HOKKAIDO UNIVERSITY

Title	Inter-popul ational difference in microsatellite centromere map distances in the loach, Misgurnus anguillicaudatus
Author(s)	Arias Rodriguez, Lenin; Morishima, Kagayaki; A rai, Katsutoshi
Citation	Ichthy ological Research, 56(2), 126-132 https://doi.org/10.1007/s10228-008-0077-7
Issue Date	2009-04
Doc URL	The original publication is available at springerlink.com
Rights	article (author version)
Type	IR08007_r.pdf
File Information	

Instructions for use

Inter-populational difference in microsatellite-centromere map distances in the loach, Misgurnus anguillicaudatus

Lenin Arias-Rodriguez • Kagayaki Morishima • Katsutoshi Arai
L. Arias-Rodriguez \cdot K. Morishima \cdot K. Arai (\boxtimes)

Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
email: araikt@fish.hokudai.ac.jp

Present address:
L. Arias-Rodriguez

División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. C.P.

86150, Villahermosa, Tabasco, México

Running title: Microsatellite-centromere map distances in the loach

Type of paper: full paper

Number of text pages: ten pages

Number of tables: three tables

Abstract

Microsatellite-centromere recombination rates were estimated at 21 loci in relation to centromere of chromosomes in gynogenetic diploid lines induced from loaches of two different populations in Japan. All the microsatellite loci gave allelic segregation according to the Mendelian manner of inheritance in normal diploid families. Since loaches from Kita population in the southern area of Hokkaido Island and those from Memanbetsu population in the northern area, Hokkaido, Japan, were reported to be genetically diversified by previous genetic studies, map distances were compared between loaches from the two different populations. Three (Mado7, Mac3 and Mac49) of five loci, which could be compared inter-populationally, gave significantly different recombination rates, i.e., map distances. The results support the presence of genetic difference between the two populations.

Keywords Clone • Comparative genomics • Cobitidae • Polyploidy • Unisexual

Introduction

In the loach Misgurnus anguillicaudatus, most individuals in Japanese wild populations are diploids which reproduce sexually, but a small proportion of natural clonal diploids have been found in the northern area of Hokkaido Island, Japan (Morishima et al. 2002). These natural clonal individuals generate genetically identical diploid eggs by the cytological mechanism called premeiotic endomitosis (Itono et al. 2006). Most of such eggs develop by sperm-dependent parthenogenesis, i.e., gynogenesis (Itono et al. 2007). Triploids accidentally appear in nature by incorporation of a haploid sperm nucleus of normal diploid loach into unreduced diploid egg of the clone (Morishima et al. 2002; Itono et al. 2007). Such clone-derived triploids generally produce haploid gametes by atypical reproductive system of meiotic hybridogenesis: meiosis after the preferential pairing between one genome (chromosome set) of the clone and a counterpart genome of the sperm donor as well as the elimination of unmatched one genome of the clone (Morishima et al. 2008c). This previous result suggested the presence of two distinct genomes in the clone, and its hybrid origin in the loach.

Although the loach M. anguillicaudatus has been recognized as a single species entity in Japan (Saitoh 1989), recent analyses on sequences of the control region of mtDNA demonstrated the presence of diversified two clades in the phylogenic tree, probably
corresponding to cryptic species which exist in Misgurnus loaches (Morishima et al. 2008a).

One of such genetic groups inhabits in the northern area of Hokkaido Island, while the second corresponds to those in the other part of Japanese territory including the southern area of Hokkaido Island (Morishima et al. 2008a). Genetic differences between northern Hokkaido and others have also been suggested by earlier allozyme studies (Khan and Arai 2000) and recent microsatellite analysis (Arias-Rodriguez et al. 2007). Although these previous results suggest the presence of distinction in genomic or chromosome structure between genetically different groups, karyological variations have not been detected in these diploid loaches so far examined by conventional method (Arai et al. 1991b; Zhang and Arai 1999; Itono et al. 2006). Molecular cytogenetic tools to realize fluorescence in situ hybridization have not been used for the understanding of genomic structure on Misgurnus loaches chromosomes.

Comparative mapping is considered a powerful approach to clarify structure of the genome of target species, but linkage mapping is generally much laborious, expensive and time-consuming. In the Misgurnus loach, only first-generation linkage map including 159 microsatellite markers and one color gene is available at present (Morishima et al. 2008b). In contrast to linkage analyses, mapping genes or markers on chromosomes in relation to its centromere can be relatively easily achieved by half-tetrad analysis based on measurements of the frequency of second meiotic division segregation (y) in triploid and gynogenetic diploid lines induced by chromosome manipulation (Thorgaard et al. 1983). In salmonid species in
which gene-centromere (G-C) recombination rates were measured for relatively large number of allozyme loci, map distances to the centromere were reported to be well conserved in most enzyme loci with some minor differences (Guyomard 1984; Allendorf et al. 1986; Seeb and Seeb 1986; Arai et al. 1991a; Lindner et al. 2000; Matsuoka et al. 2004). While map distances were different in the two allozyme loci between odd-year and even-year populations of the pink salmon Oncorhynchus gorbuscha, which species shows larger year-group genetic differentiation than geographic groups (Matsuoka et al. 2004).

