj/ων‖ = +∞, j = 1, · · · , J . But it is possible for the assumption of
Corollary 3.5 to hold if

lim
ν↓0

Rj(ν) = 0, j = 1, · · · , J.

We can estimate Rj(ν) from above. For a vector v = (vj)
J
j=1 ∈ RJ and f = (fj)

J
j=1 ∈

⊕JL2(Rd), we define

C(v, f) :=
J∑

j=1

v2
j‖f‖2

L2(Rd). (3.28)

We set
a := (aj)

J
j=1, b := (bj)

J
j=1. (3.29)
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Proposition 3.6 For all ν ∈ (0, ν0) and j = 1, · · · , J ,

Rj(ν) ≤
a2

j [E0(ν) − E0(A) + α2C(b, λ/
√

ω)]

1 − α2C(a, λ/
√

ω)
+ b2

j . (3.30)

In partiular,

sup
ν∈(0,ν0)

Rj(ν) ≤
a2

j [E0(ν0) − E0(A) + α2C(b, λ/
√

ω)]

1 − α2C(a, λ/
√

ω)
+ b2

j < ∞. (3.31)

Remark 3.2 (i) Condition (2.4) implies that

α2C(a, λ/
√

ω) < 1, (3.32)

see (2.18). (ii) If H has a ground state Ψ0 and we define Rj(0) := ‖Bj ⊗ IΨ0‖2, then
(3.30) with ν = 0 holds, see the proof below.

Proof. By (2.6), we have

Rj(ν) ≤ a2
j‖Ã1/2 ⊗ IΨ0(ν)‖2 + b2

j .

On the other hand, we have

‖Ã1/2 ⊗ IΨ0(ν)‖2 = 〈(H(ν) − I ⊗ dΓ(ω̂ν) − αHI)〉ν − E0(A)

= E0(ν) − E0(A) + 〈A ⊗ I〉ν − νn(ν) − 〈H〉ν
≤ E0(ν) − E0(A) + 〈A ⊗ I〉ν − 〈H〉ν .

It follows from the proof of Proposition 2.3 that

〈H〉ν ≥ qL⊗I(Ψ0(ν), Ψ0(ν)).

Hence
‖Ã1/2 ⊗ IΨ0(ν)‖2 ≤ E0(ν) − E0(A) + α2R,

where R :=
∑J

j=1 ‖λj‖2
−1Rj(ν). Thus

Rj(ν) ≤ a2
j(E0(ν) − E0(A) + α2R) + b2

j . (3.33)

Multiplying ‖λj‖2
−1 to the both sides and taking the summation in j, we obtain

R ≤ C(a, λ/
√

ω)(E0(ν) − E0(A)) + C(b, λ/
√

ω)

1 − α2C(a, λ/
√

ω)
.

Putting this into (3.33), we obtain (3.30).
Estimate (3.31) follows from (3.30) and the monotone nondecreasing property of E0(ν)

in m [Proposition 3.2(i)].
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Corollary 3.7 Suppose that λj/ω ∈ L2(Rd), j = 1, · · · , J . Then

n ≤ α2

 J∑
j=1

‖λj/ω‖L2(Rd)

√√√√a2
j [E0(0) − E0(A) + α2C(b, λ/

√
ω)]

1 − α2C(a, λ/
√

ω)
+ b2

j

2

. (3.34)

Proof. This follows from Corollary 3.5, Proposition 3.6 and the easily proven fact that
‖λj/ων‖L2(Rd) → ‖λj/ω‖L2(Rd) as ν → 0.

3.5 Infrared divergence

In concluding this section we give a sufficient condition for n = n = +∞ (infrared diver-
gence in the mean boson number).

Theorem 3.8 Let {λ1, · · · , λJ , ω} obey the infrared singularity condition (1.7). Suppose
that there exists a function g on the set SK := {k ∈ Rd|ω(k) ≤ K} (K > 0 is a constant)
such that, for a.e. k ∈ SK, λj(k) = g(k), j = 1, · · · , J . Moreover, suppose that

lim inf
ν→0

∣∣∣∣∣∣
〈

J∑
j=1

Bj ⊗ I

〉
ν

∣∣∣∣∣∣ > 0. (3.35)

Then
lim
ν→0

n(ν) = +∞. (3.36)

Proof. Using the identity

(H(ν)Ψ0(ν), I ⊗ a(f)Ψ0(ν)) − (I ⊗ a(f)∗Ψ0(ν), H(ν)Ψ0(ν)) = 0, f ∈ L2(Rd),

and commutation relations, we can show that, for all f ∈ L2(Rd),

〈I ⊗ a(f)〉ν = −
J∑

j=1

α

(
f,

λj

ων

)
L2(Rd)

〈Bj ⊗ I〉ν .

Hence ∣∣∣∣∣∣
J∑

j=1

α

(
f,

λj

ων

)
L2(Rd)

〈Bj ⊗ I〉ν

∣∣∣∣∣∣ ≤ ‖I ⊗ a(f)Ψ0(ν)‖

≤ ‖f‖L2(Rd)‖I ⊗ N
1/2
b Ψ0(ν)‖

= ‖f‖L2(Rd)

√
n(ν).

Taking f = gχSK
/ων and putting

Cν :=
∫

SK

|g(k)|2

ων(k)2
dk,
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we obtain

|α|
√

Cν

∣∣∣∣∣∣
〈

J∑
j=1

Bj ⊗ I

〉
ν

∣∣∣∣∣∣ ≤
√

n(ν).

By (1.7), Cν → +∞ as ν → 0. Thus (3.36) follows.

4 Existence of Ground States of H

Throughout this section, we assume (H.1)–(H.3). Our aim here is to give a sufficient
condition, in terms of quantities defined from the regularized theory, for existence of
ground states of H.

4.1 Existence theorem

Definition 4.1 We denote by GΨ0 the set of all non-zero vectors Ψ ∈ F such that, for a
sequence {νj}∞j=1 ⊂ (0, ν0) satisfying νj ↓ 0 as j → ∞,

w- lim
j→∞

Ψ0(νj) = Ψ, (4.1)

where w- lim means weak limit.

Lemma 4.2 Suppose that GΨ0 6= ∅. Then:

(i) Every vector in GΨ0 is a ground state of H.

(ii) If n < ∞, then GΨ0 ⊂ D(I ⊗ N
1/2
b ) and, for all Ψ ∈ GΨ0

‖I ⊗ N
1/2
b Ψ‖2 ≤ n. (4.2)

Proof. (i) Since we have Proposition 3.1(i) and (3.12), we can apply [15, Lemma 4.9]
to obtain the desired result.

(ii) Let Ψ ∈ GΨ0 such that (4.1) holds and Fn := H⊗
(
⊗n

s L
2(Rd)

)
so that F = ⊕∞

n=0Fn.
Then, for all N ∈ N, we have

N∑
n=1

n‖Ψ0(νj)
(n)‖2

Fn
≤ n(νj).

Let {Φ(n)
` }∞`=1 be a complete orthonormal system of Fn. By the Parseval equality, we have

for all M ∈ N
N∑

n=1

M∑
`=1

n
∣∣∣(Ψ0(νj)

(n), Φ
(n)
` )Fn

∣∣∣2 ≤ n(νj). (4.3)
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By (4.1), limj→∞(Ψ0(νj)
(n), Φ

(n)
` )Fn = (Ψ(n), Φ

(n)
` )Fn . Hence, taking j → ∞ in(4.3) first

and then M → ∞, we obtain

N∑
n=1

∞∑
`=1

n
∣∣∣(Ψ(n), Φ

(n)
` )Fn

∣∣∣2 ≤ n,

i.e., for all N ∈ N,
N∑

n=1

n‖Ψ(n)‖2 ≤ n,

which implies that Ψ ∈ D(I ⊗ N
1/2
b ) and (4.2) holds.

Let

H
(−)
I :=

J∑
j=1

B∗
j ⊗ a(λj). (4.4)

and

W (ν) :=
∥∥∥H(−)

I Ψ0(ν)
∥∥∥2

=
J∑

j,`=1

(
B∗

j ⊗ a(λj)Ψ0(ν), B∗
` ⊗ a(λ`)Ψ0(ν)

)
. (4.5)

We define
W := lim sup

ν↓0
W (ν). (4.6)

Let σess(A) be the essential spectrum of A and set

Σ := inf σess(A), (4.7)

provided that σess(A) 6= ∅. We assume the following:

(H.4) Σ > E0(A).

This assumption is only for the case where σess(A) 6= ∅. Under (H.4), E0(A) belongs
to the discrete spectrum of A, so that it is an eigenvalue of A with finite multiplicity.

Theorem 4.3 Assume (H.1)–(H.3).

(i) Let σess(A) 6= ∅ and (H.4) be satisfied. Suppose that

n +
α2W

(Σ − E0(0))2
< 1. (4.8)

Then GΨ0 6= ∅, GΨ0 ⊂ D(I ⊗ N
1/2
b ) and every vector in GΨ0 is a ground state of H.

(ii) Let σess(A) = ∅. Suppose that
n < 1. (4.9)

Then GΨ0 6= ∅, GΨ0 ⊂ D(I ⊗ N
1/2
b ) and every vector Ψ in GΨ0 is a ground state of

H.
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Remark 4.1 Since

n(ν) =
E0(ν) − 〈H〉ν

ν
, ν > 0, (4.10)

(cf. (A.14) in Appendix A), we have

n = lim sup
ν→0

E0(ν) − 〈H〉ν
ν

. (4.11)

Hence, conditions (4.8) and (4.9) can be rewritten in terms of energy expectation values
(together with the correlation function W (ν) in the case σess(A) 6= ∅).

The following corollary gives sufficient conditions, in terms of E0(0) and the right
differential E ′

0(0+) of E0(ν) at ν = 0, for H to have a ground state.

Corollary 4.4 Assume (H.1)–(H.3).

(i) Let σess(A) 6= ∅ and (H.4) be satisfied. Suppose that E0(ν) has the right differential
E ′

0(0+) at ν = 0 as a function of ν and

E ′
0(0+) +

α2W

(Σ − E0(0))2
< 1. (4.12)

Then GΨ0 6= ∅, GΨ0 ⊂ D(I ⊗ N
1/2
b ) and every vector in GΨ0 is a ground state of H.

(ii) Let σess(A) = ∅. Suppose that E0(ν) has the right differential E ′
0(0+) at ν = 0 as a

function of ν and
E ′

0(0+) < 1. (4.13)

Then GΨ0 6= ∅, GΨ0 ⊂ D(I ⊗ N
1/2
b ) and every vector in GΨ0 is a ground state of H.

