<table>
<thead>
<tr>
<th>Title</th>
<th>Molecular Phylogeny of Whiskered Bats (Myotis, Vespretilionidae, Chiroptera) in Palaearctic Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tsytsulina, Katerina; Masuda, Ryuichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Edited by Shunsuke F. Mawatari, Hisatake Okada., 85-89</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/38511</td>
</tr>
<tr>
<td>Type</td>
<td>proceedings</td>
</tr>
<tr>
<td>Note</td>
<td>International Symposium on "Dawn of a New Natural History - Integration of Geoscience and Biodiversity Studies". 5-6 March 2004. Sapporo, Japan.</td>
</tr>
</tbody>
</table>

File Information:

p85-89-neo-science.pdf
Molecular Phylogeny of Whiskered Bats
(Myotis, Vespertilionidae, Chiroptera) in Palaearctic Region

Katerina Tsytysulina¹ and Ryuichi Masuda²

¹COE for Neo-Science of Natural History, Center for Advanced Science and Technology, Hokkaido University, Sapporo 060-0809, Japan,
²Laboratory of Genetic Diversity, Center for Advanced Science and Technology, Hokkaido University, Sapporo 060-0809, Japan

ABSTRACT

Morphological features and mitochondrial DNA (mtDNA) sequences were analysed to study the phylogenetic relationships among eight species of whiskered bats (genus Myotis, subgenus Selysius) in the Palaearctic region. The mtDNA phylogeny did not support the current division of the subgenus into species groups based on morphological data and species distributions, but showed instead that several species in the subgenus Selysius originated from distant lineages. The morphological similarity in some species could be due to convergence as a result of adaptation to similar habitats.

Keywords: Chiroptera, Myotis, Taxonomy, Morphology, Mitochondrial DNA, Cytochrome b, ND1

INTRODUCTION

The problem of sibling, or cryptic, species is one of the most topical and at the same time the most difficult questions in animal taxonomy. Recently, many revisions of the bat family Vespertilionidae based on molecular phylogenetic analysis showed that several common bat species actually consist of two or more sibling species [1, 2]. However, taxonomical studies of whiskered bats (genus Myotis, subgenus Selysius) have been made based only on morphology [e.g. 3, 4]. Phylogenetic studies of the genus Myotis [5] have mostly concentrated on the relationships among subgenera, and have not included a detailed analysis of the subgenus Selysius, because the taxonomy within the subgenus is still poorly resolved. Although recently several subspecies of Myotis mystacinus (the type species of the subgenus Selysius) were recognized as separate species based on morphological analysis [4], their phylogenetic relationships are still unclear because of lack of data on their genetics. To date, among whiskered bats, only Myotis alcathea has been described as a new species based on both molecular and morphological data [6].

The purpose of the present study was to compare morphological data and molecular phylogenetic relationships obtained from mitochondrial DNA sequences of species from the subgenus Selysius, including recently recognized species such as M. aurascens and M. hajastanicus, and to revise the taxonomical composition and phylogeny of this subgenus. The subgenus Selysius includes nine Palaearctic and eight Oriental species that are arranged into four species groups: frater, mystacinus, muricola and siligorensis. The siligorensis group includes a single species, M. siligorensis, distributed in Central and South-Eastern Indo-Malayan regions. This species was not included into the present study because no specimens were available.
MATERIALS AND METHODS

Morphological Analysis

Two hundred seventeen specimens of both sexes of ten species from the subgenus Selysius were included in the analysis. For the morphometric analysis, 16 basic skull measurements were made: condylobasal length, width of the skull on the level of auditory bullae, width of braincase, height of braincase posterior to the auditory bullae, interorbital constriction, rostral width on the level of preorbital foramen, C-M\(^3\) length, length and width of the upper canine cingulum base, length of interval between cinguilums of upper canine and large premolar («pseudodiasteme»), molariform row length, width of M\(^3\), length of M\(^3\), width between outer margins of upper canines, width between outer margins of M\(^3\), lower jaw length from alveole of i\(_1\) to the articulated process, and length of maxillary tooth row. Only adult specimens identified without any doubt were used for the analysis. All the measurements were first analysed by factor analysis, and then the ten most substantial characters were used for multidimensional scaling. The scaling was based on Mahalanobis distances between centroids of the groups.

Phylogenetic Analysis

Entire sequences (1140 base-pairs: bp) of the mitochondrial cytochrome \(b\) gene from 23 samples of eight species and partial sequences (350 bp) of the mitochondrial ND1 gene from 20 samples of seven species of the subgenus Selysius were determined for the phylogenetic analysis. Phylogenetic relationships among nucleotide sequences were constructed by the neighbor-joining (NJ; [7]) method using MEGA software [8] and the maximum parsimony method (MP) using PAUP* v 4.0b10 [9].