In the loach, map distances of allozyme genes and microsatellite markers in relation to the centromere have been estimated in artificially induced gynogenetic diploid lines (Suwa et al. 1994; Morishima et al. 2001, 2008b), but inter-populational microsatellite-centromere (M-C) map difference was not detected between a population from the southern area of Hokkaido Island and that from Hiroshima, Honshu Island. In the present study, we produced normal diploid families and gynogenetic diploid lines in loaches collected from the genetically different populations of the northern and southern area of Hokkaido Island (Khan and Arai 2000; Arias-Rodriguez et al. 2007; Morishima et al. 2008a). For comparative half-tetrad analysis, we estimated M-C map distances in microsatellite loci between these highly diversified populations of the loach to verify the presence of inter-populational genetic differentiation again by gene or microsatellite-centromere mapping approach.

Materials and methods

Fish specimens. Bisexually reproducing normal diploid loaches were collected from Memanbetsu (M) town (Present locality name: Ozora Town after municipal consolidation at 2006), northern area of Hokkaido Island and Kita (K) Village (Present locality name: Iwamizawa city), southern area of Hokkaido Island, Japan. Mature goldfish males were provided from the brood stock reared in the Nanae Fresh-Water Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Nanae town, Kameda County, Hokkaido, Japan.

Normal diploid families and gynogenetic diploid lines. Mature eggs were obtained from seven females, two from M (1 M and 2 M) and five from K (1 K to 5 K) according to Morishima et al. (2002). Sperm was collected from loach for normal fertilization and from goldfish for gynogenesis. Goldfish sperm was UV-irradiated according to Suwa et al. (1994). Eggs from each female were fertilized with UV-irradiated sperm to induce gynogenetic development and then eggs were heat-shocked at $42.0 \pm 0.1^{\circ} \mathrm{C}$ for 2 min duration or cold-shocked at $0.0 \pm 0.2^{\circ} \mathrm{C}$ for 32 min duration at 5 min after activation with aged tap water to duplicate chromosomes by inhibiting the second polar body release. Normal diploid families were produced from same females used for induction of gynogenesis and eggs were
fertilized with either male from M or K population. Hatched larvae were reared individually and fed three times a day with Artemia for 3 weeks.

Genetic analysis and microsatellite-centromere mapping. Eighteen to twenty larvae from each normal diploid family and 30 to 60 larvae from each gynogenetic diploid line were genotyped for microsatellite DNA marker loci developed by Morishima et al. (2001) and Arias-Rodriguez et al. (2007). Genomic DNA of each sample was extracted and purified according to Arai and Mukaino (1997). Microsatellite markers were amplified and analyzed according to Morishima et al. (2001) and Arias-Rodriguez et al. (2007).

Mendelian manner of segregation at each microsatellite loci was tested in normal diploid families by chi-square statistics ($P<0.05$). M-C recombination rate, i.e., frequency of the second meiotic division segregation (y), of each locus was estimated by scoring recombinant heterozygous and non-recombinant homozygous genotypes in each gynogenetic diploid line induced from a heterozygous female. M-C map distance was estimated from y value under the assumption of complete chiasma interference suggested by Thorgaard et al. (1983). Map distance in centiMorgan (cM) is equivalent to $100(y / 2)$. Theoretically equal frequencies of two homozygous genotypes in gynogenetic diploid line were tested by chi-square ($P<0.05$). The contingency chi-square test was also made for the frequencies of heterozygous and homozygous genotypes between or among lines from each population.

Results

In normal diploid families showing genetic variation in parental fish, microsatellite alleles were segregated according to the Mendelian manner of inheritance at 21 loci examined (electronic supplementary material).

M-C recombination rates were estimated at 21 loci using at most seven gynogenetic diploid lines, comprising five lines from Kita population (1 K to 5 K) and two lines from Memanbetsu population (1M and 2M) (Table 1). Frequencies of the second meiotic division segregation (y) for Mado1, Mado4 and Mado30 loci were only estimated in 1M and/or 2M lines. Those for Mado3, Mado6, Mado8, Mado14, Mado21, Mado27, Mac2, Mac24, Mac35, Mac37, Mac40, Mac44 and Mac45 were exclusively assessed in gynogenetic diploid lines from females in Kita population (K1 to 5K). In these loci, map distances could not be compared between the two populations. Mado3, Mado27, and Mac45 gave low y values, while Mado14, Mado21, Mac40 and Mac44 showed high y values (Table 1). Other loci demonstrated intermediate y-values (Table 1).

