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Carbon-Nanotube Growth in Alcohol-Vapor Plasma
Yoshiyuki Suda, Atsushi Okita, Junichi Takayama, Akinori Oda, Hirotake Sugawara,

Yosuke Sakai, Shinichiro Oke, and Hirofumi Takikawa, Member, IEEE

Abstract—We have successfully grown carbon nanotubes
(CNTs) by plasma-enhanced chemical vapor deposition (PECVD)
using alcohol. When 0.01-wt% ferrocene was added to the alcohol,
vertically aligned CNTs grew at 650 ◦C. By contrast, a few CNTs
and mostly carbon nanoparticles were obtained by pure alcohol
PECVD even though the Fe catalyst was coated on Si substrates.
Comparing this PECVD experiment with thermal alcohol CVD
showed that only the PECVD method can be used to grow CNTs
under the reported experimental conditions. To understand the
plasma properties for CNT growth, particularly plasma species
contained in a gas phase of alcohol plasma, the plasma was ana-
lyzed using optical-emission spectroscopy (OES) and quadrupole
mass spectrometry (QMS). From the OES measurement, emission
peaks from the excitation states of C2, CH, CHO, CH2O, CO, H,
O2, C+, and CO+ were identified, while the QMS measurement
also showed the existence of H2, O, and CO. These results indicate
that, in alcohol plasma, oxidants and reductants exist together
and potentially promote/suppress CNT growth depending on the
process conditions. The contribution of CxHy (x ≥ 1, y ≥ 3)
radicals, which were produced by decomposition reactions in
alcohol plasma as a CNT precursor, is discussed.

Index Terms—Carbon nanotube (CNT), ferrocene, mass spec-
trometry, optical-emission spectroscopy (OES), plasma-enhanced
chemical vapor deposition (PECVD).

I. INTRODUCTION

CARBON nanotubes (CNTs) have attracted significant in-
terest due to their unique properties, e.g., high chemical

stability, mechanical strength, and current density. Based on
these properties, our group has focused on the application of
CNTs as nanoscale interconnections in large-scale integrated
(LSI) circuits [1], [2]. Plasma-enhanced chemical vapor depo-
sition (PECVD) is superior to other techniques including arc
discharge, laser ablation, and CVD for the low-temperature
operation of CNT growth (∼390 ◦C). The PECVD approach
meets the condition for the LSI fabrication process (≤ 400 ◦C)
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[3]. By contrast, recent reports of CVD growth using O2 gas
[4] and water vapor [5] as an additive to CH4 and C2H4,
respectively, provide an enormous advantage in long CNT
growth with high yields. These oxidants are thought to play
a role in activating catalyst particles for long lifetimes and,
thereby, allowing the growth of longer CNTs. Alcohol is also
well known to grow high-purity CNTs; Maruyama et al. [6]
discussed the role of decomposed OH radicals from alcohol for
the efficient removal of amorphous carbon during CNT growth.

Our group has studied the PECVD of CNTs using CH4/H2

gas mixtures and the correlation among reactions in the plasma
gas phase, the state of the catalyst nanoparticles, and the CNT
growth conditions [7]–[10]. We have developed a CH4/H2

simulation code and have paid close attention to the supply of
a carbon source as a precursor for CNTs. To simulate the CNT-
growth process, surface chemistry including surface activation
and chemical sputtering are necessary [11]. By considering the
sticking probabilities of ions and radicals, we estimated the
total amount of carbon atoms supplied from the plasma onto
the catalyst surface. In our analysis, it was concluded that the
C2H+

5 ion and neutral species (CxHy;x, y > 2) are the main
precursors for CNT growth [7], [8], [10].

In this paper, we report the use of a new carbon source, alco-
hol (C2H5OH), in PECVD for CNT growth and the analysis of
the source’s plasma. In this plasma, CNTs can be grown under
limited conditions (pressure = 133 Pa, input power = 200 W,
temperature = 650 ◦C, Fe catalysts with Al2O3 supports).
PECVD of CNTs using C2H5OH has been reported [12], [13],
but various species, including hydrocarbon radicals, ions, oxi-
dants, and reductants, are present in C2H5OH plasma, and the
properties of these species remain unclear. Clearly, it is impor-
tant to understand the characteristics of the plasma species in
C2H5OH plasma and to investigate the contribution of these
species to CNT growth. In this paper, we measured the plasma
optical emissions by optical-emission spectroscopy (OES) and
investigated the existence of plasma species by quadrupole
mass spectrometry (QMS). The C2H5OH plasma species mon-
itored by OES and QMS is presented.