RESULTS AND DISCUSSION

Morphological Differences

The crown shapes of upper canines significantly differed from species to species in the subgenus Selysius (Fig. 1, [10], [11]). The upper canines were relatively round (\(M.\) frater, \(M.\) bucharensis), triangular with different orientations (\(M.\) mystacinus, \(M.\) ikonnikovi, \(M.\) brandii), polyhedral (\(M.\) muricola) or rhomboid (\(M.\) aurascens, \(M.\) hajastanicus). The Palaearctic species (\(M.\) mystacinus, \(M.\) brandii, \(M.\) ikonnikovi, \(M.\) aurascens and \(M.\) hajastanicus) have triangular or rhomboid canine crowns, while Oriental species (\(M.\) muricola, \(M.\) hosonoi, \(M.\) frater and \(M.\) bucharensis) have round or polyhedral crowns. Analysis of skull morphometry showed that Selysius bats from the Palaearctic and Oriental regions belong to separate species groups (Fig. 2). This result is in congruence with the current taxonomical structure of this subgenus [e.g. 12].

Molecular Phylogeny

Phylogenetic relationships among the species included based on cytochrome \(b\) (Fig. 3) and ND1 (Fig. 4) genes were not in agreement with the current division of the subgenus into species groups. The division into species groups within this subgenus has been based mostly on distribution patterns - all the Palaearctic species are placed into the mystacinus species group, whereas Oriental species are placed into the muricola and frater species groups. The results of the present study showed that despite
Fig. 2 Multi-dimensional scaling of 16 skull measurements in the space of two canonical variances.

Fig. 3 Neighbor-joining relationships among *Selysius* species obtained from complete sequences of the cytochrome *b* gene (1140 bp). The scale shows genetic distances calculated by Kimura's two parameter model. Bootstrap values (derived from 1000 replications) are indicated above the internal branches and parsimony bootstrap scores > 50% are under the branches. MY, *mystacinus* species group; MU, *muricola* species group; FR, *frater* species group.
all the samples of each species clustering separately with high bootstrap support. Palaearctic species formed two different clades separated by Oriental M. muricola and M. frater (Fig. 3) or by Oriental M. muricola with M. frater basal to other species included (Fig. 4). The phylogenetic positions of M. aurascens and M. hajastanicus were distinct from the other species in the cytochrome b gene tree (Fig. 3, [13]). Myotis hajastanicus is close in appearance to M. aurascens and well distinguished from M. brandtii (Figs. 1 and 2). By contrast, molecular phylogenetic trees showed that M. hajastanicus is distant from M. aurascens and clustered with M. brandtii with high bootstrap support (96% in NJ and 69% in MP), separately from other species. As shown in a previous study [5], M. brandtii is associated with American species of Myotis and distant from other Eurasian species. Thus, in spite of the morphological similarity, M. hajastanicus could have originated from a lineage different from M. aurascens. The relationships between M. aurascens and M. hajastanicus were similar to those between M. mystacinus and M. brandtii shown in the previous study [5].

The distribution range of M. hajastanicus, which is endemic to the Caucasus, lies within that of M. aurascens. Throughout Eurasia, M. aurascens inhabits the forest-steppe and steppe parts of the temperate arid zone, including mountains. In both gene trees M. aurascens has two clades (Figs. 3 and 4). One clade includes samples from the western part of the distributional area, whereas another clade includes samples from the eastern part. However, both clades include samples from Kazakhstan, i.e. the distributional areas are overlapping. This suggests that during the last glacial period there were several refuges: in the Caucasus and Middle East areas, and in Asia. After the last glacial period, the species expanded their ranges northward, and populations from western and eastern areas joined to form the current range of M. aurascens. At present, the distributional history of M. hajastanicus is unclear, but our results indicate that the morphological similarity between M. aurascens and M. hajastanicus as well as between M. mystacinus and M. brandtii could be due to convergence as a result of adaptation to similar habitats of those species respectively.
ACKNOWLEDGMENTS

We are grateful for providing us tissue samples and helping us during the work with museum collections to Prof. Kishio Maeda (Nara Educational University, Nara, Japan), Dr. Hideki Endo (National Science Museum, Tokyo, Japan), Drs. Sergey Kruskop and Alex Borissenko (Zoological Museum of Moscow State University, Moscow, Russia), Dr. Petr Benda (Prague National Museum, Prague, Czech Republic), Ms. Sharon Birks (Burke Museum, University of Washington, USA). This study was supported by a JSPS Postdoctoral Fellowship for Foreign Researchers (Grant-in-Aid No. PD02201 for Katerina Tsytsulina) and by the 21st Century COE Program “Neo-Science of Natural History” at Hokkaido University sponsored by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES