Comparative Growth Response of Fish Cell Lines in Different Media, Temperatures, and Sodium Chloride Concentrations

Roselyn D. Fernandez, Mamoru Yoshimizu, Yoshio Ezura and Takahisa Kimura

Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Hokkaido 041, Japan

(Received October 14, 1992)

Growth responses to three different media, temperatures, and sodium chloride concentrations in the media were determined for 13 salmonid and 14 non-salmonid fish cell lines. Most cell lines showed better growth in Eagle's MEM than in Medium 199 or in Leibovitz L-15 medium. Nine salmonid cell lines grew well in the normal sodium bicarbonate buffer in Eagle's MEM, while 11 non-salmonid cell lines grew better in Eagle's MEM buffered with either HEPES-bicarbonate or Tris-bicarbonate. Optimum temperature for growth ranged from 15 to 20°C for almost all salmonid cells and 20 to 30°C for non-salmonid cells. Most of the cell lines showed highest growth in commercial medium preparations with the lowest concentration of sodium chloride (0.116 M) examined. However, three of the six cell lines derived from rainbow trout, Oncorhynchus mykiss, and cell lines from eels, Anguilla japonica, showed optimum growth response at a higher sodium chloride concentration of 0.171 M in the medium.

The increase in incidences of fish viral diseases due to the intensification of the aquaculture industry had made fish cell culture an invaluable technique in fish disease diagnosis. Additionally, the interest in this aspect is widely advancing since fish cell lines are now popularly used not only in fish disease studies but as well as in other research fields (Hightower and Renfro, 1988; Nicholson, 1989; Bels, 1991).

Approaches in the use of growth media and maintenance of fish cell lines are very similar to those of mammalian and animal cell lines (Wolf and Quimby, 1969). Until lately, commercially available media are being applied without modification in the propagation of fish cell lines, although several attempts to modify and improve some of its additives are in progress (Barnes and Sato, 1980; Shea and Berry, 1983; Collodi and Barnes, 1990). The relatively convenient and quick way in the preparation of media, as they are commercially available, for fish cell propagation coupled with its need in fish disease studies had mounted to increasing number of cell lines to the present. Until in 1980, Wolf and Mann had reported at least 61 cell lines from teleost and probably this number had increased to 100 or more up to the present. Currently, there is just scattered information on appropriate media for fish cell propagation, incubation temperature, and sodium chloride requirements during which fish cells grow in vitro. In this report we attempted to define these aspects to provide more information to fish cell culturist and improve fish cell line propagation.

