魚病研究 22(3): 147-152

Kamei, Yuto; Yoshimizu, Mamoru; Kimura, Takahisa

http://hdl.handle.net/2115/38326

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Plaque Assay of *Oncorhynchus masou* Virus (OMV)

Yuto KAMEI, Mamoru YOSHIMIZU, and Takahisa KIMURA

Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate 041, Japan

(Received January 21, 1987)

Plaque assays for salmonid virus, *Oncorhynchus masou* virus (OMV), were examined and compared with infectious haematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV), combining various fish cell-lines and three overlays.

OMV produced the plaques only in chinook salmon embryo (CHSE-214) cells and rainbow trout gonad (RTG-2) cells, irrespective of overlays used, but plaque formation of IHNV and IPNV differed in different cell-lines according to the overlays used. The plaque formation using CHSE-214 cells gave a ten-fold higher number of plaques than RTG-2 cells.

Among three overlays of methylcellulose, gum tragacanth, and agarose, methylcellulose overlay facilitated OMV plaque formation, and the plaques were most clearcut and easily enumerated. On the whole, the combination of methylcellulose overlay and CHSE-214 cell-line was the most suitable for plaque assay of OMV as well as IHNV and IPNV.

Oncorhynchus masou virus (OMV), salmonid herpesvirus 2, was first isolated from ovarian fluids of landlocked masu salmon (*Oncorhynchus masou*) in 1978 (KIMURA et al., 1981a; ROITZMAN et al., 1981). This virus not only causes hepatic necrosis in salmon fry, but also epidermal tumors for those fry which survived after experimental infection (KIMURA et al., 1981a, b; YOSHIMIZU et al., 1986). The sensitivity of various fish cell lines to infection by OMV as well as infectious haematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) (SCHERRER and COHEN, 1975; KELLY et al., 1978; FENDRICK et al., 1982) has been previously studied (KIMURA et al., 1981a). Although the biochemical and physicochemical properties of OMV have been determined, preferable plaquing procedures have not been reported.

Types of overlays used for viral plaque assay are described as liquid (IBRAHIM and LOH, 1972; BUCH and LOH, 1985), semisolid (MIRCHAMSY and RAPP, 1968; DOBOS, 1976; ROBIN et al., 1982), solid (HOLLAND and MCLAREN, 1959; GABRIELSON and HSUANG, 1965; CAMPBELL and WOLF, 1969; MACDONALD, 1978), and solid-liquid (MOSS and GRAVELL, 1969). DOBOS (1976) reported the use of a gum tragacanth overlay for plaque assay of fish viruses, while BURKE and MULCAHY (1980) determined that a gum tragacanth or methylcellulose overlay was superior to an agarose overlay for the plaque assay of IHNV. This report describes the optimal plaque forming condition for OMV using various combinations of cell lines and overlays, and compares it with the plaquing efficiency of IHNV and IPNV.

Materials and Methods

Viruses

OMV (strain 00-7812) and IHNV (strain ChAb) were isolated in our laboratory from masu salmon (*Oncorhynchus masou*) and chum salmon (*O. keta*) respectively. IPNV (strain VR299) was provided by Dr. R. P. HEDRICK, University of California, Davis. These stock viruses were propagated at 15°C using rainbow trout (Salmo gairdneri) gonad cells (RTG-2; WOLF and QUIMBY, 1962) in 75 cm² tissue culture flasks (Falcon) containing 25 ml of MEM10-Tris, composed of Eagle's minimum essential medium (MEM, Gibco), 10% fetal bovine serum (M. A. Bioproduct), 0.075% NaHCO₃, 100 IU/ml penicillin (Sigma), 100 µg/ml streptomycin (Sigma), and 1.6% Tris buffer (Tris (hydroxymethyl) aminomethane (Tris)-hydro-
chloride) (Sigma) adjusted to pH 7.8. When the cytopathic effect was complete, the culture fluid was removed from the flasks and clarified by centrifugation at 4,000 rpm at 4°C for 20 min. The supernatants were filtered through a 0.40 μm pore-sized filter (Nuclepore) for OMV and a 0.45 μm pore-sized filter (Millex-HA, Millipore) for both IHNV and IPNV. The viruses were stored at −80°C until used. The titres of these stocks of OMV, IHNV, and IPNV were 4.05, 5.80, and 8.30 (log TCID₅₀/ml) respectively.