To prove Theorem 4.3, we need a lemma. Let PA be the spectral measure of A and,
for r > E0(A), Qr be the orthogonal projection from H onto the range of PA([E0(A), r)),
where in the case σess(A) 6= ∅, we impose the condition r < Σ too. Then Qr is finite rank.
We define

Q⊥
r := I − Qr.

We denote by PΩ the orthogonal projection from Fb onto the one-dimensional subspace
{cΩ | c ∈ C} generated by the Fock vacuum Ω in Fb.

Lemma 4.5 For all ν ∈ (0, ν0),

〈
Q⊥

r ⊗ PΩ

〉
ν
≤ α2W (ν)

(r − E0(ν))2
. (4.14)

Remark 4.2 We have by (3.10) r > E0(A) ≥ E0(ν), so that r > E0(ν).
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Proof. Since dΓ(ω̂ν)Ω = 0, a(f)Ω = 0 (f ∈ L2(Rd)), and PΩψ = (Ω , ψ)Fb
Ω (ψ ∈ Fb),

we have I ⊗ PΩH(ν) = A ⊗ PΩ + αI ⊗ PΩH
(−)
I on D(H(ν)), so that

Q⊥
r ⊗ PΩH(ν) = Q⊥

r A ⊗ PΩ + αQ⊥
r ⊗ PΩH

(−)
I

on D (H(ν)). Noting that Q⊥
r AQ⊥

r ≥ r, we can show, in the same way as in the proof of
[15, Lemma 4.7], that

〈
Q⊥

r ⊗ PΩ

〉
ν
≤ |α|

r − E0(ν)
‖Q⊥

r ⊗ PΩΨ0(ν)‖‖H(−)
I Ψ0(ν)‖,

which implies (4.14).

Proof of Theorem 4.3

Let Ψ ∈ GΨ0 . Then, for a sequence {νj}∞j=1 ⊂ (0, ν0) satisfying νj ↓ 0 as j → ∞, (4.1)
holds.

By [15, Lemma 4.6],

Qr ⊗ PΩ ≥ I − I ⊗ Nb − Q⊥
r ⊗ PΩ,

which implies that

〈Qr ⊗ PΩ〉ν ≥ 1 − n(ν) −
〈
Q⊥

r ⊗ PΩ

〉
ν
.

Hence, by Lemma 4.5, we obtain

〈Qr ⊗ PΩ〉ν ≥ 1 − n(ν) − α2W (ν)

(r − E0(ν))2
.

We first consider the case where dimH = ∞. Since Qr⊗PΩ is a finite-rank orthogonal
projection, it follows that

lim
j→∞

〈Qr ⊗ PΩ〉νj
= (Ψ, Qr ⊗ PΩΨ).

Hence

(Ψ, Qr ⊗ PΩΨ) ≥ 1 − n − α2W

(r − E0(0))2
, (4.15)

where we have used that
lim

ν→∞
E0(ν) = E0(0)

[see Proposition 3.2(iii)].
If σess(A) 6= ∅, then

lim inf
r→Σ

(Ψ, Qr ⊗ PΩΨ) ≥ 1 − n − α2W

(Σ − E0(0))2
.
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Under condition (4.8), the right hand side is positive. Hence Ψ 6= 0. Now we can apply
[15, Lemma 4.9] to conclude that Ψ is a ground state of H.

If σess(A) = ∅ or dimH < ∞, then Q(r) → I as r → ∞. Hence, taking r → ∞ in
(4.15), we have

(Ψ, I ⊗ PΩΨ) ≥ 1 − n. (4.16)

Thus, under condition (4.9), Ψ 6= 0. Hence GΨ0 6= ∅ and Lemma 4.2 completes the proof.

Proof of Corollary 4.4

We need only combine Theorem 4.3 and Proposition 3.3(iv).

4.2 Upper bound for W (ν)

Let
U (a,b)

ν := {(ε, ε′) ∈ (0,∞) × (0,∞)| |α|F (a,b)
ε,ε′ (λ, ων) < 1}, ν ≥ 0, (4.17)

and, for η > 0 and (ε, ε′) ∈ U (a,b)
ν ,

hη,ε,ε′(ν) :=
(Ma(λ/

√
ων) +

√
2Jη)(|E0(ν)| + |E0(A)| + |α|G(a,b)

ε,ε′ (λ, ων))√
2(1 − |α|F (a,b)

ε,ε′ (λ, ων))

+
C(b, λ/

√
ων)

4η
. (4.18)

Let
h(ν) := inf

η>0,(ε,ε′)∈U
(a,b)
ν

hη,ε,ε′(ν). (4.19)

Proposition 4.6 We have
W (ν) ≤ h(ν)2. (4.20)

In particular,
W ≤ h(0). (4.21)

Proof. Let Ψ ∈ D(H0). Then, by (2.6),

‖B∗
j ⊗ a(λj)Ψ‖ ≤ aj‖Ã1/2 ⊗ a(λj)Ψ‖ + bj‖I ⊗ a(λj)Ψ‖.

Using the well known basic estimates

‖a(f)ψ‖ ≤ ‖f‖−1‖dΓ(ω)1/2ψ‖, (4.22)

‖a(f)∗ψ‖2 ≤ ‖f‖2
−1‖dΓ(ω)1/2ψ‖2 + ‖f‖2‖ψ‖2,

ψ ∈ D(dΓ(ω)1/2), f ∈ M0 ∩M−1, (4.23)
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we have

‖Ã1/2 ⊗ a(λj)Ψ‖ ≤ ‖λj‖−1‖(Ã1/2 ⊗ I)(I ⊗ dΓ(ω)1/2)Ψ‖

≤ 1√
2
‖λj‖−1‖H̃0Ψ‖

and

bj‖I ⊗ a(λj)Ψ‖ ≤ bj‖λj‖−1‖H̃1/2
0 Ψ‖

≤ bj‖λj‖−1‖Ψ‖1/2‖H̃0Ψ‖1/2

≤ η ‖H̃0Ψ‖ +
b2
j

4η
‖λj‖2

−1‖Ψ‖,

where η is an abitrary positive constant. Hence

‖B∗
j ⊗ a(λj)Ψ‖ ≤

(
aj√
2
‖λj‖−1 + η

)
‖H̃0Ψ‖ +

b2
j

4η
‖λj‖2

−1‖Ψ‖,

which gives

‖H(−)
I Ψ‖ ≤

(
Ma(λ/

√
ω)√

2
+ Jη

)
‖H̃0Ψ‖ +

C(b, λ/
√

ω)

4η
‖Ψ‖.

On the other hand, by (2.16), we have

‖H̃0Ψ‖ = ‖(H − αHI − E0(A))Ψ‖
≤ ‖HΨ‖ + |α|‖HIΨ‖ + |E0(A)|‖Ψ‖
≤ ‖HΨ‖ + |α|F (a,b)

ε,ε′ (λ, ω)‖H̃0Ψ‖ + |α|G(a,b)
ε,ε′ (λ, ω)‖Ψ‖ + |E0(A)|‖Ψ‖.

Hence

‖H̃0Ψ‖ ≤ 1

1 − |α|F (a,b)
ε,ε′ (λ, ω)

(
‖HΨ‖ + |α|G(a,b)

ε,ε′ (λ, ω)‖Ψ‖ + |E0(A)|‖Ψ‖
)
, (4.24)

where (ε, ε′) ∈ U
(a,b)
0 . In particular, taking (ε, ε′) ∈ U (a,b)

ν , we have

‖H̃0Ψ0(ν)‖ ≤ 1

1 − |α|F (a,b)
ε,ε′ (λ, ων)

(
|E0(ν)| + |α|G(a,b)

ε,ε′ (λ, ων) + |E0(A)|
)
. (4.25)

Hence we obtain
W (ν)1/2 = ‖H(−)

I Ψ0(ν)‖ ≤ hη,ε,ε′(ν)

Thus the desired result follows.

Remark 4.3 Estimate (4.20) holds also in the case ν = 0 if H has a ground state Ψ0(0)

and we set W (0) := ‖H(−)
I Ψ0(0)‖2.
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5 Existence of Ground States in the Regularized The-

ory

In this section we establish an existence theorem of ground states of the H with µ > 0.
Since ess.infk∈Rdων(k) ≥ ν with ν > 0, the case of H(ν) is included in the case we are
going to treat.

5.1 Preliminary results

We denote by PA the spectral measure of A as before. In the case where σess(A) 6= ∅,
assuming (H.4) and fixing a parameter s with condition

0 < s < Σ − E0(A), (5.1)

we set
P := PA([E0(A), Σ − s]),

while, in the case σess(A) = ∅, we set P = I. Then P is an orthogonal projection. We set

Q := I − P,

so that
QP = PQ = 0. (5.2)

Let
P̂ := P ⊗ I, Q̂ := Q ⊗ I,

acting on F . The Hilbert space F is decomposed as

F = FP ⊕FQ (5.3)

with

FP := Ran(P̂ ) = Ran(P ) ⊗Fb

FQ := Ran(Q̂) = Ran(Q) ⊗Fb.

We first consider the operator

H1 := H0 + αHI,P , (5.4)

where

HI,P :=
J∑

j=1

(
(PBjP + QBjQ) ⊗ a(λj)

∗ + (PB∗
j P + QB∗

j Q) ⊗ a(λj)
)
. (5.5)
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Lemma 5.1 Assume (H.1) and (H.2). Then D(H0) ⊂ D(HI,P ), H1 is self-adjoint on
D(H1) = D(H0) and bounded from below. Moreover, H1 is essentially self-adjoint on
every core of H0.

Proof. Putting

B̃j := PBjP + QBjQ, B̃†
j := PB∗

j P + QB∗
j Q,

we have

HI,P =
J∑

j=1

(
B̃j ⊗ a(λj)

∗ + B̃†
j ⊗ a(λj)

)
.

It is easy to see that, for all u ∈ D(Ã1/2),∥∥∥∥∥∥(B̃†
j ± B̃j)√

2
u

∥∥∥∥∥∥
2

≤ a2
j,±‖Ã1/2u‖2 + b2

j,±‖u‖2, j = 1, · · · , J. (5.6)

Hence, in the same way as in the proof of Proposition 2.1, we can show that

‖HI,P Ψ‖ ≤ F
(a,b)
ε,ε′ (λ, ω)‖H̃0Ψ‖ + G

(a,b)
ε,ε′ (λ, ω)‖Ψ‖, Ψ ∈ D(H0). (5.7)

Thus the Kato-Rellich theorem gives the desired result.

We want to establish the existence of a ground state of H1. For this purpose, we
assume the following.

(H.5) The function ω(k) is continuous with

lim
|k|→∞

ω(k) = ∞ (5.8)

and there exist constant γ > 0 and C > 0 such that

|ω(k) − ω(k′)| ≤ C|k − k′|γ (1 + ω (k) + ω (k′)) , k, k′ ∈ Rd. (5.9)

For f = (fj)
J
j=1 ∈ ⊕JL2(Rd), we define

SA(f) := Σ − α2C(a, f)[Σ − E0(A)] − α2C(b, f), (5.10)

where C(·, f) is defined by (3.28).

Theorem 5.2 Consider the case σess(A) 6= ∅ and assume (H.1), (H.2), (H.4), (H.5) and
µ > 0. Suppose that

SA(λ/
√

ω) > E0(H1), (5.11)

so that
M0 := min{µ, SA(λ/

√
ω) − E0(H1)} > 0. (5.12)

Then H1 has purely discrete spectrum in the interval [E0(H1), E0(H1) + M0).
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Remark 5.1 In the same way as in the case of H, we can show that

E0(H1) ≤ E0(A), (5.13)

cf. (2.27). Hence, if

Σ − E0(A) >
α2C(b, λ/

√
ω)

1 − α2C(a, λ/
√

ω)
,

then (5.11) holds [note (3.32)].

Remark 5.2 In the case σess(A) = ∅ , under the assumptions (H.1), (H.2) and (H.5),
the conclusion of Theorem 5.2 holds with M0 = µ. This is just [15, Theorem 1.2]. In the
cited theorem, the continuity of λj is also assumed. However this is not needed in fact,
because H1P is approximated by H1P with λj continuous in norm-resolvent sense.

To prove this theorem, we need lemmas: Let

H1P := PHP |FP , H1Q := QHQ|FQ. (5.14)

Then we have
H1 = H1P ⊕ H1Q. (5.15)

We define
SA,s(f) := Σ − s − α2C(a, f)(Σ − s − E0(A)) − α2C(b, f). (5.16)

Lemma 5.3 Assume (H.1) and (H.2). Suppose that σess(A) 6= ∅. Then

H1Q ≥ SA,s(λ/
√

ω). (5.17)

Proof. In the same way as in the proof of Proposition 2.3, we have

H1Q ≥ (QAQ) ⊗ I −
J∑

j=1

α2

∥∥∥∥∥ λj√
ω

∥∥∥∥∥
2

L2(Rd)

(QB∗
j BjQ) ⊗ I

≥ (QAQ) ⊗ I − α2C(a, λ/
√

ω)(QÃQ) ⊗ I

−α2C(b, λ/
√

ω)

≥ (1 − α2C(a, λ/
√

ω))Q(A ⊗ I)Q

+α2C(a, λ/
√

ω)E0(A) − α2C(b, λ/
√

ω)

≥ (1 − α2C(a, λ/
√

ω))(Σ − s) + α2C(a, λ/
√

ω)E0(A)

−α2C(b, λ/
√

ω)

in the sense of quadratic form, where we have used (3.32). Hence (5.17) follows.

Lemma 5.4 Under the same assumption as in Theorem 5.2, H1P has purely discrete
spectrum in the interval [E0(H1P ), E0(H1P ) + µ).

Proof. Note that dim Ran(P ) < ∞. Hecne A|Ran(P ) has purely discrete spectrum
consisting of a finite number of eigenvalues. Hence, in quite the same way as in the proof
of [15, Theorem 1.2], we can prove the present lemma (cf. Remark 5.2).
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Proof of Theorem 5.2

By (5.15), we have σ(H1) = σ(H1P ) ∪ σ(H1Q). Hence Lemmas 5.3 and 5.4 imply that
E0(H1P ) = E0(H1) and that H1 has purely discrete spectrum in

[E0(H1), E0(H1) + min{µ, SA,s(λ/
√

ω) − E0(H1)}).

Since s is arbitrary with (5.1), we obtain the desired result.

5.2 Main result

As for existence of ground states of H, we need the following additional assumption.

(H.6) There exist constants cj,± and dj,± (j = 1, · · · , J) such that, for all u ∈ D(Ã1/2),∥∥∥∥∥Q(B∗
j ± Bj)P√

2
u

∥∥∥∥∥
2

+

∥∥∥∥∥P (B∗
j ± Bj)Q√

2
u

∥∥∥∥∥
2

≤ c2
j,±‖Ã1/2u‖2 + d2

j,±‖u‖2,

j = 1, · · · , J, (5.18)

and

|α|
J∑

j=1

(cj,+ + cj,−)‖λj‖−1 < 1. (5.19)

Remark 5.3 This assumption is non-trivial only in the case σess(A) 6= ∅, because, if
σess(A) = ∅, then Q = 0 so that (5.18) and (5.19) trivially hold with cj,± = dj,± = 0.

Remark 5.4 The constants cj,± and dj,± may be small. For example, If each Bj is
bounded, then we can take

cj,± = 0, dj,± =
1

2

(
‖[Q,B∗

j ± Bj]P‖2 + ‖[P,B∗
j ± Bj]Q‖2

)
,

where [X,Y ] := XY − Y X. The quantities ‖[Q,B∗
j ± Bj]P‖2 + ‖[P,B∗

j ± Bj]Q‖2 may be
small (an extreme case is given by the one where [Q,B∗

j ±Bj]P = 0 and [P,B∗
j ±Bj]Q = 0).

Let
v(c) := (cj,+ + cj,−)J

j=1, v(d) := (dj,+ + dj,−)J
j=1 ∈ RJ (5.20)

and, for f = (fj)
J
j=1 ∈ ⊕JL2(Rd),

Cε,ε′(f, ω) :=
|α|F (c,d)

ε,ε′ (f, ω)

1 − |α|F (a,b)
ε,ε′ (f, ω)

, (5.21)

Dε,ε′(f, ω) := Cε,ε′(f, ω)(|α|G(a,b)
ε,ε′ (f, ω) + |E0(A)|) + |α|G(c,d)

ε,ε′ (f, ω). (5.22)
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where (ε, ε′) ∈ U
(a,b)
0 .

Let
E1(H1) := inf σ(H1) ∩ (E0(H1),∞) (5.23)

and

r0 :=
E1(H1) + E0(H1)

2
− E0(H). (5.24)

It follows from (5.15) that
E0(H1) ≥ E0(H). (5.25)

Hence

r0 >
E1(H1) − E0(H1)

2
> 0. (5.26)

Theorem 5.5 Let σess(A) 6= ∅. Assume (H.1), (H.2), (H.4), (H.5), (H.6) and µ > 0.
Suppose that

inf
(ε,ε′)∈U

(a,b)
0 ∩U

(c,d)
0

{
Cε,ε′(λ, ω) +

2[Dε,ε′(λ, ω) + Cε,ε′(λ, ω)(r0 + |E0(H)|)]
E1(H1) − E0(H1)

}

<
E1(H1) − E0(H1)

E1(H1) − E0(H1) + 2
. (5.27)

Then H has purely discrete spectrum in [E0(H), E0(H)+r0). In particular, H has a ground
state.

Proof. We can write as
H = H1 + H2

with

H2 = α
J∑

j=1

(
(PBjQ + QBjP ) ⊗ a(λj)

∗ + (PB∗
j Q + QB∗

j P ) ⊗ a(λj)
)
.

In the same way as in Proposition 2.1, using (H.6), we can show that, for all Ψ ∈ D(H0),

‖H2Ψ‖ ≤ |α|F (c,d)
ε,ε′ (λ, ω)‖H̃0Ψ‖ + |α|G(c,d)

ε,ε′ (λ, ω)‖Ψ‖.

On the other hand, we have [cf. (4.24)]

‖H̃0Ψ‖ ≤ 1

1 − |α|F (a,b)
ε,ε′ (λ, ω)

(‖H1Ψ‖ + |α|G(a,b)
ε,ε′ (λ, ω)‖Ψ‖ + |E0(A)|‖Ψ‖)

for all Ψ ∈ D(H0). Hence

‖H2Ψ‖ ≤ Cε,ε′(λ, ω)‖H1Ψ‖ + Dε,ε′(λ, ω)‖Ψ‖.

Thus applying Corollary B.2 in Appendix B, we obtain the desired result.
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5.3 Existence of a ground state in the case µ = 0 with infrared
regularity condition

Theorem 5.6 Consider the case where σess(A) 6= ∅ and µ = 0, but, λj/ω ∈ L2(Rd), j =
1, · · · , J . Assume (H.1), (H.2), (H.4), (H.5) and (H.6). Moreover, suppose that

α2
( J∑

j=1

‖λj/ω‖L2(Rd)

√√√√a2
j [E0(0) − E0(A) + α2C(b, λ/

√
ω)]

1 − α2C(a, λ/
√

ω)
+ b2

j

)2

+
α2h(0)

(Σ − E0(0))2
< 1. (5.28)

Then H has a ground state.

Proof. This follows from Theorem 4.3(i), Proposition 4.6 and Corollary 3.7.

6 Examples

In this section we discuss some simple examples in each of which one can explicitly see a
correspondence between existence (or absence) of ground states and the right differentia-
bility of the ground-state energy E0(ν) of the regularized model at ν = 0 (cf. Corollary
4.4).

6.1 The van Hove Model

Let H = C, J = 1, A = 0, B1 = 1/
√

2, and λj = λ. Then the Hamiltonian H defined by
(1.4) takes the form

HVH = dΓ(ω̂) + αφ(λ) (6.1)

with condition

λ,
λ√
ω

∈ L2(Rν). (6.2)

This gives the so-called van Hove model (e.g.,[25, Chapter 1, §e] and references therein).
We denote by E0,VH the ground-state energy of HVH.

Theorem 6.1 (i)

E0,VH = −1

2
α2

∥∥∥∥∥ λ√
ω

∥∥∥∥∥
2

L2(Rd)

. (6.3)

(ii) Let µ > 0. Then HVH has a unique ground state (up to constant multiples) given by

ΩVH := eiαφ(iλ/ω)Ω. (6.4)
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Moreover,

(ΩVH, NbΩVH) =
1

2
α2

∥∥∥∥∥λ

ω

∥∥∥∥∥
2

L2(Rd)

. (6.5)

(iii) Let µ = 0. Then HVH has a ground state if and only if λ/ω ∈ L2(Rd). In that
case the ground state is unique up to constant multiples and given by ΩVH and (6.5)
holds.

Proof. (i) It is well known (or easy to see) that (6.3) holds if µ > 0 ([25, Chapter 1,
§e] and references therein). Then, applying Proposition 3.2(iii), we obtain (6.3) also in
the case µ = 0.

(ii) This also is well known ([25, Chapter 1, §e] and references therein).
(iii) See [16, Remark 3.6].

Theorem 6.1(iii) can be rephrased as follows:

Corollary 6.2 Consider the case µ = 0. Then HVH has no ground states if and only if
the infrared singularity condition (1.7) with λj = λ is satisfied.

