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An Effective Robust Optimization Based on Genetic Algorithm
Takayuki Maruyama and Hajime Igarashi

Laboratory of Hybrid Systems, Graduate School of Information Science and Technology, Hokkaido University, Sapporo
060-0814, Japan

Although probabilistic optimization methods based on genetic algorithm (GA) provides accurate results, its performance is sometimes
considerably sensitive to parameter changes. Moreover, the constraints are violated due to such parameter changes. A robust GA which
performs random perturbation during optimization processes has been applied to some mathematical problems to show that it works as
fast as the usual GAs. An adequate elite reservation technique for the robust GA is presented and applied to the robust GA for electro-
magnetic problems. Moreover, this method is shown to find solutions which are kept feasible against parameter changes.

Index Terms—Constraint condition, electromagnetic application, genetic algorithm (GA), robust optimization.

I. INTRODUCTION

I N the practical design of electromagnetic machines and de-
vices, robust optimization with probabilistic methods such

as genetic algorithm (GA) and immune algorithm plays a crucial
role. However, robust optimization usually requires consider-
ably great computational cost because exploration in the neigh-
borhood of each individual must be performed for evaluation of
its robustness. Robust optimization has, therefore, serious diffi-
culties in applying for real optimization [1]–[3].

To overcome this difficulty, a novel method has been intro-
duced, and proved to provide robust solutions with a computa-
tional cost which is comparable with that of nonrobust GAs [4].
This method has been shown to work well for one- or two- di-
mensional mathematical test problems.

It is important to test its validity for electromagnetic prob-
lems. To do so, an adequate elite conservation technique for the
above method, which has not been mentioned anywhere, should
be developed. Moreover, it is inconvenient in real situations that
some manufacturing errors and external disturbances cause to
violate constraint conditions. However, the robustness for con-
straints in this sense has not been discussed.

In this paper, we will introduce an effective elite selection al-
gorithm for the novel method described above, which is called
Robust GA (RGA) in this paper, to obtain robust optimal so-
lutions under practical situations in computational electromag-
netics. Moreover, RGA will be shown to suppress violation of
constraints against parameter changes. Finally, we will apply
this method to numerical problems which has constraint and
TEAM workshop problem #22 [5] to test its usefulness.

II. METHODS

While most parts of RGA processes are based on simple GAs,
there is a difference in the evaluation process. Let us consider
an optimization problem with single objective function . In
GA optimization, is evaluated for each individual. On the
other hand, is evaluated instead in RGA, where de-
notes noise vector with uniform or Gaussian distribution, which
varies stochastically in the optimization process. When we con-
sider instead of , points at the top of sharp peaks
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would not have good performance. This property is theoretically
shown in the following [4]. The mean of fitness in a GA is de-
fined as

(1)

where is continuous density function of individual dis-
tribution. On the other hand, the mean of fitness in RGA is rep-
resented as

(2)

where is noise vector and is the distribution of . Equa-
tions (1) and (2) show that is an equivalent fitness function
instead of in RGA. The typical profiles of and
are shown in Fig. 1. In (a) and (b), flat pulse functions with broad
and relatively sharp profiles are assumed as , respectively.
They correspond to robust and nonrobust solutions. The equiv-
alent fitness in (a) has better performance at the peak than
that in (b) due to the board peak. Note here that repre-
sents the expected value of . In optimization processes,

is evaluated because its distribution would approach
in an asymptotic way.

Although the elite selection method is often used to improve
the convergence in GA, it is not used in the original RGA. Be-
cause the fitness of each individual is changed by the effect of
noise, usual elite selection cannot be applied. In this paper, a
new elite selection method is introduced as follows.

1) In generation , search for the best individual and reserve
it as an elite .

2) In generation , search for an elite candidate .
3) Compare with .
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Fig. 1. Relation between ���� and � ���. In RGA, � ��� defined by (2) is used
to evaluate individuals instead of ����. � ��� takes lower value for sharp peaks.
(a) Broad peak. (b) Sharp peak.

4) If is better than , is reserved as
a new elite. Otherwise, reserve as an elite.

5) Go to next generation and return to 2).
In process 3), the reserved elite is evaluated with variation
to test whether has enough robustness or not. The elite

candidate is evaluated without noise because the elite must
have good performance at least with its original parameters.

III. RESULTS

In this section, numerical results obtained by the present
method are discussed. First of all, we report optimization of a
simple rectangular function of a one-dimensional parameter.
Then, we describe optimization of a two-dimensional mathe-
matical function with a constraint. Finally, we report results for
an optimization problem of superconducting magnets.

A. One-Dimensional Rectangular Function

In this problem, the objective function is defined as

otherwise
(3)

According to (3), has two peaks; one is a sharp, nonrobust
peak where and the other is a broad robust peak where

. GA parameters are shown in Table I.
The noise rate is set to 10.0%. The result obtained by con-

ventional GA is shown in Fig. 2. The distribution of individuals
in the last generation is plotted in Fig. 2. Cleary, all individuals
converge at the nonrobust peak.