Cell cultures
Bluegill fry (BF-2; WOLF and QUIMBY, 1966), brown bullhead (BB; WOLF and QUIMBY, 1969), chinook salmon embryo (CHSE-214; FRYER et al., 1965), epithelioma papillomus carpio (EPC; TOMASEC and FIJIAN, 1971), fathead minnow (FHM; GRAVEL and MALSBERGER, 1965), steelhead trout embryo (STE-137; FRYER et al., 1965), and RTG-2 cell lines were used for the comparative plaque assay. Cells were grown in MEM Tris at 15°C with the exception of BF cells which were incubated at 20°C. Each well of a 24-well plate (16 mm in diameter, Falcon) was seeded with 1 mL of growth medium to give approximately 10⁵ cells/mL/well. The 1-day-old confluent monolayers of these cells were used for the plaque assay.

Overlay media
Overlays used in the comparative plaque assay were 0.8% methylcellulose (4,000 centipoise, Wako), 0.8% gum tragacanth (Wako), and 0.8% agarase (Wako). The overlay media were prepared with double strength MEM2-Tris which was a slightly modified method of BURKE and MULCAHY (1980).

Plaquing procedures
Serial 10-fold dilutions of viruses were made by using Hanks’ balanced salt solution (Hanks’ BSS, Gibco) supplemented with 0.0375% NaHCO₃, 100 IU/ml penicillin, and 100 μg/ml streptomycin. Drained cells were inoculated with 0.1 mL of each dilution, and allowed virus to adsorb for 1 h at 15°C. Following adsorption, the cells were rinsed twice with 0.5 mL Hanks’ BSS and 1 mL of individual overlay was added to each well. In the case of the agarase overlay, the overlay was added in drops to cells cooled on ice. Plates were incubated at 15°C for 5 days for IHNV and 7 days for OMV and IPNV. Then, the cells were fixed with 10% formalin and stained with 0.1% crystal violet. Plaques were counted and their size was estimated. The numbers and sizes of the plaques were expressed as mean values of three replicates.

Results
Optimal condition for plaque formation of OMV
The plaquing efficiency of OMV was surveyed using seven fish cell-lines and three kinds of overlays, comparing with IHNV and IPNV. Among the seven cell-lines tested, OMV formed the plaques only in CHSE-214 and RTG-2 cells (Table 1). Optimal plaquing efficiency was obtained using a methylcellulose overlay and CHSE-214.

Table 1. Effects of three different overlays and seven fish cell-lines on OMV plaquing efficiency

<table>
<thead>
<tr>
<th>Cell-lines</th>
<th>Methylcellulose</th>
<th>Tragacanth</th>
<th>Agarose</th>
<th>Methylcellulose</th>
<th>Tragacanth</th>
<th>Agarose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3-0.6</td>
<td>0.3-0.4</td>
<td>0.8-1.0</td>
</tr>
<tr>
<td>BF-2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9-1.7</td>
<td>0.7-1.2</td>
<td>0.6-1.3</td>
</tr>
<tr>
<td>CHSE-214</td>
<td>7.6×10⁴</td>
<td>6.9×10⁴</td>
<td>1.6×10⁴</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>EPC</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FHM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>RTG-2</td>
<td>6.5×10⁴</td>
<td>4.2×10⁵</td>
<td>1.5×10⁵</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>STE-137</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* Plaque count on one trial.
Plaque Assay of OMV

Comparative plaque characteristics of OMV grown under three overlays. A, methylcellulose overlay on CHSE-214 cells; B, tragacanth overlay on CHSE-214 cells; C, agarose overlay on CHSE-214 cells; D, methylcellulose overlay on RTG-2 cells; E, tragacanth overlay on RTG-2 cells; F, agarose overlay on RTG-2 cells.