Materials and Methods

Cell Lines

Cell lines derived from salmonids: ASE, RTT, RTE (provided by Dr. B. J. Hill), CHH-1, CHSE-214, KO-6, RTH-149, STE-137 (provided by Dr. J. L. Fryer) SE, YNK (provided by Dr. T. Watanabe), RTG-2 (provided by Dr. K. Wolf), SEH and RTE-2 (by the authors); and from non-salmonid fish: BF-2, EPC, FHM (also from Dr. K. Wolf), CCO (also provided by Dr. J. A. Plumb), EO-2, EK-1 (provided by Dr. S.-N. Chen), EPG, SHH, WF-1, GSE, JSKG, KRE, KRE-2, and PAS (by the authors) (Table 1) were used in this study. Initially cell lines ASE, RTT, CHH-1, CHSE-214, KO-6, EPC, RTH-149, STE-137, RTG-2, RTE, RTE-2, BF-2, FHM were maintained in either Eagle's Minimum Essential Medium (Eagle's MEM, GIBCO) buffered with a combination of sodium bicarbonate (8.9 mM NaHCO₃) and tris-(hydroxymethyl)-aminomethane
<table>
<thead>
<tr>
<th>Cell line</th>
<th>Species</th>
<th>Passage number</th>
<th>Tissue of origin/morphology</th>
<th>Original Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Salmonids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASE</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>83</td>
<td>embryo/E*</td>
<td>Yoshimizu et al., 1988</td>
</tr>
<tr>
<td>CHH-1</td>
<td>chum salmon (Oncorhynchus keta)</td>
<td>100</td>
<td>heart/E</td>
<td>Lannan et al., 1984</td>
</tr>
<tr>
<td>CHSE-214</td>
<td>chinook salmon (Oncorhynchus tschawytscha)</td>
<td>255</td>
<td>embryo/E</td>
<td>Fryer et al., 1965</td>
</tr>
<tr>
<td>KO-6</td>
<td>kokanee salmon (Oncorhynchus nerka)</td>
<td>145</td>
<td>ovary/E</td>
<td>Lannan et al., 1984</td>
</tr>
<tr>
<td>SE</td>
<td>chum salmon</td>
<td>201</td>
<td>embryo/E</td>
<td>Watanabe et al., 1980</td>
</tr>
<tr>
<td>SEH</td>
<td>chum salmon</td>
<td>58</td>
<td>embryo/E</td>
<td>Yoshimizu et al., 1988</td>
</tr>
<tr>
<td>YNK</td>
<td>yamame (Oncorhynchus masou)</td>
<td>233</td>
<td>kidney/F**</td>
<td>Watanabe et al., 1978</td>
</tr>
<tr>
<td>RTE</td>
<td>rainbow trout (Oncorhynchus mykiss)</td>
<td>98</td>
<td>embryo/E</td>
<td>Yoshimizu et al., 1988</td>
</tr>
<tr>
<td>RTE-2</td>
<td>rainbow trout</td>
<td>67</td>
<td>embryo/E</td>
<td>Yoshimizu et al., 1988</td>
</tr>
<tr>
<td>RTG-2</td>
<td>rainbow trout</td>
<td>304</td>
<td>gonads/E</td>
<td>Wolf and Quimby, 1962</td>
</tr>
<tr>
<td>RTH-149</td>
<td>rainbow trout</td>
<td>216</td>
<td>hepatoma/E</td>
<td>Fryer et al., 1981</td>
</tr>
<tr>
<td>RTH</td>
<td>rainbow trout</td>
<td>83</td>
<td>tail/F</td>
<td>Yoshimizu et al., 1988</td>
</tr>
<tr>
<td>STE-137</td>
<td>rainbow trout</td>
<td>206</td>
<td>embryo/E</td>
<td>Fryer et al., 1965</td>
</tr>
<tr>
<td>B. Non-salmonids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF-2</td>
<td>bluegill (Lepomis macrochirius)</td>
<td>114</td>
<td>caudal trunk/F</td>
<td>Wolf et al., 1966</td>
</tr>
<tr>
<td>CCO</td>
<td>channel catfish (Ictalurus punctatus)</td>
<td>275</td>
<td>ovary/E</td>
<td>Bowser and Plumb, 1980</td>
</tr>
<tr>
<td>EO-2</td>
<td>Japanese eel (Anguilla japonica)</td>
<td>99</td>
<td>ovary/F</td>
<td>Chen and Kou, 1981</td>
</tr>
<tr>
<td>EK-1</td>
<td>Japanese eel</td>
<td>88</td>
<td>kidney/F</td>
<td>Chen et al., 1982</td>
</tr>
<tr>
<td>EPC</td>
<td>carp (Cyprinus carpio)</td>
<td>156</td>
<td>epithelioma/E</td>
<td>Fijan et al., 1983</td>
</tr>
<tr>
<td>EPG</td>
<td>goldfish (Carassius auratus)</td>
<td>57</td>
<td>epithelioma/E</td>
<td>Yoshimizu et al., 1988</td>
</tr>
<tr>
<td>FHM</td>
<td>fathead minnow (Pimephales promelas)</td>
<td>237</td>
<td>caudal trunk/E</td>
<td>Gravell and Malsberger, 1965</td>
</tr>
<tr>
<td>SHH</td>
<td>snakehead (Channa striatus)</td>
<td>77</td>
<td>heart/E</td>
<td>Yoshimizu et al., 1988</td>
</tr>
<tr>
<td>WF-1</td>
<td>pond smelt (Hypomesus olidus)</td>
<td>52</td>
<td>fin/E</td>
<td>Yoshimizu et al., 1988</td>
</tr>
<tr>
<td>GSE***</td>
<td>gizzardshad (Clupanodon punctatus)</td>
<td>78</td>
<td>embryo/E</td>
<td>Yoshimizu, 1991</td>
</tr>
<tr>
<td>JSKG***</td>
<td>Japanese stripeknifefish (Oplegnathus fasciatus)</td>
<td>64</td>
<td>gonad/E</td>
<td>Fernandez et al., 1993, in press</td>
</tr>
<tr>
<td>KRE***</td>
<td>hybrid of kelp and red spotted grouper (Epinephelus molata × E. aakaara)</td>
<td>92</td>
<td>embryo/E</td>
<td>Fernandez et al., 1993, in press</td>
</tr>
<tr>
<td>KRE-2***</td>
<td>hybrid of kelp and red spotted grouper</td>
<td>93</td>
<td>embryo/E</td>
<td>Yoshimizu, 1991</td>
</tr>
<tr>
<td>PAS***</td>
<td>purplish amberjack (Seriola dumerilii)</td>
<td>124</td>
<td>skin/E</td>
<td>Fernandez et al., 1993, in press</td>
</tr>
</tbody>
</table>