Recombination rates could be compared between the two populations in other Mado7, Mado18, Mac3, Mac36 and Mac49 loci (Table 1). In Mado7 locus, no or very few recombinant progeny appeared in gynogenetic lines 1 M and $2 \mathrm{M}(y=0$ or nearly 0$)$, but
gynogens from the different Kita population $(1 \mathrm{~K}, 2 \mathrm{~K}, 4 \mathrm{~K}$ and 5 K$)$ gave y-values from 0.27 to 0.45 (0.39 in average).

Inter-populational differences were statistically significant. In Mac3 locus, gynogens from females of Kita population showed $y=0.02$ to 0.17 (average 0.10), but those from a Memanbetsu female gave $y=0.25$. Contrastive y values were also observed in Mac49 locus: y $=0.06$ in gynogens from Kita population and $y=0.32$ in those from Memanbetsu population. However, similar recombination rates were detected at $\operatorname{Mado18}(y=0)$ and $\operatorname{Mac} 36(y=$ $0.38-0.48$) in both two populations.

Inter-populational comparison of microsatellite-centromere map distances between Memanbetsu and Kita populations was shown in Table 2, together with the previous results by Morishima et al. (2001, 2008b). In loaches from Kita population, Mado3, Mado18, Mado27, Mac2, Mac3, Mac45 and Mac49 loci were concluded to be located at proximal or centromeric region of chromosomes, 0 to 5.5cM from the centromere. While Mado14, Mado21, Mac40 and Mac44 loci were located at distal or near telomeric region (46.3 to 50cM) from the centromere. These estimations in Mac series loci are similar to the previous estimations in loaches from Ohno population, southern area of Hokkaido Island (Morishima et al. 2001, 2008b) and Sera population, Hiroshima Prefecture, Honshu Island (Morishima et al. 2001). In loaches from Memanbetsu population, Mado18 and Mac36 loci gave similar map distances from the centromere with those estimated in Kita loaches. However, map distances of Mado7,

Mac3 and Mac49 loci were different from those estimated in Kita loaches and in the previous studies (Morishima et al. 2001, 2008b).

Discussion

Allelic segregation at the analyzed Mac and Mado microsatellite marker loci followed the Mendelian manner of inheritance in the normal diploid loach families from the two populations, as previously reported by Morishima et al. (2001) for the Mac markers.

Segregation distortion was not observed in the families analyzed in the present study. Seven out of ten Mado loci were fixed to alleles specific to the Kita or Memanbetsu population as already reported by Arias-Rodriguez et al. (2007). Thus, the segregation in these loci could not be examined in one of the two populations, in which both female and male were homozygous. Homozygous genotypes were observed at Mac2, Mac24, Mac35, Mac37, Mac40, Mac44 and Mac45 loci in Kita population.

G-C or M-C map distance was estimated from the fraction of recombinant heterozygous half-tetrads (y) and microsatellite loci were distributed from the proximal or centromeric $(y=$ 0) to distal or telomeric $(y=1)$ region on the loach chromosome, as reported in previous studies (Morishima et al. 2001, 2008b). In Kita population, Mado14, Mado21, Mac40 and

Mac44 gave very high recombination rates $(y=0.93-1)$. Second meiotic division segregation frequencies larger than two-third $(y=0.67)$ have been noticed in gene and marker loci in previous studies in the loach (Suwa et al. 1994; Morishima et al. 2001, 2008b) and other fish species (Streisinger et al. 1986; Liu et al. 1992; Kauffman et al. 1995; Johnson et al. 1996; Nomura et al. 2006; Lahrech et al. 2007), suggesting the presence of strong positive chiasma interference (Thorgaard et al. 1983).

When compared M-C map distances of Mac loci, similar distances were observed between loaches from Kita population in the present study and those from Ohno and Sera populations reported in Morishima et al. (2001, 2008b) (Table 2). The comparison suggests little difference among loaches from these three localities. Recent population genetic result shows genetic similarities among loaches in these localities (Khan and Arai 2000; Morishima et al. 2008a). On the other hand, map distances at three of the five microsatellite loci, which were able to compare, gave a difference between the two populations (Table 2). Mado7 locus was close to the centromere in loaches from Memanbetsu, while that was located at about intermediate position of a chromosome in loaches from Kita population. Tightly linked Mac2 and Mac3 were located at near the centromere of short arm of the same chromosome (linkage group 12) (Morishima et al. 2008b). The locus Mac3 (and Mac2 probably) of Kita loaches are located at centromeric region, but those of Memanbetsu loach were located at the region, about 8 to 10 cM shifted to telomere. Similar map difference was also found at the Mac49
locus of a different linkage group 11 (Morishima et al. 2008b): centromeric position in Kita loaches and intermediate position in Memanbetsu loach. At present, it is very difficult to verify the involvement of chromosome rearrangement such as inversion of markers in these linkage groups (i.e., chromosomes) on the inter-populational difference in M-C map distances, due to the shortage of linkage-mapped loci examined.

