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Effect of Preconditioning in Edge-Based Finite-Element Method
Hajime Igarashi� and Nobito Yamamoto�

Hokkaido University, Sapporo 060-0814, Japan
University of Electro-Communications, Tokyo 182-8585, Japan

This paper discusses mathematical properties of preconditioned finite-element matrices based on vector potential formulation (A
method) and vector and scalar potential formulation (A-V method) for eddy-current problems. Numerical results show that A-V method
with preconditioning is stable at all frequencies in contrast to A method. In this paper, this property is mathematically discussed by con-
sidering the diagonal scaling which is one of the simple preconditioning methods. In addition, regularization of A method is discussed.

Index Terms—A-V method, diagonal scaling, edge elements, finite-element method, preconditioning.

I. INTRODUCTION

THE edge-based finite-element (FE) method has widely
been used for electromagnetic field analysis. When we

analyze eddy-current problems using this method, we have two
ways: A method whose unknown variables are vector potential,
and A-V method (or A- method) whose unknown variables
are vector and scalar potentials. Also in the microwave analysis,
these two formulations are available.

It is observed in numerical computations that A method gives
poor convergence in the iterative solution of linear systems at
relatively low frequencies. On the other hand, convergence of
the A-V method is kept well even at low frequencies. One of
the authors has shown that these differences between A and A-V
methods mainly come from different effects of preconditioning
[1], [2]. That is, a set of eigenvalues which approach zero as

exists in A formulation for both preconditioned and
original FE matrices. Due to these eigenvalues, the conditioning
of the matrix becomes worse at low frequencies. When using
A-V method, such eigenvalues are successfully eliminated by
the preconditioning.

In this paper, the above properties are discussed from a math-
ematical point of view. It will be proved that A-V method with
preconditioning works well without poor convergence of ICCG
at all frequencies in Section IV. The diagonal scaling is used as
the preconditioner for simplicity. In addition, regularization of
A method will be discussed.

II. PROBLEM DEFINITION

Although we here focus on quasi-static electromagnetic
fields in frequency domain, the following discussion would be
valid also for quasi-static problems in time domain and mi-
crowave problems [2]. In A-V method, the following equations
are solved:

(1)

(2)

where is the magnetic reluctivity, is the conductivity, is
the vector potential, is the scalar potential, and denotes the
external current which is assumed to be divergence free. Note
here that (2) is dependent on (1) because divergence of both
sides of (1) yields (2).
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The weak form of (1) and (2) can be written in the form

(3)

(4)

where and represent edge-based and scalar basis functions
for approximation of and , respectively. The FE discretiza-
tion of (3) and (4) with edge elements provides

(5)

where

(6)

(7)

In (6) and (7), matrices and , which are and
matrices with entries 1 and 0, represent the discrete counter-
parts of curl and grad, where , , and denote the number of
nodes, edges, and faces, respectively [3]. The matrices and

are positive definite and positive semi-definite
symmetric matrices, respectively. The matrix , whose
rank is proved to be [4], corresponds to the FE matrix
for static magnetic fields.

It is known that the relation holds, which cor-
responds to in continuum systems. From this prop-
erty, and with the assumption that the discrete current is diver-
gence free, that is, , we can readily show that the
lower n rows of matrix are linearly dependent on the upper
e rows. Since the upper e rows are independent, the rank of
is e.

In A method, the scalar potential in the above formula-
tion is eliminated due to the fact that , where

and represents the spaces spanned by
and . This means that can be expressed in terms of .
Hence, the terms concerning can be eliminated from the equa-
tions. Equation (5) then reduces to the system equation of the A
method

(8)

0018-9464/$25.00 © 2008 IEEE

Authorized licensed use limited to: HOKKAIDO DAIGAKU KOHGAKUBU. Downloaded on June 23, 2009 at 19:19 from IEEE Xplore.  Restrictions apply.



IGARASHI AND YAMAMOTO: EFFECT OF PRECONDITIONING IN EDGE-BASED FINITE-ELEMENT METHOD 943

Fig. 1. Convergence history of CG with diagonal scaling, � � �� �Hz�, � �
����, � � �� �S/m�.