We denote by E0,VH(ν) the ground-state energy of the regularized Hamiltonian

HVH(ν) := dΓ(ω̂ν) + αφ(λ), ν ≥ 0. (6.6)

Applying Theorem 6.1(i) with ω replaced by ων , we have

E0,VH(ν) = −1

2
α2

∥∥∥∥∥ λ
√

ων

∥∥∥∥∥
2

L2(Rd)

, ν ≥ 0.

Using this expression, one can easily prove the following fact:

Proposition 6.3 (i) The function E0,VH(ν) is differentiable on (0,∞) with

E ′
0,VH(ν) =

1

2
α2

∥∥∥∥∥ λ

ων

∥∥∥∥∥
2

L2(Rd)

, ν > 0.

(ii) The function E0,VH(ν) is right differentiable at ν = 0 if and only if λ/ω ∈ L2(Rd).
In that case,

E ′
0,VH(0+) = lim

ν→0
E ′

0,VH(ν) =
1

2
α2

∥∥∥∥∥λ

ω

∥∥∥∥∥
2

L2(Rd)

.
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By Theorem 6.1(iii) and Proposition 6.3(ii), we see that, in the case µ = 0, HVH

has a ground state if and only if E0,VH(ν) is right differentiable at ν = 0. Thus, in this
example, the existence of ground states of HVH without low-energy cutoff can be completely
characterized in terms of the right differentiability of E0,VH(ν) at ν = 0.

Let ΩVH(ν) be the vector ΩVH with ω replaced by ων , i.e., a ground state of HVH(ν)
and

n
VH

(ν) := (ΩVH(ν), NbΩVH(ν)), ν > 0.

Then, by (6.5), we have

n
VH

(ν) =
1

2
α2

∥∥∥∥∥ λ

ων

∥∥∥∥∥
2

L2(Rd)

.

Consider the case µ = 0. Then
n̄

VH
:= lim

ν→0
n

VH
(ν)

exists and finite if and only if λ/ω ∈ L2(Rd). Thus, in this example, the existence of ground
states of HVH without low-energy cutoff can be completely characterized also in terms of
the existence of n̄

VH
. Note that, if λ/ω 6∈ L2(Rd) (infrared singularity condition), then

n̄
VH

= +∞.

6.2 A quantum harmonic oscillator coupled to a Bose field

We consider the case where
H = Fb(C) = ⊕∞

n=0C,

the Boson Fock space over the one-dimensional Hilbert space C, and J = 1. We denote by
b(z) the annihilation operator on Fb(C) with test vector z ∈ C so that, for all z, w ∈ C,

[b(z), b(w)∗] = z∗w, [b(z), b(w)] = 0 = [b(z)∗, b(w)∗],

on the subspace of finite particle vectors in Fb(C). We set

b := b(1).

Let µ0 ∈ R and take A and B1 as

A = µ0b
∗b, B1 = b.

Then the Hamiltonian H defined by (1.4) takes the form

HRWA = µ0b
∗b ⊗ I + I ⊗ dΓ(ω̂) + α (b ⊗ a(λ)∗ + b∗ ⊗ a(λ)) (6.7)

acting in the Hilbert space
FRWA := Fb(C) ⊗Fb,

where we assume (6.2). This model is called the rotating-wave-approximation (RWA)
oscillator. A detailed analysis for this model with µ0 > 0 is given in [7](cf. also [19] for a
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recent development). Here we do not restrict ourselves to the case µ0 > 0, although the
model with µ0 ≤ 0 does not belong to the class of the GSB model. Also we present a
method different from that in [7].

We first note that FRWA is identified in a natural way with the Boson Fock space
Fb(W) over the Hilbert space

W := C ⊕ L2(Rd), (6.8)

i.e.,
FRWA = Fb(W). (6.9)

The unitary correspondence which gives this identification is as follows:

e0 ⊗ Ω ←→ ΩW ,

b ⊗ I ←→ a(〈1, 0〉)
I ⊗ a(f) ←→ a(〈0, f〉), f ∈ L2(Rd),

where e0 (resp. ΩW) is the Fock vacuum in Fb(C) (resp.Fb(W)) and a(〈z, f〉) (〈z, f〉 ∈ W)
is the annihilation operator on Fb(W)) with test vector 〈z, f〉. In what follows we use
this identification freely. We also use a simpler notation a(z, f) for a(〈z, f〉).

Let

h0 :=

(
µ0 0
0 ω̂

)
, h1 :=

(
0 (λ, · )L2(Rd)

λ 0

)
(6.10)

acting on W and define
h := h0 + αh1. (6.11)

It is obvious that h0 is self-adjoint with D(h0) = C⊕D(ω̂) and bounded from below with

h0 ≥ min{µ0, µ}.

It is easy to see that h1 is a bounded self-adjoint operator with

‖h1‖ ≤ ‖λ‖L2(Rd).

Hence h is self-adjoint with D(h) = D(h0) and bounded from below.

Remark 6.1 The operator h is the Hamiltonian of a model of Friedrichs’s type [26] (cf.
also [37] and references therein for recent developments).

The long-time behavior of the matrix element (ψ0, e
−ithψ0) with ψ0 := (1, 0) as t → ∞

is analyzed in [38] in the case ω(k) = |k|.

We introduce a subspace

Ffin(h) := L{a(z1, f1)
∗ · · · a(zn, fn)∗ΩW |n ≥ 0, zj ∈ C, fj ∈ D(ω̂)}. (6.12)

Under the identification (6.9), we have

Ffin(h) = L{b∗me0 ⊗ a(f1)
∗ · · · a(fn)∗Ω|m,n ≥ 0, fj ∈ D(ω̂)}. (6.13)

We denote by dΓ(h) the second quantization of h. A key fact is the following.
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Lemma 6.4 Under the identification (6.9),

HRWA = dΓ(h). (6.14)

In particular, HRWA is essentially self-adjoint on Ffin(h).

Proof. One first shows by direct computation that, for all Ψ ∈ Ffin(h), HRWAΨ =
dΓ(h)Ψ. Since Ffin(h) is a core of dΓ(h), (6.14) follows as well as the essential self-
adjointness of HRWA on Ffin(h).

Remark 6.2 In Lemma 6.4, we do not assume that µ0 > 0, ωλ ∈ L2(Rd) (in fact, we
do not need the condition λ/

√
ω ∈ L2(Rd) either as is seen). This improves a result on

the essential self-adjointness of HRWA established in [7, Proposition 2.1].

By Lemma 6.4, the spectral analysis of HRWA is reduced to that of h. To analyze
spectral properties of h, we introduce a function

D(z) := −z + µ0 + α2
∫
Rd

|λ(k)|2

z − ω(k)
dk (6.15)

defined for all z ∈ C such that |λ(k)|2/|z − ω(k)| is Lebesgue integrable on Rd. In
particular, D(z) is defined in the cut plane

Cµ := C \ [µ,∞) (6.16)

and analytic there. It is easy to see that D(x) is monotone decreasing in x < µ. Hence
the limit

dµ := lim
x↑µ

D(x) = −µ + µ0 − lim
ε↓0

α2
∫
Rd

|λ(k)|2

ω(k) − µ + ε
dk (6.17)

exists, being allowed to be −∞.

Lemma 6.5 (i) If dµ ≥ 0, then D(z) has no zeros in Cµ.

(ii) If dµ < 0, then D(z) has a unique simple zero x0 ∈ (−∞, µ). In particular, if µ > 0
and µ0 ≥ α2‖λ/

√
ω‖2

L2(Rd), then 0 ≤ x0 < µ; if µ0 < α2‖λ/
√

ω‖2
L2(Rd), then x0 < 0.

Proof. An easy exercise (cf. [7, Lemma 3.1]).

For a self-adjoint operator T , we denote by σess(T ) its essential spectrum.

Lemma 6.6 Suppose that ω is continuous on Rd. Then

{ω(k)|k ∈ Rd} ⊂ σess(h). (6.18)
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Proof. Let a ∈ {ω(k)|k ∈ Rd}. Then there is a point ka ∈ Rd such that ω(ka) = a.
Let ξ ∈ C∞

0 (R) such that ξ(k) = 0 for |k| ≥ 1 and
∫
Rd ξ(k)2dk = 1 and, for n ≥ 1, define

fn by
fn(k) := nd/2ξ(n(k − ka)).

Then fn ∈ D(ω̂) with ‖fn‖L2(Rd) = 1. Let ψn := 〈0, fn〉 ∈ W . Then ‖ψn‖ = 1 and

(h − a)ψn =
〈
α(λ, fn)L2(Rd), (ω̂ − a)fn

〉
.

Hence
‖(h − a)ψn‖2 = α2|(λ, fn)L2(Rd)|2 + ‖(ω̂ − a)fn‖2

L2(Rd).

It is easy to see that, for all g ∈ L2(Rd),

lim
n→∞

(g, fn)L2(Rd) = 0 (6.19)

(first prove this for g continuous, then use a limiting argument). In particular, limn→∞
|(λ, fn)L2(Rd)|2 = 0. Moreover we can show that limn→∞ ‖(ω̂ − a)fn‖2

L2(Rd) = 0. Hence

limn→∞ ‖(h−a)ψn‖2 = 0. (6.19) implies that w- limn→∞ ψn = 0. Thus, by a basic criterion
on essential spectrum ([2, Lemma 5.19]), we conclude that a ∈ σess(h). Thus (6.18) holds.

Lemma 6.7 (i) If dµ ≥ 0, then (−∞, µ) ⊂ %(h) (%(h) denotes the resolvent set of h).

(ii) If dµ < 0, (−∞, µ) \ {x0} ⊂ %(h) and x0 is a simple eigenvalue of h.

Proof. Let x ∈ (−∞, µ) and D(x) 6= 0. Then we want to show that x ∈ %(h). For this
purpose, let 〈z, f〉 ∈ W . Then we define

y :=
z + α

(
λ, f

ω−x

)
L2(Rd)

D(x)
, g :=

f − αyλ

ω − x
.