However, the present results support the previous population genetic conclusion based on mtDNA which showed the possible presence of two diversified groups in the Misgurnus loaches (Morishima et al. 2008a). The relationship among the presence of cryptic species, occurrence of clonal lineages and natural polyploids in Misgurnus loaches remains to be solved.

Acknowledgments This study was partly supported by Grants-in-Aid for the 21st Century COE (Center of Excellence) Program from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan and for the Scientific Research (B) (No. 18380108) from Japan Society for the Promotion of Science (JSPS) to KA.

References

Allendorf FW, Seeb JE, Kunudsen KL, Thorgaard GH, Leary RF (1986) Gene-centromere mapping of 25 loci in rainbow trout. J Hered 77:307-312

Arai K, Fujino K, Sei N, Chiba T, Kawamura M (1991a) Estimating rate of gene-centromere recombination at 11 isozyme loci in the Salvelinus species. Nippon Suisan Gakkaishi 57:1043-1055

Arai K, Matsubara K, Suzuki R (1991b) Karyotype and erythrocyte size of spontaneous tetraploidy and triploidy in the loach Misgurnus anguillicaudatus. Nippon Suisan Gakkaishi 57:2173-2178

Arai K, Mukaino M (1997) Clonal nature of gynogenetically induced progeny of triploid (diploid \times tetraploid) loach, Misgurnus anguillicaudatus (Pisces: Cobitididae). J Exp Zool 278:412-421

Arias-Rodriguez L, Morishima K, Arai K (2007) Genetically diversified populations in the loach Misgurnus anguillicaudatus inferred from newly developed microsatellite markers. Mol Ecol Notes 7:82-85

Guyomard R (1984) High level of residual heterozygosity in gynogenetic rainbow trout, Salmo gairdneri, Richardson. Theor Appl Genet 67:307-316

Itono M, Morishima K, Fujimoto T, Bando E, Yamaha E, Arai K (2006) Premeiotic endomitosis produces diploid eggs in the natural clone loach, Misgurnus anguillicaudatus (Teleostei:Cobitidae). J Exp Zool 305A:513-523

Itono M, Okabayashi N, Morishima K, Fujimoto T, Yoshikawa H, Yamaha E, Arai K (2007) Cytological mechanisms of gynogenesis and sperm incorporation in unreduced diploid eggs of the clonal loach, Misgurnus anguillicaudatus (Teleostei:Cobitidae). J Exp Zool 307A:35-50

Johnson SL, Gates MA, Johnson M, Talbot WS, Horne S, Baik K, Rude S, Wong JR, Postlethwait JH (1996) Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142:1277-1288

Kauffman EJ, Gestl EE, Kim DJ, Walker C, Hite JM, Yan G, Rogan PK, Johnson SL, Cheng KC (1995) Microsatellite-centromere mapping in the zebrafish (Danio rerio). Genomics 30:337-341

Khan MR, Arai K (2000) Allozyme variation and genetic differentiation in the loach Misgurnus anguillicaudatus. Fish Sci 66:211-222

Lahrech Z, Kishioka C, Morishima K, Mori T, Saito S, Arai K (2007) Genetic verification of induced gynogenesis and microsatellite-centromere mapping in the barfin flounder, Verasper moseri. Aquaculture 272:S115-S124

Lindner KR, Seeb JE, Habicht C, Knudsen KL, Kretschmer E, Reedy DJ, Spruell P, Allendorf FW (2000) Gene-centromere mapping of 312 loci in pink salmon by half-tetrad analysis. Genome 43:538-549

Liu Q, Goudie CA, Simco BA, Davis KB, Morizot DC (1992) Gene-centromere mapping of
six enzyme loci in gynogenetic channel catfish. J Hered 83:245-248

Matsuoka MP, Gharett AJ, Wilmot RL, Smoker WW (2004) Gene-centromere distances of allozyme loci in even and odd year pink salmon (Oncorhynchus gorbuscha). Genetica 121:1-11

Morishima K, Horie S, Yamaha E, Arai K (2002) A cryptic clonal line of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) evidenced by induced gynogenesis, interspecific hybridization, microsatellite genotyping and multilocus DNA fingerprinting. Zool Sci 19:565-575

Morishima K, Nakamura-Shiokawa Y, Bando E, Li YJ, Boron A, Khan MR, Arai K (2008a) Cryptic clonal lineages and genetic diversity in the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) inferred from nuclear and mitochondrial DNA analyses. Genetica 132:159-171

Morishima K, Nakayama I, Arai K (2001) Microsatellite-centromere mapping in the loach Misgurnus anguillicaudatus. Genetica 111:59-69