* epithelioid
** fibroblastic
*** marine fish cell lines.
(16 mM Tris). Cell lines EO-2, EK-1, EPG, SE, SEH, YNK, WF-1, SHH, CCO, GSE, JSKG, KRE, KRE-2 and PAS were maintained in Leibovitz L-15 Medium. Both media were supplemented with 10% FBS and with added antibiotics, 100 IU penicillin (Sigma) and 100 μg streptomycin (Sigma) per ml. Salmonid cell lines were maintained at 15°C including EO-2, EK-1, WF-1, EPC and EPG, while non-salmonid cell lines at 20°C.

Growth Response to Various Culture Media

Growth response of the cell lines in three kinds of semi-synthetic media were observed: Eagle's MEM, Leibovitz L-15 Medium and Medium 199. In Eagle's MEM, aside from the usual sodium bicarbonate buffer (26 mM), two other organic buffers were used; HEPES (N-[2-hydroxyethyl]piperazine-N'-2-ethanesulfonic acid) (14 mM) and Tris (16 mM), in combination with sodium bicarbonate (8.9 mM). Cells were seeded in 48 wells of a 96-well microplates (Coming) and incubated at either 15° or 20°C. Cells in Eagle's MEM with sodium bicarbonate alone was incubated in a CO₂ incubator (5% CO₂).

Determination of Cell Growth Response

Cell growth responses were observed based on the methods described by Fernandez et al. (1993). After 7 days incubation period, cells in microplates were fixed with 10% formalin for 30 min to 1 h and carefully rinsed with tap water. Cells were then stained with 0.1% crystal violet for 1 h and were rinsed again with several washings. Rinsed microplates were then thoroughly air-dried. Absorbance of stained microplates was read in a Microplate Spectrophotometer (Corona MTP-22) at 600 nm.

Results

Growth Response to Various Culture Media

Relative growth response of the cell lines in various media was calculated as the ratio of mean absorbance reading at 600 nm on the final day (day 7) to that on the initial (day 1) of incubation (Table 2). Interestingly, high response was observed in Eagle's MEM with the usual sodium bicarbonate buffer in 9 (69%) of the 13 salmonid cell lines. Eagle's MEM with Tris-bicarbonate was shown also as the second media of choice for salmonid cell lines. On the other hand, growth responses of cell lines from non-salmonid fish were high when Eagle's MEM was buffered with either HEPES-bicarbonate or Tris-bicarbonate. Growth responses of the two groups of fish cell lines were poor in both Medium 199 and Leivobitz L-15.

Growth Response to Various Temperatures

Optimum growth response of both salmonid and non-salmonid lines were observed at varying temperature exposures (Figs. 1–3). Cell lines from salmonid fish, both from Oncorhynchus spp. and Oncorhynchus mykiss had an optimum growth temperature from 15° to 20°C and with very little or no response at 25° or 30°C (Fig. 1). Among the non-salmonid cell lines, only EPG, a cell line from an epithelium of goldfish, behaved similarly to the salmonid cell lines. For the non-salmonid cell lines, optimum growth response varied from 20° to 25°C and 30°C. EO-2 and EK-1, cell lines derived from eels, and BF-2 had its optimum growth temperature at 25°C; FHM, CCO, and EPC at 30°C; SHH at 20°C; and a broad optimum temperature ranged from 20° to 30°C for WF-1 (Fig. 2). Marine fish cell lines JSKG and PAS had their optimum growth temperature at 25°C; KRE at 30°C; and GSE and KRE-2 at 20°.
Table 2. Relative growth response of fish cell lines in three commercial media after 1 and 7 days incubation

<table>
<thead>
<tr>
<th>Cell Lines</th>
<th>Relative growth*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eagle’s MEM</td>
</tr>
<tr>
<td></td>
<td>HEPES</td>
</tr>
<tr>
<td>A. Salmonid</td>
<td></td>
</tr>
<tr>
<td>ASE</td>
<td>0.63</td>
</tr>
<tr>
<td>CHH-1</td>
<td>4.29</td>
</tr>
<tr>
<td>CHSE-214</td>
<td>5.57</td>
</tr>
<tr>
<td>KO-6</td>
<td>4.42</td>
</tr>
<tr>
<td>RTE</td>
<td>2.53</td>
</tr>
<tr>
<td>RTE-2</td>
<td>2.34</td>
</tr>
<tr>
<td>RTG-2</td>
<td>4.22</td>
</tr>
<tr>
<td>RTH-149</td>
<td>6.32*</td>
</tr>
<tr>
<td>RFT</td>
<td>2.37</td>
</tr>
<tr>
<td>SE</td>
<td>1.55*</td>
</tr>
<tr>
<td>SEH</td>
<td>1.36</td>
</tr>
<tr>
<td>STE-137</td>
<td>2.54</td>
</tr>
<tr>
<td>YNK</td>
<td>2.03</td>
</tr>
<tr>
<td>B. Non-salmonid</td>
<td></td>
</tr>
<tr>
<td>BF-2</td>
<td>0.5</td>
</tr>
<tr>
<td>CCO</td>
<td>12.81*</td>
</tr>
<tr>
<td>EO-2</td>
<td>2.09*</td>
</tr>
<tr>
<td>EK-1</td>
<td>2.38</td>
</tr>
<tr>
<td>EPC</td>
<td>2.41</td>
</tr>
<tr>
<td>EPG</td>
<td>3.91</td>
</tr>
<tr>
<td>FHM</td>
<td>1.11</td>
</tr>
<tr>
<td>SHH</td>
<td>2.90</td>
</tr>
<tr>
<td>WF-1</td>
<td>3.33*</td>
</tr>
<tr>
<td>GSE**</td>
<td>1.66</td>
</tr>
<tr>
<td>JSKG**</td>
<td>4.56*</td>
</tr>
<tr>
<td>PAS**</td>
<td>3.75</td>
</tr>
<tr>
<td>KRE**</td>
<td>3.55*</td>
</tr>
<tr>
<td>KRE-2**</td>
<td>1.71*</td>
</tr>
</tbody>
</table>

* Final (day 7) mean absorbance reading at 600 nm
** Initial (day 1) mean absorbance reading at 600 nm
* cell lines from marine fish.
* highest response.

and 25°C (Fig. 3). ASE, a new cell line from Atlantic salmon also produced high growth response at 25°C and 30°C. Except for WF-1, all non-salmonid lines produced little or no response at 35°C.