Table 2. Effects of three different overlays and seven fish cell-lines on IHNV plaquing efficiency

<table>
<thead>
<tr>
<th>Cell-lines</th>
<th>PFU/ml</th>
<th>Plaque size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Methyl-cellulose</td>
<td>Tragacanth</td>
</tr>
<tr>
<td>BB</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BF-2</td>
<td>1.6×10^6</td>
<td>2.4×10^5</td>
</tr>
<tr>
<td>CHSE-214</td>
<td>1.1×10^6</td>
<td>9.9×10^5</td>
</tr>
<tr>
<td>EPC</td>
<td>2.7×10^6</td>
<td>1.7×10^6</td>
</tr>
<tr>
<td>FHM</td>
<td>2.4×10^6</td>
<td>2.6×10^6</td>
</tr>
<tr>
<td>RTG-2</td>
<td>4.0×10^4</td>
<td>3.2×10^4</td>
</tr>
<tr>
<td>STE-137</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*1 Average of two trials; *2 plaque count on one trial; ND, not determined.

cells, and in this combination the plaque was clear and easily visible (Fig. 1). OMV produced small indistinct plaques under gum tragacanth which could not be counted precisely during the 7-day incubation period. The agarose overlay produced lower, but larger plaques in comparison with the other two, and results were not reproducible, possibly due to heat damage to the cells. Although OMV produced almost the same plaque diameter (0.6–1.7 mm) in RTG-2 cells under the three over-
lays, the number of plaques was about ten times lower in CHSE-214 cells than in RTG-2 cells.

Comparative plaque formations of IHNV and IPNV with OMV

IHNV produced plaques in BF-2, CHSE-214, EPC, FHM, and RTG-2 cells, but not in BB and STE-137 cells (Table 2). Among the cells that allowed plaque formation of IHNV, EPC cells overlayed with methylcellulose and FHM cells overlayed with gum tragacanth gave the highest efficiency. A lower number of plaques were formed in BF-2 cells and RTG-2 cells. Although CHSE-214 cells with a methylcellulose overlay resulted in approximately half the number of plaques of EPC or FHM cells, the methylcellulose overlay-CHSE-214 cell system facilitated counting because it produced clear and easily visible plaques as observed for OMV (Fig. 2).

The IPNV VR299 strain produced plaques in BF-2, CHSE-214, RTG-2, and STE-137 cells, but not in BB, EPC, and FHM cells (Table 3). Using a methylcellulose overlay in BF-2 and STE-137 cells, IPNV failed to produce plaques. The highest plaquing efficiency was obtained with CHSE-214 cell-methylcellulose or gum tragacanth overlay (1.6-1.9×10^6 PFU/ml). Like OMV and IHNV, IPNV also produced more distinct plaques using methylcellulose overlay and CHSE-214 cells. The plaques of IPNV under this condition are shown in Fig. 2. In BF-2, RTG-2, and STE-137 cells, plaques were not distinct enough to be measured and the titres determined by plaque assay were 100 fold lower than those produced by TCID_{50}.

From these data, the methylcellulose overlay-CHSE-214 cell system proved to be the most suitable for plaquing the three fish viruses tested.

Table 3. Effects of three different overlays and seven fish cell-lines on IPNV plaquing efficiency

<table>
<thead>
<tr>
<th>Cell-lines</th>
<th>Methylcellulose</th>
<th>Tragacanth</th>
<th>Agarose</th>
<th>Methylcellulose</th>
<th>Tragacanth</th>
<th>Agarose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF-2</td>
<td>0.0</td>
<td>2.5×10^4</td>
<td>7.9×10^3</td>
<td>0.4-0.6</td>
<td>1.2-2.2</td>
<td>1.0-3.1</td>
</tr>
<tr>
<td>CHSE-214</td>
<td>1.6×10^7</td>
<td>1.9×10^6</td>
<td>7.7×10^3*1</td>
<td>0.2-0.6</td>
<td>0.7-1.4</td>
<td>1.2-3.7</td>
</tr>
<tr>
<td>EPC</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FHM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTG-2</td>
<td>2.7×10^9</td>
<td>3.5×10^9</td>
<td>1.7×10^6*2</td>
<td>0.6-1.4</td>
<td>1.1-3.5</td>
<td></td>
</tr>
<tr>
<td>STE-137</td>
<td>0.0</td>
<td>4.2×10^8</td>
<td>8.5×10^6*2</td>
<td>0.6-1.4</td>
<td>1.1-3.5</td>
<td></td>
</tr>
</tbody>
</table>

*1 Average of two trials; *2 plaque counts on one trial.