Morishima K, Nakayama I, Arai K (2008b) Genetic linkage map of the loach Misgurnus anguillicaudatus (Teleostei:Cobitidae). Genetica 132:227-241

Morishima K, Yoshikawa H, Arai K (2008c) Meiotic hybridogenesis in triploid Misgurnus loach derived from a clonal lineage. Heredity 100:581-586

Nomura K, Morishima K, Tanaka H, Unuma T, Okuzawa K, Ohta H, Arai K (2006) Microsatellite-centromere mapping in the Japanese eel (Anguilla japonica) by half-tetrad analysis using induced triploid families. Aquaculture 257:53-67

Saitoh K (1989) Asian pond loach. In: Kawanabe H, Mizuno N (eds) Freshwater fishes of Japan. Yamakei Pub, Tokyo, pp 382-385

Seeb JE, Seeb LW (1986) Gene mapping of isozyme loci in chum salmon. J Hered 77:399-402

Streisinger G, Singer F, Walker C, Knauber D, Dowerk N (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112:311-319

Suwa M, Arai K, Suzuki R (1994) Suppression of the first cleavage and cytogenetic studies on the gynogenetic loach. Fish Sci 60:673-681

Thorgaard GH, Allendorf FW, Knudsen KL (1983) Gene-centromere mapping in rainbow trout: high interference over long map distance. Genetics 103:771-783

Zhang Q, Arai K (1999) Distribution and reproductive capacity of natural triploid individuals and occurrence of unreduced eggs as a cause of polyploidization in the loach, Misgurnus anguillicaudatus. Ichthyol Res 46:153-161

Electronic Supplementary Material
Additional Table Genotypic segregation in 21 microsatellites Mado and Mac loci in normal diploid full-sib families from the Memanbetsu (1M-2M) and the Kita ($1 \mathrm{~K}-5 \mathrm{~K}$) populations crosses

Locus	Family	Parental genotype		Genotype of progeny : Observed				χ^{2}
		Female	Male					
Madol	1M	143/169	133/155	133/143:4	133/169:5	143/155:7	155/169:4	1.20
	2M	133/169	133/155	133/133:5	133/155:6	133/169:6	155/169:3	1.20
Mado3	1K	78/80	78/80	78/78:2	78/80:14	80/80:3		4.85
	2K	78/80	78/80	78/78:5	78/80:14	80/80:1		5.25
	3K	78/80	80/80	78/80:8	80/80:12			0.80
	5K	78/80	85/85	78/85:11	80/85:9			0.20
Mado4	1M	86/89	90/90	86/90:13	89/90:7			1.80
	2M	90/90	86/86	86/90:20				-
Mado6	1K	100/100	100/107	100/100:12	100/107:8			0.80
	5K	100/107	100/100	100/100:12	100/107:8			0.80
	2M	100/100	100/103	100/100:10	100/103:10			0.00
Mado 7	1K	138/140	138/148	138/138:4	138/140:6	138/148:5	140/148:5	0.40
	2K	138/140	138/148	138/138:12	138/148:8			0.80
	4K	114/138	136/144	114/136:6	114/144:5	136/138:4	138/144:5	0.40
	5K	140/148	144/144	140/144:11	144/148:9			0.20
	1M	134/148	126/146	126/134:4	126/148:7	134/146:3	146/148:6	2.00
	2M	140/148	126/146	126/140:6	126/148:5	140/146:6	146/148:3	1.20
Mado8	1K	210/218	210/218	210/210:4	210/218:12	218/218:3		2.67
	2K	210/218	210/210	210/210:10	210/218:10			0.00
	3K	218/218	210/210	210/218:20				-
	4K	218/238	218/218	218/218:10	218/238:10			0.00
	5K	210/218	210/210	210/210:10	210/218:10			0.00
	2M	218/218	223/223	218/223:20				-
Madol4	3K	122/126	126/126	122/126:9	126/126:11			0.20
	4K	122/126	126/126	122/126:10	126/126:10			0.00
Madol8	1K	165/180	186/186	165/186:11	180/186:9			0.20
	2K	165/165	162/166	162/165:11	165/166:8			0.47
	3K	157/170	165/165	157/165:10	165/170:10			0.00
	4K	170/170	186/186	170/186:20				-
	5K	157/165	165/165	157/165:9	165/165:11			0.20
	1M	176/196	184/196	176/184:5	176/196:5	196/196:5	184/196:5	0.00
	2M	196/196	176/176	196/176:20				-