Growth Response of the Cell Lines to Various Sodium Chloride Concentrations in the Media

The effect of various sodium chloride concentrations in the media on the growth of several fish cell lines was evaluated (Figs. 4 and 5). Among the sodium chloride concentrations used, the unadjusted medium, which contained approximately 0.116 M sodium chloride, showed the highest growth response to all salmonid lines of Oncorhynchus spp. and all non-salmonid lines including marine fish cell lines, except KRE. However, it is interesting to note that 3 of the 6 cell lines from rainbow trout had their highest growth response at a higher sodium chloride concentration of 0.171 M. Little or no response was observed from higher concentrations of 0.256 M, 0.341 M and 0.512 M sodium chloride.
Growth response of fish cell lines

Fig. 1. Growth response of cell lines from salmonids to various temperatures.
A. derived from *Oncorhynchus* spp.; B. derived from *Oncorhynchus mykiss*

Fig. 2. Growth response of cell lines from non-salmonids, derived from warm freshwater fish, to various temperatures.

Fig. 3. Growth response of cell lines from non-salmonids, (derived from marine fish) and ASE cell line (derived from Atlantic salmon) to various temperatures.

Discussion

The amenability of fish cell lines to the use of media intended for mammalian cell lines allowed the continued use of semi-synthetic media in fish cell line propagation without further modifications. Three types of media formulations are so far popular both in the initial and in the continued propagation of fish cells: Eagle's MEM, Medium 199, and Leibovitz L-15 medium. Of these three, it is noteworthy that Eagle's MEM had been preferred as the choice of media by most fish tissue culturists, needless to say that almost all of the present cell lines had been initially propagated using this medium. This report further confirms and agrees with the report of Fryer et al. (1965) on the superiority of Eagle's MEM over that of other commercial preparations.

The stability of pH in the media is of important consideration in the growth and metabolism of cells and depends in part on the buffering capacity of the media. Although it appears not to be so critical in fish cell culture (Wolf and Quimby, 1969), suboptimal limits may often result in deleterious changes in the cells such as sloughing, vacuolation, and contraction of cellular processes (Wolf and Ahne, 1982). Added bicarbonates in the medium are essential metabolites for many cells (Geyer and Chang, 1958; Swim and Parker, 1958; Eagle, 1971) and that their use in conjunction with organic buffers such as
Fig. 4. Growth response of cell lines from salmonids to various molarities (M) of NaCl in the media. A and B, derived from *Oncorhynchus* spp.; C, derived from *Oncorhynchus mykiss*.

Fig. 5. Growth response of cell lines from non-salmonid fish to various molarities (M) of NaCl in the media. A, B, and C, derived from warm freshwater fish; D and E, derived from marine fish.

HEPES was required for maximum virus production and for long term cell cultivation (Fisk and Pathak, 1969; Wolf and Quimby, 1973; Massie et al., 1974). It appears from our results that the normal bicarbonate buffering is adequate for most salmonid cells but may not be sufficient in non-salmonid cells. The high growth response of most non-salmonid cell lines in Eagle’s MEM with the addition of organic buffers such as HEPES and Tris indicate that normal bicarbonate system is not sufficient to promote growth of
these cells. On the other hand, there are reports on the toxic effect of Tris in mammalian cell cultures
(Swim and Parker, 1955; Good et al., 1966; Eagle,
1971). However, since the scope of our experimental
set up is very limited rendering no further cell obser-
vation, we recommend that further careful observa-
tion should be made on the cells if Tris should be
corporated in the medium on the basis of the above
reports. Our laboratory had been employing Tris
with sodium bicarbonate as its buffering system in
the media for fish cell lines. We have observed that
cells from two or three fish cell lines tended to form
clumps a few weeks after propagation, but this was
not exhibited when we shifted to other media. This
clumping of cells is similar to the observation of
Swim and Parker (1955) on the toxicity of Tris on
HeLa cell lines. On the other hand, HEPES had
been unquestionably used as an efficient medium and
produced no toxic effect when used in cell cultures
(Good et al., 1966; Shipman, 1969; Medzon and
Gendies, 1971; Eagle, 1971; Chagnon and Corbeil,
1973) but normally costs higher than Tris. Although
Medium 199 was reported as the first medium in fish
cell line propagation, it has not been popularly used
lately. Aside from its high cost (Wolf and Quimby,
1969), it had not convincingly shown effectiveness
in promoting cell growth in this experiment. The same
was also observed for Leibovitz L-15 medium. How-
ever, Leibovitz L-15 medium is also commonly used
by some fish cell culturists since it eliminates the use
of CO₂ incubators and preparation of buffers.

In general, fish cell lines can be grown at lower
temperatures and others at higher temperatures.
Thus, depending upon the choice of cells, they could
be very useful in a variety of purposes. This report
further justifies (although in a limited manner) the
temperature ranges of cell lines from fish. Also our
results support what has been previously reported on
the ranges of temperature for optimum cell growth
(Wolf and Ahne, 1982; Nicholson, 1988, 1989; Bols
and Lee, 1991). Nevertheless, according to Wolf
and Ahne (1982) "fish cell lines could still be ad-
apted, or selected, for growth at higher-than-normal
temperatures within reasonable limits."

This paper also confirms that fish cell lines could
well grow in the same amount of salt as that of the
mammalian cell lines. The high tolerance limit of the
three salmonid cell lines RTE, RTG-2 and STE-137,
two cell lines derived from eels, EO-2 and EK-1, and
a cell line from grouper, KRE in abrupt situations
seems to indicate that fish cell lines could still be
adapted to higher amounts of sodium chloride in the
medium, however, within reasonable limits. This
additional observation presented here may reinforce
the versatility and functionality of teleost cell lines to
various applications in biological research.

Acknowledgements

The authors are grateful to Dr. J. L. Fryer of
Department of Microbiology, Oregon State Univer-
sity, Corvallis, Oregon, U.S.A.; Dr. K. Wolf, former-
ly of U.S. Fish and Wildlife Service, National Fish
Health Research Laboratory, Kearneysville, West
Virginia, U.S.A.; Dr. T. Watanabe of Department of
Agriculture and Zoology, Fish Pathology Laborato-
ry, Nippon Daigaku, Japan; Dr. J. A. Plumb of
Department of Fisheries and Allied Aquacultures,
Auburn University, Alabama, U.S.A.; and S.-N.
Chen of Department of Zoology, National Taiwan
University, Taiwan, for providing us with the cell
lines used in this experiment. This study is supported
by a grant under the Monbusho International Sci-
entific Research Program No. 020440088.

References

Barnes, D. and G. Sato (1980): Methods for growth of
cultured cells in serum-free medium. Anal. Chem., 102,
255-270.

of cell cultures from tissues and organs of bony fish.
Cytotechnology, 6, 163-187.

Bowers, P. R. and J. A. Plumb (1980): Fish cell lines:
establishment of a line from ovaries of channel catfish.
In Vitro, 16, 365-368.

buffer (HEPES) in human lymphocytoid cell line cul-
tures. In Vitro, 8, 283-287.

Chen, S.-N. and G.-S. Kou (1981): A cell line derived from
Japanese eel (Anguilla japonica) ovary. Fish Pathol., 16,
129-137.

derived from Japanese eel (Anguilla japonica) kidney.

Collodi, P. and D. W. Barnes (1990): Mitogenic activity
from trout embryos. Proc. Natl. Acad. Sci. USA, 87,
3498-3502.

Fernandez, R. D., M. Yoshimizu, T. Kimura, Y. Ezura and T. Kimura