The result obtained by the present method is shown in Fig. 3.
Most of individuals are converged to the broad peak or near the

TABLE I
GA PARAMETERS (MATHEMATICAL PROBLEM)

Fig. 2. Optimal solutions obtained by GA. Individuals cluster on the edge of
the sharp peak.

Fig. 3. Optimal solutions obtained by the present method. Individuals cluster
on the center of the broad robust peak.

broad peak. It is concluded that the present method can converge
to robust solutions.

B. Mathematical Function With Constraint

Here, we consider an optimization with a constraint using the
present method. The objective function is defined as

(4)

The domains of and range from 0.0 to 1.0, which must
meet the following constraint:

(5)

where is set to 0.1. If an individual violates this constraint,
its evaluated value is decreased to zero. In this problem, ob-

Authorized licensed use limited to: HOKKAIDO DAIGAKU KOHGAKUBU. Downloaded on June 23, 2009 at 19:20 from IEEE Xplore.  Restrictions apply.



992 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 6, JUNE 2008

Fig. 4. Mean values of � and resultant objective function. There is a tradeoff
between robustness for constraint and the performance.

Fig. 5. SMES model.

tained optimal solutions are evaluated their robustness for the
constraint by using following quantity:

(6)

where means the distance between the solution and the border
of constraint denoted by (5). Thus, the solution which has small

easily violates the constraint condition because of small pa-
rameter changes or disturbances.

The GA parameters are again set to the values listed in Table I.
The noise ranges from 0.00 to 0.10. Optimization is performed
with different noises. To obtain mean values of and objec-
tive function, ten trials are carried out. The result is shown in
Fig. 4, where the mean of and is plotted. The re-
sult shows that large noise keeps solutions far away from a
constraint border, but it makes objective function worse. Thus,
there is a tradeoff between objective function and robustness
for constraint. In real situations, the noise level would be de-
termined from degree of uncertainty in the parameters or pro-
duction tolerances.

TABLE II
GA PARAMETERS (SMES PROBLEM)

TABLE III
PARAMETERS OF OPTIMUM SOLUTION

GA is the Conventional GA Without Robustness Treatment, same in
Tables IV and V.

C. Optimization of Electromagnetic Systems

The model of superconducting magnetic energy storage
(SMES) is shown in Fig. 5 [5]. This problem has eight param-
eters. The parameters and in Fig. 5
denote the sizes of two superconducting coils. Moreover,
and denote current densities of each coils.

In the SMES optimization problem, it is necessary that the
storage energy is fulfilled the prescribed value and the total stray
magnetic field on line a and line b is minimized. Thus, the fol-
lowing objective function is minimized:

(7)

where and is set to and , respec-
tively. Moreover, the optimal solution is required to fulfill fol-
lowing constraint:

(8)

If an individual violates this constraint condition, it means that
superconducting state cannot be sustained. The phenomenon
to transit from superconducting state to normal state is called
quench. In the SMES problem, it is especially important to keep
the superconducting constraint given by (8).

GA parameters in this problem are shown in Table II. Here,
, , and are set to 2.00, 1.60, and 0.27[m], respectively,

and other five parameters are optimized. The uniform noise is
added to , , and . The noise levels are increased from
0.5% to 1.5%. The obtained solutions are evaluated their ro-
bustness a posteriori by repeatedly calculating objective func-
tion with 0.5% noise. Moreover, the quench rate, which is a
quench probability evaluated with 0.5% noise, is evaluated. The
quench rate is calculated by the number of times the obtained
solution violates the constraint in the ex post facto evaluation.
High quench rate means high possibility for violation of super-
conducting state.

The optimization results are shown in Tables III and IV.
Table III shows parameters of obtained solutions. Table IV
shows the result of ex post facto evaluation. in Table IV
represents the value of objective function without noise. Worst
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TABLE IV
RESULT OF EX POST FACTO EVALUATION

Fig. 6. Dependence of quench rate on noise rate. Solutions optimized with large
noise have higher feasibility.

represents the worst value of objective function in the eval-
uation. And is defined by Worst . The noise
parameter improves somewhat in this case. However, it
is possible that too large a noise worsens the performance.

The relation between noise level and quench rate is shown in
Fig. 6. The solution obtained by original GA has a very high
quench rate. Such a solution has difficulty to keep a supercon-
ducting state because it requires very small manufacturing er-
rors and very strict control of currents. The solutions obtained
by the present method has low quench rate when with enough
noise level.

Table V shows required CPU time. It shows that the present
method can obtain solutions, which are robust with respect to
performance and feasibility, with almost the same computa-
tional cost as that of GA. For reference, the conventional robust

TABLE V
REQUIRED CPU TIME

CPU: Intel Xeon3.06 GHz (FSB533)

optimization method which repeats sensitivity analysis in its
process [3] requires about 2150 min to solve the same problem
in our experience.

IV. CONCLUSION

In this paper, an effective robust optimization method with a
new elite selection method is introduced. The present method
can obtain robust solutions without extra computational cost.
Moreover, the present method is shown to converge to a solution
which is far from the border of constraints. Thus, the solutions
obtained by the present method have high feasibility. However,
they have lower performance than nonrobust solutions, although
this could not be avoidable. That is, the robustness and/or feasi-
bility have a tradeoff relation with performance.
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