Mado21	1K	101/101	101/103	101/103:12	101/101:7			1.31
	2K	100/100	101/116	100/101:9	100/116:11			0.20
	4K	100/103	100/100	100/100:9	100/103:11			0.20
	5K	103/103	101/101	101/103:20				-
	2M	73/73	67/73	67/73:10	73/73:10			0.00
Mado27	1K	111/124	108/111	108/111:7	108/124:3	111/111:3	111/124:6	2.68
	2K	111/111	111/124	111/111:8	111/124:12			0.80
	4K	108/108	124/124	108/124:20				-
	5K	108/124	111/111	108/111:8	111/124:12			0.80
	1M	117/117	117/117	117/117:20				-
	2M	108/108	111/11	108/111:20				-
Mado30	1 M	121/133	121/125	121/121:7	121/133:4	121/125:3	125/133:6	2.00
	2M	125/125	121/125	125/125:20				-
Mac2	1K	78/98	96/140	78/140:7	98/140:4	96/98:5	78/96:3	1.84
	2K	98/98	96/108	96/98:13	98/108:7			1.80
	4K	96/116	98/98	96/98:8	98/116:12			0.80
	5K	78/96	108/108	78/108:10	96/108:10			0.00
Mac3	1K	82/90	84/94	84/94:5	82/90:7	82/84:3	90/94:5	1.60
	2K	82/90	80/96	80/82:4	80/90:5	82/96:5	90/96:5	0.20
	3K	84/86	80/80	80/84:10	80/86:10			0.00
	4K	82/90	84/84	82/84:8	84/90:12			0.80
	5K	84/86	84/86	84/84:7	84/86:7	86/86:6		0.10
	1M	96/140	96/96	96/96:9	96/140:11			0.20
Mac24	2K	102/104	104/120	102/120:7	102/104:7	104/104:4	104/120:2	3.60
	3K	106/116	100/100	100/106:10	100/116:10			0.00
	5K	98/100	100/100	98/100:10	100/100:10			0.00
Mac35	1K	124/142	122/122	122/124:10	122/142:8			0.22
	2K	122/142	122/122	122/142:14	122/122:6			3.20
	3K	114/122	114/114	114/114:10	114/122:10			0.00
	4K	120/142	120/120	120/120:12	120/142:8			0.80
	5K	116/142	142/142	116/142:9	142/142:11			0.20
Mac36	1K	114/130	114/122	114/122:4	114/130:4	122/130:6	114/114:5	0.24
	2K	114/130	110/114	110/114:4	110/130:4	114/114:6	114/130:6	0.80
	3K	122/136	122/136	122/122:4	122/136:10	136/136:6		0.50
	4K	116/122	122/122	122/122:11	116/122:9			0.20
	5K	118/126	118/118	118/118:10	118/126:10			0.00
	1M	128/166	128/166	128/128:5	128/166:9	166/166:6		0.20
Mac37	1K	88/94	76/88	76/88:6	76/94:5	88/88:6	88/94:3	1.40
	2K	88/94	94/104	88/94:4	88/104:5	94/94:2	94/104:9	5.40

	3K	78/98	88/88	78/88:8	88/98:12			0.80
	4K	78/88	88/88	78/88:10	88/88:10			0.00
Mac40	1K	128/158	128/130	128/130:5	128/158:3	128/128:8	130/158:4	3.00
	2K	128/158	128/128	128/128:10	128/158:10			0.00
	4K	126/130	128/128	126/128:10	128/130:10			0.00
Mac44	1K	96/96	96/98	96/96:10	96/98:10			0.00
	4K	96/98	98/98	96/98:10	98/98:10			0.00
	5K	96/98	98/98	96/98:9	98/98:11			0.20
Mac45	2K	90/90	90/98	90/90:11	90/98:8			0.47
	3K	90/92	90/90	90/90:10	90/92:10			0.00
	4K	88/90	90/90	88/90:9	90/90:11			0.20
	5K	90/90	92/90	90/90:10	90/92:10			0.00
Mac49	1K	88/98	84/88	84/88:5	84/98:2	88/98:9	88/88:3	6.04
	2K	86/102	84/106	84/86:2	84/102:6	86/106:6	102/106:4	2.43
	3K	106/108	84/84	84/106:10	84/108:10			0.00
	4K	102/110	102/110	102/102:5	102/110:9	110/110:6		0.40
	5K	88/96	88/88	88/88:10	88/96:10			0.00
	1M	78/84	78/78	78/78:10	78/84:10			0.00
	2M	100/102	78/78	78/100:11	78/102:9			0.20

Table 1 Microsatellite-centromere recombination rate (second meiotic division segregation frequency $=y$) and map distance (cM) of microsatellites loci examined in gynogenetic lines from Kita ($1 \mathrm{~K}-5 \mathrm{~K}$) and from Memanbetsu ($1 \mathrm{M}-2 \mathrm{M}$) populations