![Plaque characteristics of IHNV and IPNV grown under methylcellulose overlay on CHSE-214 cells. A, IHNV; B, IPNV.](image-url)
Table 4. Comparison of plaque assay with TCID$_{50}$ method on CHSE-214 cell line

<table>
<thead>
<tr>
<th>Viruses</th>
<th>Plaque assay (PFU/m2)</th>
<th>TCID$_{50}$/m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPNV</td>
<td>1.6×10^7</td>
<td>1.2×10^6</td>
</tr>
<tr>
<td>IHNV</td>
<td>1.1×10^8</td>
<td>6.3×10^6</td>
</tr>
<tr>
<td>OMV</td>
<td>7.6×10^9</td>
<td>1.2×10^4</td>
</tr>
</tbody>
</table>

* Plaque assay was carried out using methylcellulose overlay.

Comparative titres determined by plaque assay and TCID$_{50}$ method

The virus titres determined by plaque assay using methylcellulose and CHSE-214 cells were compared with the TCID$_{50}$ titres in the same cells (Table 4). OMV showed slightly lower titres in the plaque assay compared with the TCID$_{50}$. In contrast to the results of OMV, titre of IHNV in the plaque assay was higher than in the TCID$_{50}$. IPNV displayed similar titres in both the plaque assay and the TCID$_{50}$ method.

Discussion

In this study, the twenty-one combinations of methylcellulose, gum tragacanth, and agarose overlays and seven fish cell-lines were tested to compare the plaque forming efficiency of OMV with the plaque formation of IHNV and IPNV. KLEEMAN et al. (1970) reported that salmonid fish cells require CO$_2$ for their growth in vitro. However, EAGLE (1971) demonstrated that an organic buffer or buffer combination is available for reduction of pH variation in the mammalian cell culture. WOLF and QUIMBY (1973) recommended using Tris-buffer for fish cell culture. Thus, we selected a medium supplemented with Tris-buffer in the open air instead of using a CO$_2$-incubator for cell cultures. The data obtained suggested that adequate plaque formation was obtained under these conditions. Although virus plaque formation is known to be enhanced by the addition of DEAE dextran (ROSSI and WATRACH, 1970) or polybrene (LEONG et al., 1981), use of these additives was omitted in order to simplify the procedure.

In the present study, OMV plaque formation was observed on only two of the tested cells, those being CHSE-214 and RTG-2 cells. The plaque titre was about ten times higher in CHSE-214 cells than in RTG-2 cells. For both of these types of cells, methylcellulose overlay was more effective on OMV plaque formation than others. On the whole, agarose overlay was difficult to handle and often caused cell or virus damage. Therefore, among the three different overlays, methylcellulose was considered to be the best. Furthermore, the other cells, except for CHSE-214 cells, were not suitable for plaque assay of OMV because of low plaque counts, obscure morphology, and difficulty in enumeration.

IHNV produced plaques in BF-2, CHSE-214, EPC, FHM, and RTG-2 cells regardless of the overlays tested, but not in BB and STE-137 cells. Among the cells which formed plaques, FHM cells were most sensitive to IHNV in reference to the plaque counts and less plaques were produced in RTG-2 cells than FHM cells by 10 to 104 order. These results were in accordance with those of other studies (KELLEY et al., 1978; FENDRICK et al., 1982). The plaques in CHSE-214 cells, however, facilitated visual enumeration more than the others.

IPNV formed the plaques in BF-2, CHSE-214, RTG-2, and STE-137 cells overlayed with gum tragacanth or agarose. Methylcellulose overlay seemed to inhibit plaquing IPNV in BF-2 and STE-137 cells. Plaques were not observed in FHM cells infected with a higher dilution of IPNV. Since SCHERRER and COHEN (1975) and NICHOLSON et al. (1979) have reported that the plaquing of RTG-2 propagated IPNV was restricted considerably in FHM cells, if IPNV is inoculated in a higher dilution into FHM cells, it is likely that FHM cells may not allow IPNV to form plaques. Because the IPNV plaques in CHSE-214 cells were five times as great as the plaques in other cells, CHSE-214 cells were found to be most suitable for plaque assay of IPNV. In summary, methylcellulose overlay and the CHSE-214 cells was the most suitable combination for plaque assay of OMV as well as IHNV and IPNV.

References

FENDRICK, J. L., W. J. GROBERG, and J. C. LEONG (1982): Comparative sensitivity of five fish cell lines to wild type infectious haematopoietic necrosis virus from two Oregon sources. J. Fish Diseases, 5, 87-95.