Equations (5) and (8) are usually solved using a preconditioned
iterative solver such as incomplete Cholesky factorization con-
jugate gradient method (ICCG).

III. NUMERICAL EXAMPLE

As mentioned earlier, the convergence of ICCG applied for
the finite-element matrix generated by A-V method is superior
over that by the A method. This tendency comes from the fact
that, in A-V method, the incomplete Cholesky decomposition
for preconditioning eliminates the "floating eigenvalues" of the
FE matrix which approach zero as , whereas there is no
such elimination in the A method. [1]. This is also valid when
the diagonal scaling is used for the preconditioning. Fig. 1 shows
the convergence of the CG method with the diagonal scaling for
the numerical example where a metallic plate is placed above
an excitation coil [1]. It is clear from this figure that the A-V
method has better convergence.

It is known that the conjugate gradient methods converge
rapidly when the eigenvalues of the coefficient matrix, say ,
tightly cluster around away from the origin [5]. This property
can be characterized using the condition number ,
where and are the maximum and minimum nonzero
singular values of [6]. The singular values of are square
root of the eigenvalues of , where denotes Hermite
conjugate.

Fig. 2 shows the distribution of singular values of the FE
matrices after the diagonal scaling. In the singular values cor-
responding to the A method, there exists a cluster of singular
values, which we call the floating singular values [1], between
the upper cluster including almost unit singular values and the
lower cluster with zero eigenvalues. (Due to numerical errors,
zero eigenvalues takes nonzero values here.) The floating sin-
gular values approach zero as . The conditioning is,
therefore, poor for small in A method. On the other
hand, there are no such floating singular values in the spec-
trum of the A-V method. Note that the A-V method does have
floating singular values before preconditioning [1]. The main
purpose of this paper is to clarify the reason why the A and A-V
method have the above different convergence, or actually dif-
ferent spectra, from a mathematical point of view.

Because it would be easier to analyze the diagonal scaling
than the incomplete Cholesky factorization, the effect of the
former will be mathematically discussed in the next section. Be-
fore proceeding to the next section, we further consider the prop-
erty of the diagonal scaling using a toy problem [2] to obtain an

Fig. 2. Singular values of FE matrices. In the spectrum of A method, a cluster of
singular values, called here “floating singular values,” exists in between, which
approaches zero as � � �. (a) A method. (b) A-V method.

intuitive understanding of the mathematical properties. Let us
consider a 2 2 matrix

(9)

The first singular matrix on the right-hand side of (9) corre-
sponds to , while the second regular matrix corre-
sponds to . Moreover, the real parameter stands for Al-
though the matrix in (9) is simple, it would furnish enough prop-
erties for our interest. We can see from the structure of that
it is nearly singular, when has a small value.

The diagonal scaling of in (9)
provides

(10)

for small . Hence, the essential structure, a singular matrix
plus times regular matrix time, does not change after the diag-
onal scaling. It is thus clear that the floating eigenvalue, actually

, exists for (10).
We now consider the A-V method. The corresponding toy

problem is

(11)
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It can be seen in (11) that the last row is dependent on the upper
two rows, and the upper left 2 2 matrix is equal to in (9).
These properties are similar to in (5). The eigenvalues of
matrix are 0, , and . Hence, its conditioning becomes
worse when becomes small.

The diagonal scaling of (11) leads to

(12)

The eigenvalues of (12) are shown to be 0, , .
Note here that the diagonal scaling does not change the rank
of the matrix. As , nonzero eigenvalues approach 1, 2.
Hence, the conditioning is kept good even for small in contrast
to A method.

IV. PROPERTIES OF DIAGONAL SCALING

We analyze here the effect of the diagonal scaling applied
for the FE matrices of the A and A-V methods. To do so, we
consider the distribution of the eigenvalues of the matrices.

In the following, regularity of is assumed although it does
not hold when there is air or insulator in the domain. However,
even in such cases, we can assume sufficiently small positive
values for in air and insulator to keep the regularity. Moreover,

is assume to be positive definite. From these assumptions, it
can be proved that is regular for .