Locus	Family	Maternal genotype	Genotype			$\begin{gathered} \text { Recombination } \\ \text { frequency } \\ \hline \end{gathered}$	M-C distance	χ^{2}
			1/1	1/2	2/2			
Madol	1M	143/169	25	7	27	0.12	5.9	0.08
	2M	133/169	26	10	22	0.17	8.6	0.33
		Sum	51	17	49	Ave 0.15	Ave. 7.3	0.68
Mado3	1K	78/80	31	6	23	0.10	5.0	1.19
	2K	78/80	29	3	28	0.05	2.5	0.02
	3K	78/80	16	3	25	0.07	3.4	1.98
	5K	78/80	23	5	32	0.08	4.2	1.47
		Sum	99	17	108	Ave. 0.08	Ave. 3.8	1.16
Mado4	1M	86/89	10	44	6	0.73	36.7	1.00
Mado6	5K	100/107	14	24	22	0.40	20.0	1.78
Mado 7	1K	138/140	24	22	14	0.37	18.3	2.63
	2K	138/140	16	26	18	0.43	21.7	0.12
	4K	114/138	17	9	8	0.27	13.2	3.24
	5K	140/148	14	27	19	0.45	22.5	0.76
		Sum	71	84	59	Ave. 0.39	Ave. 19.6	3.75
	1M	134/148	30	1	29	0.02	0.8	0.02
	2M	140/148	27	0	30	0.00	0.0	0.16
		Sum	57	1	59	Ave. 0.01	Ave. 0.4	0.96
Mado8	1K	210/218	23	22	15	0.36	18.3	1.68
	2K	210/218	15	27	18	0.45	22.5	0.27
	4K	218/238	17	9	8	0.26	13.2	3.24
	5K	210/218	25	23	12	0.38	19.2	4.57
		Sum	80	81	53	Ave. 0.37	Ave. 18.9	3.22

Madol4	3K	122/126	0	44	0	1.00	50.0	-
	4K	122/126	0	33	0	1.00	50.0	-
		Sum	0	77	0	Ave. 1.00	Ave. 50.0	-
Madol8	1K	165/180	31	0	29	0.00	0.0	0.07
	3K	157/170	25	0	19	0.00	0.0	0.82
	5K	157/165	27	0	28	0.00	0.0	0.02
		Sum	83	0	76	Ave. 0.00	Ave. 0.0	-
	1M	176/196	33	0	27	0.00	0.0	0.60
Mado21	4K	100/103	0	34	0	1.00	50.0	-
Mado27	1K	111/124	35	3	22	0.05	2.5	2.96
	5K	108/124	29	0	31	0.00	0.0	0.07
		Sum	64	3	53	Ave. 0.03	Ave. 1.3	3.08
Mado30	1M	121/133	9	33	17	0.56	28.0	2.46
Mac2	1K	78/98	29	5	23	0.09	4.4	0.69
	4K	96/116	13	4	14	0.13	6.5	0.04
	5K	78/96	31	7	20	0.12	6.0	2.37
		Sum	73	16	57	Ave. 0.11	Ave. 5.5	0.47
Mac3	1K	82/90	28	5	26	0.08	4.2	0.07
	2K	82/90	22	1	32	0.02	0.9	1.85
	3K	84/86	7	7	28	0.17	8.4	12.6*
	4K	82/90	13	5	13	0.16	8.1	0.00
	5K	84/86	21	6	30	0.11	5.3	1.59
		Sum	91	24	129	Ave. 0.10	Ave. 4.9	7.74
	1M	96/140	23	14	19	0.25	12.5	0.38
Mac24	2K	102/104	6	40	10	0.71	35.5	1.00
	3K	106/116	8	28	3	0.72	35.5	2.27
	5K	98/100	9	42	9	0.70	35.0	0.00
		Sum	23	110	22	Ave. 0.71	Ave. 35.5	0.05
Mac35	1K	124/142	10	37	10	0.65	32.5	0.00

	2K	122/142	3	51	4	0.88	44.0	0.14
	3K	114/122	9	23	6	0.61	30.3	0.60
	4K	120/142	3	18	9	0.60	30.0	3.00
	5K	116/142	5	43	8	0.76	38.4	0.69
		Sum	30	172	37	Ave. 0.72	Ave. 36.0	14.0
Mac36	1K	114/130	17	22	19	0.38	19.0	0.11
	2K	114/130	20	24	15	0.41	20.0	0.71
	3K	122/136	13	20	9	0.48	23.8	0.72
	4K	116/122	5	15	11	0.48	24.2	2.25
	5K	118/126	16	28	14	0.48	24.1	0.13
		Sum	71	109	68	Ave. 0.44	Ave. 22.0	2.03
	1 M	128/166	14	24	20	0.42	20.7	1.06
Mac37	1K	88/94	18	24	18	0.40	20.0	0.00
	2K	88/94	17	24	19	0.40	20.0	0.11
	3K	78/98	10	20	12	0.48	23.8	0.18
	4K	78/88	20	25	15	0.42	20.8	0.71
		Sum	65	93	64	Ave. 0.41	Ave. 20.9	0.74
Mac40	1K	128/158	3	47	3	0.89	44.3	0.00
	2K	128/158	2	56	2	0.93	46.7	0.00
	4K	126/130	0	32	0	1.00	50.0	-
		Sum	5	135	5	Ave. 0.93	Ave. 46.6	3.99
Mac44	4K	96/98	0	30	0	1.00	50.0	-
	5K	96/98	4	53	3	0.88	44.2	0.14
		Sum	4	88	3	Ave. 0.93	Ave. 46.3	3.80
Mac45	3K	90/92	18	4	19	0.10	4.9	0.03
	4K	88/90	18	3	13	0.09	4.4	0.81
		Sum	36	7	32	Ave. 0.09	Ave. 4.7	0.02
Mac49	1K	88/98	26	2	29	0.04	1.8	0.16
	2K	88/102	28	2	28	0.03	1.7	0.00
	3K	106/108	23	4	17	0.09	4.5	0.90
	4K	102/110	12	1	19	0.03	1.6	1.58
	5K	88/96	32	5	23	0.08	4.2	1.47
		Sum	121	14	116	Ave. 0.06	Ave. 2.8	3.22

1 M	$78 / 84$	13	12	27	0.23	11.5	4.90
2 M	$100 / 102$	15	23	21	0.39	19.5	1.00
	Sum	28	35	48	Ave. 0.32	Ave. 15.8	3.24

Genotypes $1 / 1$ and $2 / 2$ indicate non-recombinant homozygotes and $1 / 2$ indicates recombinant heterozygotes

Stand χ^{2} value at each gynogenetic line denotes that between the two homozygotes
Italic χ^{2} value at sum line denotes that between or among gynogens from the same population asterisk significant difference at $P<0.05$
Ave. averaged value
cM centiMorgans.

Table 2 Comparison of microsatellites-centromere map distances estimated in gynogenetic families produced from the Kita population, Memanbetsu population and the ones from previous works

Locus	LG	Microsatellite-centromere map distance (cM) (n)				
		Present study		Morishima et al.		
		Kita	Memanbetsu	2001*	2008b**	
Madol			7.3 (2)			
Mado3		3.8 (4)				
Mado4			36.7 (1)			
Mado6		20.0 (1)				
Mado 7		19.6 (4) ${ }^{\text {a }}$	$0.4(2)^{\text {b }}$			
Mado8		18.9 (2)				
Mado14		50.0 (2)				
Mado18		0.0 (4) ${ }^{\text {a }}$	$0.0(1)^{\text {a }}$			
Mado21		50.0 (1)				
Mado27		1.3 (2)				
Mado30			28.0 (1)			
Mac2	LG12	5.5 (3) ${ }^{\text {a }}$		4.0 (2) ${ }^{\text {a }}$	1.3 (1) ${ }^{\text {a }}$	
Mac3	LG12	4.9 (5) ${ }^{\text {a }}$	12.5 (1) ${ }^{\text {b }}$	3.0 (3) ${ }^{\text {a }}$		
Mac24		35.5 (3) ${ }^{\text {a }}$		33.0 (1) ${ }^{\text {a }}$		
Mac35		36.0 (5) ${ }^{\text {a }}$		45.0 (2) ${ }^{\text {a }}$		
Mac36	LG3	22.0 (5) ${ }^{\text {a }}$	20.7 (1) ${ }^{\text {a }}$	23.0 (2) ${ }^{\text {a }}$	23.8 (1) ${ }^{\text {a }}$	
Mac37	LG10	20.9 (4) ${ }^{\text {a }}$		24.0 (3) ${ }^{\text {a }}$	21.3 (1) ${ }^{\text {a }}$	
Mac40	LG12	46.6 (3) ${ }^{\text {a }}$		47.0 (2) ${ }^{\text {a }}$	47.6 (1) ${ }^{\text {a }}$	
Mac44		46.3 (2) ${ }^{\text {a }}$		46.0 (1) ${ }^{\text {a }}$		
Mac45	LG10	4.7 (2) ${ }^{\text {a }}$		6.0 (2) ${ }^{\text {a }}$		
Mac49	LG11	$2.8(5)^{\text {a }}$	15.8 (2) ${ }^{\text {b }}$	3.0 (2) ${ }^{\text {a }}$	7.3 (1) ${ }^{\text {a }}$	
$L G$ linkage group (Morishima et al. 2008b), $c M$ centiMorgan, n number of gynogenetic lines analyzed 2001* based on genotyped data in gynogenetic lines produced from Ohno population in the southern area, Hokkaido, and from Sera population in Hiroshima Prefecture, Honshu island, described in Morishima et al. (2001)						
$2008 b^{* *}$ based on row genotyped data in gynogenetic line produced from Ohno populaiton in Hokkaido provided by the authors of Morishima et al. (2008b)						
Different superscript letters mean significant difference (χ^{2} test, $P<0.05$)						