These quantities are well-defined with g ∈ D(ω̂), so that 〈y, g〉 ∈ D(h). Moreover we see
that (h − x) 〈y, g〉 = 〈z, f〉. Hence h − x is surjective. The equation (h − x) 〈z, f〉 = 0 is
equivalent to

(µ0 − x)z + α(λ, f)L2(Rd) = 0, (ω − x)f + zαλ = 0. (6.20)

Putting the second equation into the first, we obtain zD(x) = 0. Hence z = 0. Then, by
the second equation, (ω − x)f = 0, which implies that f = 0. Hence h − x is injective.
Thus x ∈ %(h). ¿From this fact and Lemma 6.5 we obtain part (i) and the assertion on
%(h) in part (ii). To show that x0 is a simple eigenvalue of h in the case dµ < 0, we consider
the eigenvector equation: h 〈z, f〉 = E 〈z, f〉 with 〈z, f〉 ∈ D(h) and E ∈ (−∞, µ). Then
(6.20) with x = E holds. Hence zD(E) = 0. Suppose that E 6= x0. Then D(E) 6= 0 by
Lemma 6.5(ii). Hence z = 0 and f = 0 as is shown above. This means E cannot be an
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eigenvalue of h. Hence, if h has an eigenvalue E ∈ (−∞, µ), then E = x0. Moreover, the
vector

φ0 := 〈1,−αλ/(ω − x0)〉 (6.21)

is an eigenvector of h: φ0 ∈ D(h) and hφ0 = x0φ0. Thus x0 is an eigenvalue of h. The
simplicity of x0 easily follows from the eigenvalue equation of h.

Remark 6.3 In the case dµ < 0, we have

‖φ0‖2 = −D′(x0). (6.22)

With these preliminaries we can prove the following theorem.

Theorem 6.8 Assume the following:

(RWA) ω is continuous on Rd and ω(k) → ∞ as |k| → ∞.

(i) Let dµ ≥ 0. Then
σ(h) = [µ,∞). (6.23)

(ii) Let dµ < 0. Then
σ(h) = {x0} ∪ [µ,∞), (6.24)

where x0 is a simple eigenvalue of h with eigenvector φ0.

Proof. By (RWA),
{ω(k)|k ∈ Rd} = [µ,∞).

Hence, by Lemma 6.6
[µ,∞) ⊂ σess(h). (6.25)

(i) In this case we have by Lemma 6.7(i) σ(h) ⊂ [µ,∞). By this fact and (6.25) we
obtain (6.23).

(ii) In this case we have by Lemma 6.7(ii) σ(h) ⊂ {x0} ∪ [µ,∞). By this fact and
(6.25) we obtain (6.24).

Remark 6.4 In both cases (i) and (ii), h may have eigenvalues in [µ,∞). For example,
consider the case λ(k) = 0 for |k| ≥ κ with a constant κ > 0. Let µ(κ) := sup|k|≤κ ω(k) <
∞ and suppose that limx↓µ(κ)

∫
|k|≤κ dk|λ(k)|2/(x − ω(k)) = +∞. Then D(z) has a unique

simple zero y0 in (µ(κ),∞), which is an eigenvalue of h (cf. also [19]).
If we assume, in addition to (RWA), that, for all x ∈ [µ,∞), |λ(k)|2/|x−ω(k)| is not

Lebesgue integrable, then h has no eigenvalues in [µ,∞). Hence, in this case, Theorem
6.8(i) shows that, under condition dµ ≥ 0, the eignevalue µ0 of the unperturbed operator
h0 is unstable under the perturbation αh1, namely, it disappears under the perturbation
αh1.
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For a linear operator T , we denote by σp(T ) the point spectrum of T .

Theorem 6.9 Let the same assumption as in Theorem 6.8 be satisfied.

(i) Let dµ ≥ 0. Then
σ(HRWA) = {0} ∪ [µ,∞), (6.26)

where 0 is a simple eigenvalue with eigenvector e0 ⊗ Ω. In particular, HRWA is
nonnegative with ground-state energy E0(HRWA) = 0.

(ii) Let dµ < 0, µ > 0 and µ0 ≥ α2‖λ/
√

ω‖2
L2(Rd). Then,

σ(HRWA) = {0} ∪ {nx0}∞n=1 ∪ [µ,∞), (6.27)

{0} ∪ {nx0}∞n=1 ⊂ σp(HRWA), (6.28)

with x0 ≥ 0, where 0 is a simple eigenvalue with eigenvector e0 ⊗ Ω and nx0 is
a simple eigenvalue of HRWA with eigenvector a(φ0)

∗nΩW . In particular, HRWA is
nonnegative with ground-state energy E0(HRWA) = 0.

(iii) Let µ0 < α2‖λ/
√

ω‖2
L2(Rd) (hence dµ < 0). Then,

σ(HRWA) = R, {0} ∪ {nx0}∞n=1 = (−∞, µ) ∩ σp(HRWA), (6.29)

with x0 < 0, where 0 is a simple eigenvalue with eigenvector e0 ⊗ Ω and nx0 is a
simple eigenvalue of of HRWA with eigenvector a(φ0)

∗nΩW . In particular, HRWA is
neither bounded from below nor above.

Proof. By (6.14) and the spectral property of the second quantization operator, we
have

σ(HRWA) = {0}
⋃ ∪∞

n=1


n∑

j=1

sj

∣∣∣∣sj ∈ σ(h), j = 1, · · · , n


 ,

where 0 is an eigenvalue with eigenvector e0 ⊗ Ω. By this formula and Theorem 6.8 we
obtain the desired result.

Remark 6.5 Consider the case dµ ≥ 0. Then µ0 ≥ µ and hence the positive eigenvalues
{nµ0}∞n=1 of the unperturbed Hamiltonian HRWA,0 := µ0b

∗b ⊗ I + I ⊗ dΓ(ω̂) are embed-
ded in its essential spectrum σess(HRWA,0) = [µ,∞). We have σ(h) = [µ,∞) (Theorem
6.8(i)). Suppose in addition that σp(h) = ∅. Then we have σp(HRWA)∩ (0,∞) = ∅, since
σp(dΓ(h)) ∩ (0,∞) = ∅. Hence, in this case, all the embedded eigenvalues {nµ0}∞n=1 of
HRWA,0 disappear under the perturbation α(b∗ ⊗ a(λ) + b ⊗ a(λ)∗).

We want to remark that, in the cases (ii) and (iii) of Theorem 6.9, the Hilbert space
FRWA has a special orthogonal decomposition as is shown below. Suppose that the as-
sumption of (ii) or (iii) of Theorem 6.9 is satisfied and X0 be the one-dimensional subspace
generated by the vector φ0

X0 := {zφ0|z ∈ C}. (6.30)
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Let
W ′ = X0 ⊕X⊥

0 . (6.31)

For all 〈z, f〉 ∈ W , we have the orthogonal decomposition

〈z, f〉 = Cz,fφ0 + ψz,f ,

with respect to the vector φ0, where Cz,f := (φ0, 〈z, f〉)W/‖φ0‖2
W and ψz,f is a vector such

that (φ0, ψz,f )W = 0. Hence the oprator u : W → W ′ defined by

u 〈z, f〉 := 〈Cz,fφ0, ψz,f〉 . (6.32)

is unitary. This gives an identification of W with W ′. Hence Fb(W) can be identified as

Fb(W) = Fb(W ′) = Fb(X0) ⊗Fb(X⊥
0 ) = ⊕∞

n=0Gn, (6.33)

with
Gn := F (n)

b (X0) ⊗Fb(X⊥
0 ), (6.34)

where
F (n)

b (X0) ∼= {za(φ0)
∗nΩW |z ∈ C}. (6.35)

It is easy to see that HRWA identified with dΓ(h) (Lemma 6.4) is reduced by each Gn. We

denote the reduced part by H
(n)
RWA. Then we have

σ(H
(n)
RWA) = {nx0} ∪ [nx0 + µ,∞), (6.36)

where nx0 is a simple eigenvalue of H
(n)
RWA. This describes a more detailed structure of the

specral properties stated in (ii) and (iii) of Theorem 6.9.
We now discuss some consequences of Theorem 6.9.

(1) Consider the case where µ = 0 and µ0 > α2
∫
Rd dk|λ(k)|2/ω(k) (hence µ0 > 0). Then

Theorem 6.9(i) shows that HRWA has a unique ground state e0 ⊗ Ω even if 〈λ, ω〉
obeys the infrared sigularity condition. If ν > 0 is sufficiently small, then µ0 >
ν + α2

∫
Rd dk|λ(k)|2/ω(k). Hence, by Theorem 6.9(i), the regularized Hamiltonian

HRWA(ν) has a unique ground state e0 ⊗ Ω with ground state-energy E0(ν) = 0.
Hence, in this case, E0(ν) is trivially right differentiable at ν = 0 with E ′

0(0+) = 0.

(2) Consider the case where µ = 0 and µ0 < α2
∫
Rd dk|λ(k)|2/ω(k) (this always holds if

µ0 < 0). Then Theorem 6.9(iii) shows that HRWA has no ground states, although
it has eigenvectors with nonpositive eigenvalues even if 〈λ, ω〉 obeys the infrared
singularity condition.
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6.3 The Wigner-Weisskopf model

This is a model of a two-level atom coupled to a quantized radiation field (e.g., [23] and
references therein). It is obtained as a special simple realization of the GSB model with
the following choice of {H, A,Bj}:,

H = C2, J = 1, B1 = c :=

(
0 0
1 0

)
, A = µ0c

∗c, (6.37)

so that the Hamiltonian H takes the form

HWW := µ0c
∗c ⊗ I + I ⊗ dΓ(ω̂) + α (c∗ ⊗ a (λ) + c ⊗ a (λ)∗) , (6.38)

acting in the Hilbert space
FWW := C2 ⊗Fb, (6.39)

where µ0 ∈ R is a constant parameter as in the RWA oscillator. Note that c is a fermion
annihilation operator of one degree, satisfying the canonical anticommutation relations

cc∗ + c∗c = I, c2 = 0 = c∗2. (6.40)

The Wigner-Weisskopf model may be regarded as the standard spin-boson model with a
rotating wave approximation [35] exept for that µ0 is allowed to be nonpositive.

We continue to assume (6.2). Since c is bounded (and hence A = µ0c
∗c too), this

model trivially satisfies Hypothesis (H.2) for all α ∈ R \ {0}. Hence, by Proposition 2.1,
for all α ∈ R \ {0}, HWW is self-adjoint on D(HWW) = D(I ⊗ dΓ(ω̂)) and bounded from
below.

We have

E0(µ0c
∗c) =

1

2
(µ0 − |µ0|). (6.41)

Hence, by Proposition 2.3 and (2.27)

1

2
(µ0 − |µ0|) − α2

∥∥∥∥∥ λ√
ω

∥∥∥∥∥
2

L2(Rd)

≤ E0(HWW) ≤ 1

2
(µ0 − |µ0|). (6.42)

A simple application of a theorem on the GSB model gives the following a priori
information on the spectrum of HWW.

Proposition 6.10 Assume (RWA).

(i) Let µ > 0. Then
σess(HWW) = [E0(HWW) + µ,∞)

and HWW has purely discrete spectrum in [E0(HWW), E0(HWW) + µ).

(ii) Let µ = 0. Then
σ(HWW) = [E0(HWW),∞).
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Proof. See [14, Theorem 3.3, Remark 3.1] (cf. also [15]).

To analyze the spectral properties of HWW in more detail, we show that the Wigner-
Weisskopf model may be regarded as a “part” of the RWA oscillator. We first indentify
FRWA as

FRWA = ⊕∞
n=0Fb =

{
Ψ = {Ψ(n)}∞n=0

∣∣∣∣Ψ(n) ∈ Fb, n ≥ 0,
∞∑

n=0

‖Ψ(n)‖2
Fb

< ∞
}

(6.43)

such that (b ⊗ I)Ψ is identified with {
√

n + 1Ψ(n+1)}∞n=0 and, for a linear operator T on
Fb, (I ⊗ T )Ψ is identified with {TΨ(n)}∞n=0 .

The Hilbert space FWW can be identified as

FWW = Fb ⊕Fb = {Φ =
〈
Φ(0), Φ(1)

〉
|Φ(s) ∈ Fb, s = 0, 1}, (6.44)

where the operator M ⊗ I on FWW with a 2×2 matrix M = (Mrs)r,s=0,1 is identified with
the operator M acting as

MΦ =

(
M00 M01

M10 M11

) (
Φ(1)

Φ(0)

)

Note that the convention for writing the column vectors is different from the usual one:

the row vector
〈
Φ(0), Φ(1)

〉
is identified with the column vector

(
Φ(1)

Φ(0)

)
. With these

idetifications, we define an operator V : FRWA → FWW by

V Ψ :=
〈
Ψ(0), Ψ(1)

〉
, Ψ = {Ψ(n)}∞n=0 ∈ FRWA. (6.45)

It is easy to see that V is a partial isometry:

V V ∗ = I, V ∗V = P,

where P is the orthogonal projection from FRWA onto the closed subspace

{Ψ = {Ψ(n)}∞n=0 ∈ FRWA|Ψ(n) = 0 for all n ≥ 2}.

A key fact is the following:

Lemma 6.11 The operator equation

V HRWAV ∗ = HWW (6.46)

holds. In particular,
E0(HWW) ≥ E0(HRWA). (6.47)
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Proof. We first show by direct computation that each Φ ∈ D(HWW) = D(dΓ(ω̂)) ⊕
D(dΓ(ω̂)) is in D(V HRWAV ∗) and V HRWAV ∗Φ = HWWΦ. This fact and the self-adjoint-
ness of HWW imply the operator equation (6.46). Inequality (6.47) is a direct consequence
of (6.46) and the variational principle.

Let
N := c∗c ⊗ I + I ⊗ Nb. (6.48)

Lemma 6.12 N strongly commutes with HWW.

Proof. Let Ψ ∈ D(HWW ) ∩ (C2 ⊗ Fb,0) (for Fb,0, see the proof of Proposition 2.3).
Then we have for all t ∈ R

eitN(c ⊗ I)e−itNΨ = e−it(c ⊗ I), eitN(c∗ ⊗ I)e−itNΨ = eit(c∗ ⊗ I),

eitN(I ⊗ a(f))e−itNΨ = e−itI ⊗ a(f)Ψ,

eitN(I ⊗ a(f)∗)e−itNΨ = eitI ⊗ a(f)∗Ψ, f ∈ L2(Rd).

Hence it follows that
eitNHWWΨ = HWWeitNΨ.

Since D(HWW ) ∩ (C2 ⊗ Fb,0), is a core of HWW, we obtain that eitNHWW ⊂ HWWeitN ,
which implies the the strong commutativity of N and HWW.

The spectrum of N consists of only eigenvalues with

σ(N) = σp(N) = {0, 1, 2, · · ·}.

The eigenspace of N with the eigenvalue ` is

F (`)
WW :=

{〈
Ψ(`), Φ(`−1)

〉
|Ψ(`) ∈ F (`)

b , Φ(`−1) ∈ F (`−1)
b

}
,

where F (`)
b is the `-particle space of Fb: Nb|F (`) = ` and Φ(−1) := {0}. We have

FWW = ⊕∞
`=0F

(`)
WW. (6.49)

By Lemma 6.12, HWW is reduced by each F (`)
WW. We denote the reduced part by H

(`)
WW.

Then we have
HWW = ⊕∞

`=0H
(`)
WW (6.50)

with respect to the decomposition (6.49). It is easy to see that

H
(0)
WW = 0 (6.51)

Every vector Ξ ∈ F (1)
WW has the form

Ξ = 〈a(f)∗Ω, zΩ〉
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with z ∈ C, f ∈ L2(Rd). By direct computation, we have

H
(1)
WWΞ =

〈
a(ωf + zλ)∗Ω, (z + α(λ, f)L2(Rd))Ω

〉
. (6.52)

It is easy to see that the operator U1 : F (1)
WW → W = C ⊕ L2(Rd) defined by

U1Ξ := 〈z, f〉

is unitary. By (6.52), we see that

U1H
(1)
WWU−1

1 = h.

Thus
σ(H

(1)
WW) = σ(h), σp(H

(1)
WW) = σp(h). (6.53)

Proposition 6.13 (i) Let dµ ≥ 0. Then 0 is a simple eigenvalue of HWW with an eigen-
vector

Ψ0 := 〈Ω, 0〉 . (6.54)

Moreover, in the case µ > 0, HWW has no eigenvalues in the open interval (0, µ).

(ii) Let dµ < 0 and µ0 6= α2‖λ/
√

ω‖2
L2(Rd). Then 0 is a eigenvalue of HWW with an

eigenvector Ψ0 and x0 is a non-zero eigenvalue of HWW with an eigenvector

Φ0 :=
〈
−αa((ω − x0)

−1λ)∗Ω, Ω
〉

. (6.55)

If µ0 > α2‖λ/
√

ω‖2
L2(Rd) (resp. µ0 < α2‖λ/

√
ω‖2

L2(Rd)), then x0 > 0 (resp. x0 < 0).

(iii) Let dµ < 0 and µ0 = α2‖λ/
√

ω‖2
L2(Rd). Let λ/ω ∈ L2(Rd). Then 0 is a degenerate

eigenvalue of HWW with multiplicity more than or equal to two, two independent
eigenvectors (up to constant multiples) being Ψ0 and

Ξ0 :=
〈
−αa(ω−1λ)∗Ω, Ω

〉
(6.56)

Proof. (i) It is straightforward to see that HWWΨ0 = 0. To prove the simplicity of the

eigenvalue 0, let HWWΘ = 0 with Θ = {Θ(`)}∞`=0 ∈ D(HWW), Θ(`) =
〈
Ψ(`), Φ(`−1)

〉
. Then

(Hb + µ0)Φ
(`−1) = −αa(λ)Ψ(`), (6.57)

HbΨ
(`) = −αa(λ)∗Φ(`−1), (6.58)

where
Hb := dΓ(ω̂). (6.59)

The condition dµ ≥ 0 gives

µ0 − µ ≥ α2
∫
Rd

|λ(k)|2

ω(k) − µ
dk. (6.60)
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In particular, µ0 ≥ µ > 0. Let ` ≥ 2. Then, by (6.58), we have

Ψ(`) = −αH−1
b a(λ)Φ(`−1).

Putting this into (6.57), we obtain

(Hb + µ0)Φ
(`−1) = α2a(λ)H−1

b a(λ)∗Φ(`−1).

Hence

(µ(` − 1) + µ0)‖Φ(`−1)‖2 ≤ (Φ(`−1), (Hb + µ0)Φ
(`−1))

= α2(Φ(`−1), a(λ)H−1
b a(λ)∗Φ(`−1)).

Inequality (6.60) implies that

α2a(λ)∗a(la) ≤ (µ0 − µ)(Hb − µNb),

leading to
α2(Ψ(`−1), a(λ)H−1

b a(λ)∗Φ(`−1)) ≤ (µ0 − µ)‖Φ(`−1)‖2

(see [35, p.319]). Hence, if Φ(`−1) 6= 0, then

µ(` − 1) + µ0 ≤ µ0 − µ.

But this is a contradiction. Hence, for all ` ≥ 2, Φ(`−1) = 0 and hence Ψ(`) = 0. Thus
Θ(`) = 0, ` ≥ 2. By (6.53) and Theorem 6.8(i), Θ(1) = 0. Thus Θ is a constant multiple
of Ψ0.

Let µ > 0 and suppose that HWW had an eigenvalue E in (0, µ) with an eigenvector

Θ = {Θ(`)}∞`=0( 6= 0) ∈ D(HWW), Θ(`) =
〈
Ψ(`), Φ(`−1)

〉
. Then, for all ` ≥ 0,

(Hb + µ0 − E)Φ(`−1) = −αa(λ)Ψ(`), (6.61)

(Hb − E)Ψ(`) = −αa(λ)∗Φ(`−1). (6.62)

Since E ∈ %(Hb), we have by (6.62)

Ψ(`) = −α(Hb − E)−1a(λ)∗Φ(`−1).

Putting this into (6.61), we obtain

(Hb + µ0 − E)Φ(`−1) = α2a(λ)(Hb − E)−1a(λ)∗Φ(`−1).

In the same way as above, one can show, using this equation, that, if Φ(`−1) 6= 0, then
(` − 1)µ + µ0 − E ≤ µ0 − µ, i.e., `µ ≤ E. Hence, for all ` ≥ 1, Φ(`−1) = 0 and hence
Ψ(`) = 0. It is easy to see that Ψ(0) = 0. Hence Θ = 0. But this is a contradiction. Thus
E cannot be an eigenvalue of HWW.

(ii) An easy exercise.
(iii) Note that, if µ0 = α2‖λ/

√
ω‖2

L2(Rd), then x0 = 0. It is easy to see that HWWΞ0 = 0.
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Theorem 6.14 Let the same assumption as in Theorem 6.8 be satisfied.

(i) Let dµ ≥ 0. Then

σess(HWW) = [µ,∞), (6.63)

0 ∈ σp(HWW), (6.64)

where 0 is a simple eigenvalue with an eigenvector Ψ0. In particular, HWW is
nonnegative with ground-state energy E0(HWW) = 0. If µ > 0 in addition,

σp(HWW) ∩ [0, µ) = {0}. (6.65)

(ii) Let dµ < 0, µ > 0 and µ0 ≥ α2‖λ/
√

ω‖2
L2(Rd). Then,

σess(HWW) = [µ,∞), (6.66)

{0, x0} ⊂ σp(HWW), (6.67)

with 0 ≤ x0 < µ. In particular, HWW is nonnegative with E0(HWW) = 0.

Proof. (i) By Theorem 6.9(i) and (6.47), HWW ≥ 0. This fact and Proposition 6.13(i)
imply that E0(HWW) = 0. Hecne, by Proposition 6.10, we obtain (6.63). (6.64) and (6.65)
follow from Proposition 6.13(i).

(ii) Similar to part (i).

In the case

µ0 < α2

∥∥∥∥∥ λ√
ω

∥∥∥∥∥
2

L2(Rd)

(6.68)

hence dµ < 0), some difficulty arises in determining E0(HWW) explicitly, because, in this
case, HRWA is unbounded below (Theorem 6.9(iii)) and hence one cannot make use of
Lemma 6.11. As for this problem, we present only a partial solution below.

Under condition (6.68), we can define

M(α, µ0, ω) :=
∫
Rd

|λ(k)|2

ω(k) − µ0 + α3‖λ/
√

ω‖2
L2(Rd)

dk. (6.69)

Theorem 6.15 Let µ0 < 0 (hence (6.68) trivially holds) and

2µ − µ0 > α2

∥∥∥∥∥ λ√
ω

∥∥∥∥∥
2

L2(Rd)

− M(α, µ0, ω)

 +
‖λ‖2

L2(Rd)

M(α, µ0, ω)
. (6.70)

Then
E0(HWW) = x0. (6.71)
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Proof. By Proposition 6.13(ii),

E := E0(HWW) ≤ x0 < µ0 < 0. (6.72)

We first consider the case µ > 0. Then, by Proposition 6.10(i), E is an eigenvalue of HWW.

Hence HWW has a ground state Θ0 = {Θ(`)
0 }∞`=0 ∈ D(HWW) satisfying HWWΘ0 = EΘ0,

which implies that, for all ` ≥ 0,

H
(`)
WWΘ

(`)
0 = EΘ

(`)
0 . (6.73)

By (6.51) and (6.72), Θ
(0)
0 = 0. If Θ

(1)
0 6= 0, then, by Proposition 6.13(ii) and (6.72), we

obtain (6.71). Therefore we consider the case Θ
(1)
0 = 0. Then, for some ` ≥ 2, Θ

(`)
0 6= 0.

Let Θ
(`)
0 =

〈
Ψ(`), Φ(`−1)

〉
. Then (6.73) is equivalent to (6.61) and (6.62). By (6.61) and

the property µ0 − E > 0, we have

Φ(`−1) = −α(Hb + µ0 − E)−1a(λ)Ψ(`). (6.74)

Putting this into (6.62), we obtain

(Hb − E)Ψ(`) = α2a(λ)∗(Hb + µ0 − E)−1a(λ)Ψ(`).

Hence
(Ψ(`), (Hb − E)Ψ(`) = α2‖(Hb + µ0 − E)−1/2a(λ)Ψ(`)‖2,

which implies that

(µ` − E)‖Ψ(`)‖2 ≤ α2‖Hb + µ0 − E)−1/2a(λ)Ψ(`)‖2.

To estimate the right hand side, we note that (Hb + µ0 − E)−1/2a(λ) is bounded with[
(Hb + µ0 − E)−1/2a(λ)

]∗
= a(λ)∗(Hb + µ0 − E)−1/2

and, by (4.23),

‖a(λ)∗(Hb + µ0 − E)−1/2Ψ(`)‖2 ≤
∥∥∥∥∥ λ√

ω

∥∥∥∥∥
2

L2(Rd)

‖Ψ(`)‖2 +
‖λ‖2

L2(Rd)

µ` + µ0 − E
‖Ψ(`)‖.

Hence

µ` − α2

∥∥∥∥∥ λ√
ω

∥∥∥∥∥
2

L2(Rd)

− α2
‖λ‖2

L2(Rd)

µ` + µ0 − E
≤ E, (6.75)

where we have used that Ψ(`) 6= 0 (if Ψ(`) = 0, then Φ(`−1) = 0 by (6.74) and hence

Θ
(`)
0 = 0, but this is a contradiction). An application of (2.21) yields

E ≥ µ0 − α2

∥∥∥∥∥ λ√
ω

∥∥∥∥∥
2

L2(Rd)

. (6.76)
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Now suppose that E < x0. Then D(E) > D(x0) = 0, i.e.,

E < µ0 − α2
∫
Rd

|λ(k)|2

ω(k) − E
dk,

which, combined with (6.75), gives

µ` − µ0 < α2

∥∥∥∥∥ λ√
ω

∥∥∥∥∥
2

L2(Rd)

+ α2
‖λ‖2

L2(Rd)

µ` + µ0 − E
− α2

∫
Rd

|λ(k)|2

ω(k) − E
dk

< α2

∥∥∥∥∥ λ√
ω

∥∥∥∥∥
2

L2(Rd)

− M(α, µ0, ω)

 +
‖λ‖2

L2(Rd)

M(α, µ0, ω)
. (6.77)

Since ` ≥ 2, (6.77) implies that

2µ − µ0 < α2

∥∥∥∥∥ λ√
ω

∥∥∥∥∥
2

L2(Rd)

− M(α, µ0, ω)

 +
‖λ‖2

L2(Rd)

M(α, µ0, ω)
.

But this contradicts (6.70). Thus (6.71) holds.
We next consider the case µ = 0. Let ν > 0 and

HWW(ν) := µ0c
∗c ⊗ I + I ⊗ dΓ(ω̂ν) + α (c∗ ⊗ a (λ) + c ⊗ a (λ)∗) , (6.78)

the regularized Wigner-Weisskopf Hamiltonian. Then, by Proposition 3.2(iii),

lim
ν→0

E0(HWW(ν)) = E0(HWW).

For all sufficiently small ν > 0, condition (6.70) with ω replaced by ων is satisfied. Hence,
by the above result on E0(HWW) with µ > 0, we have E0(HWW(ν)) = x0(ν) for all
sufficiently small ν > 0, where x0(ν) is the x0 with ω replaced by ων . It is easy to see
that limν→0 x0(ν) = x0. Hence (6.71) follows.

We now discuss consequences of Theorems 6.14 and 6.15 in view of the right differn-
tiability of the ground-state energy of the regularized model. Hence we consider the case
µ = 0 and the regularized Hamiltonian HWW(ν) of the Wigner-Weisskopf model given by
(6.78). We denote its ground-state energy by EWW,0(ν).

(1) Consider the case µ = 0 and let d0 > 0, i.e., µ0 > α2
∫
Rd dk|λ(k)|2/ω(k) (hence

µ0 > 0). Then Theorem 6.14(i) shows that HWW has a unique ground state 〈Ω, 0〉
with EWW,0(0) = 0 even if 〈λ, ω〉 obeys the infrared sigularity condition. If ν > 0 is
sufficiently small, then µ0 > ν + α2

∫
Rd dk|λ(k)|2/ω(k). Hence, by Theorem 6.14(i),

HWW(ν) has a unique ground state 〈Ω, 0〉 with EWW,0(ν) = 0. Hence, in this case,
EWW,0(ν) is trivially right differentiable at ν = 0 with E ′

WW,0(0+) = 0.
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(2) Consider the case µ = 0 and µ0 < 0. Let

−µ0 > α2

∥∥∥∥∥ λ√
ω

∥∥∥∥∥
2

L2(Rd)

− M(α, µ0, ω)

 +
‖λ‖2

L2(Rd)

M(α, µ0, ω)
. (6.79)

Then

2ν − µ0 > α2

∥∥∥∥∥ λ
√

ων

∥∥∥∥∥
2

L2(Rd)

− M(α, µ0, ων)

 +
‖λ‖2

L2(Rd)

M(α, µ0, ων)
.

for all sufficiently small ν > 0. We consider only such ν’s. Theorem 6.15 shows that
HWW has a ground state Φ0 with EWW,0(0) = x0 even if 〈λ, ω〉 obeys the infrared
sigularity condition. Similarly HWW(ν) has a ground state with ground-state energy
EWW,0(ν) < 0 satisfying

EWW,0(ν) = µ0 + α2
∫
Rd

|λ(k)|2

EWW,0(ν) − ω(k) − ν
dk.

Hence we have
EWW,0(ν) − EWW,0(0)

ν
=

Λ(ν)

1 + Λ(ν)

with

Λ(ν) := α2
∫
Rd

dk
|λ(k)|2

(EWW,0(ν) − ω(k) − ν)(EWW,0(0) − ω(k))
.

Since EWW,0(ν) < 0, it follows that

Λ0 := lim
ν↓0

Λ(ν) = α2
∫
Rd

dk
|λ(k)|2

(EWW,0(0) − ω(k))2
.

Hence EWW,0(ν) is right differentiable at ν = 0 with

E ′
WW,0(0+) =

Λ0

1 + Λ0

< 1.

Let Φ0(ν) be the vector Φ0 with ω replaced by ων . Then the ground-state expecta-
tion of the number operator is computed as

n
WW

(ν) := (Φ0(ν), NbΦ0(ν)) = α2‖(ω − EWW,0(ν))−1λ‖2
L2(Rd) < ∞.
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Appendix

A Some General Properties of the Ground-State En-

ergy for a Class of Self-Adjoint Operators

Let K be a Hilbert space and T (resp. S) be a self-adjoint (resp. symmetric) operator on
K. We suppose that T is bounded from below. For ν ≥ 0, we define

T (ν) := T + νS. (A.1)

We assume the following:

(T.1) There exists a constant c > 0 such that, for all ν ∈ (0, c), T (ν) is self-adjoint on
D(T ) ∩ D(S) and bounded from below.

Under this hypothesis, we can define

G(ν) := E0(T (ν)) := inf σ(T (ν)), ν ∈ [0, c) (A.2)

the ground-state energy of T (ν). The following proposition summarizes elementary prop-
erties of G(ν).

Proposition A.1 Assume (T.1).

(i) If S ≥ 0, then G(ν) is monotone nondecreasing in ν ∈ [0, c).

(ii) The function G(ν) is concave, i.e., for all ν, ν ′ ∈ [0, c) and t ∈ [0, 1],

tG(ν) + (1 − t)G(ν ′) ≤ G(tν + (1 − t)ν ′). (A.3)

(iii) Let a ∈ (0, c) be a constant such that infm∈[0,a] G(ν) > −∞. Then G(ν) is continuous
on (0, a). Moreover, for all ν ∈ (0, a),

G′(ν ± 0) := lim
ε↓0

G(ν ± ε) − G(ν)

±ε
(A.4)

exist and
G′(ν + 0) ≤ G′(ν − 0). (A.5)

(iv) If S ≥ 0, then G(ν) is continuous on (0, c) and, for all ν ∈ (0, c), G′(ν ± 0) exist,
satisfying (A.5). Moreover, if D(T )∩D(S) is a core of T in addition, then G(ν) is
right continuous at m = 0.
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Proof. (i) Let 0 ≤ ν < ν ′ < c. Then

T (ν) = T (ν ′) − (ν ′ − ν)S.

Hence, for all Ψ ∈ D(T (ν ′)) = D(T ) ∩ D(S) with ‖Ψ‖ = 1,

G(ν) ≤ (Ψ, T (ν)Ψ) = (Ψ, T (ν ′)Ψ) − (ν ′ − ν)(Ψ, SΨ).

By the assumption S ≥ 0, the second term on the right hand side is nonpositive. Hence
G(ν) ≤ (Ψ, T (ν ′)Ψ), which implies that G(ν) ≤ G(ν ′). Thus G(ν) is nondecreasing in ν.

(ii) We have for all ν, ν ′ ∈ [0, c)

T (tν + (1 − t)ν ′) = tT (ν) + (1 − t)T (ν ′). (A.6)

Hence, by the variational principle, tG(ν) + (1 − t)G(ν ′) ≤ T (tν + (1 − t)ν ′). By this
inequality and the variational principle again, we obtain (A.3).

(iii) The continuity of G(ν) on (0, a) and (A.5) follow from (ii) and a general theorem
on concave functions.

(iv) In this case, by part (i), we have G(ν) ≥ G(0), ν ∈ (0, c). Hence infν∈[0,c) G(ν)
≥ G(0) > −∞. Thus we can apply (iii) to conclude that G(ν) is continuous on (0, c)
and that, for all ν ∈ (0, c), G′(ν ± 0) exist, satisfying (A.5). It remains to prove the right
continuity of G(ν) at ν = 0 under the additional condition that D(T )∩D(S) is a core of
T . By part (i), we have G(0) ≤ G(ν), ν ∈ (0, c). Hence G(0) ≤ lim infν↓0 G(ν). On the
other hand, we have for all Ψ ∈ D(T ) ∩ D(S) with ‖Ψ‖ = 1

G(ν) ≤ (Ψ, TΨ) + ν(Ψ, SΨ).

Hence lim supν↓0 G(ν) ≤ (Ψ, TΨ). Since D(T )∩D(S) is a core of T , this inequality implies
that lim supν↓0 G(ν) ≤ G(0). Thus limν↓0 G(ν) = G(0), i.e., G(ν) is right continuous at
ν = 0.

By definition, a ground-state of T (ν) is a non-zero vector Ψ(ν) in D(T (ν)) such that

T (ν)Ψ(ν) = G(ν)Ψ(ν). (A.7)

We assume the following:

(T.2) There exists a constant ν0 ∈ (0, c) such that, for each ν ∈ (0, ν0), T (ν) has a
ground-state Ψ(ν) with ‖Ψ(ν)‖ = 1.

Under the assumptions (T.1) and (T.2), we can define for a linear operator X on X with
D(X) ⊃ D(T ) ∩ D(S)

〈X〉ν := (Ψ(ν), XΨ(ν)), ν ∈ (0, ν0), (A.8)

the ground-state expectation value of X.

48



Lemma A.2 For all ν ∈ (0, ν0), ν
′ ∈ [0, c) with ν ′ 6= ν,

〈S〉ν =
〈T (ν ′)〉ν − G(ν)

ν ′ − ν
. (A.9)

Proof. We have

(ν ′ − ν) 〈S〉ν = (Ψ(ν), [T (ν ′) − T (ν)]Ψ(ν)) = 〈T (ν ′)〉ν − G(ν).

Hence (A.9) follows.

Proposition A.3 Suppose that S ≥ 0. Then:

(i) If D(T ) ∩ D(S) is a core of T , then limν↓0 ν 〈S〉ν = 0 and limν↓0 〈T 〉ν = G(0).

(ii) For all ν ∈ (0, ν0),
〈S〉ν ≥ G′(ν + 0). (A.10)

(iii) If the right differential

G′(0+) := lim
ν↓0

G(ν) − G(0)

ν
(A.11)

of G(ν) at ν = 0 exists, then

lim sup
ν↓0

〈S〉ν ≤ G′(0+). (A.12)

(iv) lim supν↓0 〈S〉ν < ∞ if and only if G(ν)−〈T 〉ν = O(ν) (ν ↓ 0), where O(·) is Landau’s
symbol.

Proof. (i) By (A.9) with ν ′ = 0 and the variational principle, we have

0 ≤ ν 〈S〉ν ≤ G(ν) − G(0). (A.13)

Hence, by Proposition A.1(iv), we obtain the desired result.
By (A.9) with ν ′ = 0, we have

〈T 〉ν = G(ν) − ν 〈S〉ν (A.14)

By part (i) and Proposition A.1(iv), we obtain the desired result.
(ii) Let c > ν ′ > ν > 0. Then, by (A.9) and the variational principle, we have

〈S〉ν ≥ G(ν ′) − G(ν)

ν ′ − ν
.

Taking ν ′ ↓ ν, we obtain (A.10).

49



(iii) By (A.13), we have

〈S〉ν ≤ G(ν) − G(0)

ν
, (A.15)

from which the desired result follows.
(iv) Let lim supν↓0 〈S〉ν < ∞. Then Dδ := supν∈(0,δ) 〈S〉ν < ∞ for each sufficiently

small constant δ < c. Hence, by Lemma A.2, we have |G(ν) − 〈T 〉ν | ≤ Dδν, ν ∈ (0, δ).
Hence G(ν) − 〈T 〉ν = O(ν) (ν ↓ 0).

Conversely, let G(ν) − 〈T 〉ν = O(ν) (ν ↓ 0). Then, for all sufficiently small ν > 0,
|G(ν) − 〈T 〉ν | ≤ Dν, where D > 0 is a constant. This implies that 〈S〉ν ≤ D. Hence
lim supν↓0 〈S〉ν ≤ D.

B Abstract Results on Discrete Spectrum of a Self-

Adjoint Operator

Let H be a Hilbert space and H1 be a self-adjoint operator on H, bounded from below.
Let H2 be a symmetric operator on H and

H := H1 + H2. (B.1)

We assume the following:

(C.1) D(H1) ⊂ D(H2), H is self-adjoint on D(H1) and bounded from below.

Under condition (C.1), we define for r > 0

Sr := {z ∈ C| |z − E0(H)| = r}. (B.2)

We need additional conditions:

(C.2) For all z ∈ %(H1) := C\σ(H1) (the resolvent set of H1), H2(H1−z)−1 is a bounded
operator on H.

(C.3) For a constant M > 0, H1 has purely discrete spectrum in [E0(H1), E0(H1) + M).

(C.4) There exists a constant δ ∈ (0,M) such that

E0(H) ± δ 6∈ σ(H1), E0(H) − E0(H1) < M − δ,

and

Cδ := sup
z∈Sδ

‖H2(H1 − z)−1‖ <
1

1 + qδ

, (B.3)

where

qδ := sup
z∈Sδ

sup
λ∈σ(H1)

1

|λ − z|
.
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Theorem B.1 Assume (C.1)–(C.4). Then H has purely discrete spectrum in the interval
[E0(H), E0(H) + δ). In particular, H has a ground state.

Proof. For all z ∈ %(H1),

H − z = (I + K(z))(H1 − z)

with K(z) := H2(H1 − z)−1. Let z ∈ Sδ. Then, by (C.4), z ∈ %(H1) and I + K(z) is
bijective. Hence z ∈ %(H) with

(H − z)−1 − (H1 − z)−1 =
∞∑

n=1

(−1)n(H1 − z)−1K(z)n, (B.4)

where the convergence is taken in operator norm topology. For a self-adjoint operator T ,
we denote by PT its spectral measure. Let Iδ := [E0(H), E0(H) + δ). Then we have

PH(Iδ) = (−2πi)−1
∫

Sδ

(H − z)−1dz, PH1(Iδ) = (−2πi)−1
∫

Sδ

(H1 − z)−1dz.

By (C.3) and (C.4), dim RanPH1(Iδ) < ∞. By (B.4), we have

‖PH(Iδ) − PH1(Iδ)‖ ≤ qδ

∞∑
n=1

Cn
δ =

qδCδ

1 − Cδ

< 1.

Hence, by [43, p.14, Lemma], dim RanPH(Iδ) = dim RanPH1(Iδ) < ∞. Thus the desired
result follows.

Let
E1(H1) := inf σ(H1) ∩ (E0(H1),∞). (B.5)

Then
E1(H1) > E0(H1). (B.6)

Let

δ :=
E0(H1) + E1(H1)

2
− E0(H). (B.7)

Corollary B.2 Assume (C.1) and (C.3). Suppose that there exist constants a, b ≥ 0 such
that, for all Ψ ∈ D(H1),

‖H2Ψ‖ ≤ a‖H1Ψ‖ + b‖Ψ‖. (B.8)

Moreover, suppose that
E0(H1) ≥ E0(H) (B.9)

and

a +
2[b + a(δ + |E0(H)|)]
E1(H1) − E0(H1)

<
E1(H1) − E0(H1)

E1(H1) − E0(H1) + 2
. (B.10)

Then H has purely discrete spectrum in the interval [E0(H), E0(H) + δ). In particular, H
has a ground state.
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Proof. Condition (B.8) implies that, for all z ∈ %(H1), H2(H1 − z)−1 is bounded with

‖H2(H1 − z)−1‖ ≤ a‖H1(H1 − z)−1‖ + b‖(H1 − z)−1‖

≤ a sup
λ∈σ(H1)

|λ|
|λ − z|

+ b sup
λ∈σ(H1)

1

|λ − z|

≤ a sup
λ∈σ(H1)

(
1 +

|z|
|λ − z|

)
+ b sup

λ∈σ(H1)

1

|λ − z|
.

Hence (C.2) is fulfilled. By (B.9), we have δ > 0. Then it is easy to see that

sup
z∈Sδ ,λ∈σ(H1)

|z|
|λ − z|

≤ δ + |E0(H)|
|E0(H1) − E0(H) − δ|

=
2(δ + |E0(H)|)
E1(H1) − E0(H1)

,

qδ = sup
z∈Sδ ,λ∈σ(H1)

1

|λ − z|
=

1

|E0(H1) − E0(H) − δ|
=

2

E1(H1) − E0(H1)
.

Hence it follows that

sup
z∈Sδ

‖H2(H1 − z)−1‖ ≤ a +
2[b + a(δ + |E0(H)|)]
E1(H1) − E0(H1)

<
1

1 + qδ

.

Hence (C.4) is satisfied. Thus, applying Theorem B.1, we obtain the desired result.
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[35] Hübner, M. and Spohn, H.: Spectral properties of the spin-boson Hamiltonian, Ann.
Inst. Henri. Poincaré 62 (1995), 289–323.
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