In A method, the scaled FE matrix can be written as
, where is a diagonal matrix with entries

. Since is assumed to be regular, the eigenvalues of
are of the form . Due to continuity of the
eigenvalues with respect to , the eigenvalues of approaches
those of as , where
and is the diagonal matrix corresponding to . Because
rank , there are zero eigenvalues for

. This means that the nonzero eigenvalues
of approach zero with . Hence, must have small eigen-
values at low frequencies, which deteriorate the convergence of
the conjugate gradient methods.

We next consider the A-V method. In this case, the scaled FE
matrix can be written in the form

(13)

where is the diagonal scaling matrix corresponding to
. We can then derive the following lemma.

Lemma 1: We assume that . Then the null space of
can be expressed in terms of linear combination of column

vectors in the matrix

(14)

Moreover, rank .
Proof: It is easily shown that

(15)

and rank irrespective of rank . To show rank ,
let us prove that if , then , where

.

We split into two parts as

(16)

and we write in the form

(17)

From (17) and the assumption that is regular, we obtain

(18)

By considering the fact that , we derive from
(17)

(19)

Hence, we have

(20)

Next, we consider the FE equation after diagonal scaling

(21)

We can derive the following theorem on the basis of Lemma 1.
Theorem 1: The solution of (21) can be expressed in the form

(22)

where is the solution of (8) and .
Proof: We can directly derive that is a

solution of (21) by considering the facts that

(23)

(24)

Moreover, on the basis of Lemma 1, we can see that this theorem
holds.

Finally, we obtain the following theorem.
Theorem 2: Let us write the eigenvalues of as ,

, . Then

(25)

(26)

at all the frequencies including the limit .
Proof: From Lemma 1, it is found that (25) and (26) hold

when .
Next, we consider the case . To do so, we write

, where

(27)

(28)
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Because and is indepen-
dent of frequency, we find

(29)

(30)

as . Because rank and rank
, the eigenvalues of can be written as

(31)

Hence, due to the continuity of eigenvalues, we have

(32)

as .
It is concluded from Theorem 2 that no eigenvalues of of

the A-V method approaches zero with . The conditioning of
, therefore, keeps well even for low frequencies in contrast

to of the A method.

V. REGULARIZED A METHOD

In the previous section, the A method is shown to have poor
convergence at low frequencies in contrast to the A-V method.
Here we have a question: is it possible to regularize the A
method to improve its convergence? The regularized form of
the A method could be written in the form

(33)

where is a positive constant. This form has already been dis-
cussed [7]. We will here show this validity.

Lemma 2: The matrix is regular for .
Proof: We show that leads to .

From , we have .
It follows from this and that .
Then, the quadratic form can be written as

(34)

It is concluded from (34) that .
Theorem 3: The solutions of (33) is identical to that of (8).

Proof: Since is regular, it is sufficient to show that
equals where is the solution of (8). It easy to

see that

(35)

Due to the fact that , we have

(36)

Hence, .
Finally, we mention stability of the regularized A method.
Theorem 4: The eigenvalues of is set to ,

, where . Then
, holds at all the frequencies including

the limit .

Proof: We split into two pars as follows:

(37)

Moreover, the eigenvalues of are set to .
Then we will prove that is regular. We begin with the equa-
tion , then we have . Because

and are semi-positive definite, we have

(38)

It follows from (38) that

(39)

From the first equation of (39), we can see that ,
where is an arbitrary n-dimensional vector. By multiplying

to the second equation of (39), we have .
Hence, . Consequency, , .
Moreover, due to Lemma 2. It follows from these facts
and continuity of eigenvalues with respect to that
as .

Although the regularized A method is stable for all frequen-
cies like A-V method, it would be difficult to construct the
regularization term by superposition. Moreover, because A-V
method has more numbers of unknowns than the regularized A
method, the former would have better convergence [4].

VI. CONCLUSION

The numerical results shows that the diagonal scaling in the
A-V method eliminates the floating singular values which ap-
proach zero as in contrast to the A method. This leads
to the better convergence of preconditioned CG methods for the
A-V method. This fact is discussed using a toy problem. In order
to show that this property is valid not in the special case, but in
general, mathematical proof of this fact is given. In addition, the
regularized A method is discussed.
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