II. EXPERIMENTAL SETUP

Fig. 1 shows the experimental setup for alcohol PECVD.
The details of the experimental setup and CNT growth pro-
cedure are described in earlier reports [7]–[9]. The ribbon
heater was equipped to provide a stable alcohol-vapor feed. To
compare CNT growth, pure C2H5OH and C2H5OH containing
0.01-wt% ferrocene (C10H10Fe) were used. We prepared the
catalyst/support materials on a Si substrate using the electron-
beam (EB)-evaporation approach. The substrates used were Si
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Fig. 1. Experimental apparatus for alcohol plasma-enhanced CVD.

TABLE I
EXPERIMENTAL CONDITIONS

wafers with a 20-nm-thick SiO2 layer. In the EB evapora-
tion, the Fe (catalyst) and Al2O3 (support) were deposited on
the substrates to form sandwichlike structures (Al2O3/Fe/
Al2O3 = 1/1/1 nm), which can then form small nanoparticles
[9], [14]. The pretreatment and growth conditions including
pressure, power, process temperature, and process time are
listed in Table I.

The procedure of CNT growth is briefly described. First,
substrates with catalyst and support materials were set on the
center of the grounded electrode. The reactor was pumped
down to below 10−4 Pa. Using an infrared heater, the substrates
were heated and kept at 550 ◦C in 666-Pa H2 plasma for
4 min. The H2 gas was removed, and C2H5OH (water content
≤ 0.2%, with/without 0.01-wt% ferrocene) was introduced.
The pressure was maintained at 133 Pa, while the temperature
was maintained at 650 ◦C for 10 min. During CNT growth by
PECVD, plasma optical-emission spectra were acquired using a
photonic multichannel analyzer (PMA: Hamamatsu Photonics
K.K., PMA-11) in the wavelength range of 300–800 nm. A
quadrupole mass spectrometer (QMS: ANELVA, M-QA200TS)
was used to analyze the plasma species. The QMS tube was
connected with the PECVD chamber through a 50-cm-long
1/8-in-diameter stainless-steel pipe and a variable leak valve.
Pressure inside the QMS tube was carefully controlled by
the valve, and the QMS spectra of CH4/H2 gas with/without
plasma were evaluated. The CNTs obtained were characterized
using a scanning electron microscope (SEM: Hitachi High-
Technologies Corporation, S-4800) and a transmission electron
microscope (TEM: JEOL, 2000FX).

Fig. 2. SEM micrographs of CNTs obtained using a 133-Pa C2H5OH plasma.
Al2O3/Fe/Al2O3 [= 1/1/1 nm, (a), and (b)] is used for the catalyst/support
materials. Ferrocene is mixed with C2H5OH, and the growth results are shown
in (b). (b2) is the cross-sectional view of (b1), which confirms the formation of
vertically aligned CNTs.

III. RESULTS AND DISCUSSION

Fig. 2 shows the CNT growth results obtained using
C2H5OH plasma. The substrate with Al2O3/Fe/Al2O3 showed
CNT growth over the whole substrate area, resulting in a high
production yield of CNTs. The effect of adding ferrocene can
be clearly seen. As shown in Fig. 2(b2), vertically aligned CNTs
were obtained when ferrocene was added, although Fig. 2(b1)
and (b2) revealed that CNT growth occurred over the whole
substrate area. To confirm the effect of the Al2O3/Fe/Al2O3

catalysts, we observed the CNT deposition on a Si substrate.
Without catalyst, no CNTs were obtained on a Si substrate
even though ferrocene was supplied with the alcohol. This
clearly indicated that a carbon source containing a ferrocene
molecule can be activated on the catalyst surface and used to
grow CNTs. Eres et al. [15] used a substrate that was catalyzed
using a Mo/Fe/Al multilayer and found that the introduction of
ferrocene into the acetylene-gas stream enhanced the growth
of vertically aligned CNTs. In addition, CNT growth has been
achieved using ferrocene-containing ethanol solutions in spray
pyrolysis [12] and inductively coupled plasma [13] techniques.
However, the concentrations of ferrocene in these reports
(i.e., 1000 mg/100–800 mL by Su et al. [12] and 5 mg/10 mL by
Xu et al. [13]) are higher than the levels used in our experiment
(8 mg/100 mL). TEM analysis showed the effect of the addition
of ferrocene (Fig. 3). In the absence of ferrocene, a large
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Fig. 3. TEM micrographs of carbon deposits grown from (a) C2H5OH only and (b) C2H5OH with ferrocene. Scale bar = 50 nm.

Fig. 4. Optical-emission spectra of C2H5OH plasma at 133 Pa.

number of carbon nanoparticles and nanocapsules were formed
on the Al2O3/Fe/Al2O3-catalyzed substrate. By contrast, a
bundle structure composed of CNTs with a diameter of ∼5 nm
was formed by the ferrocene-assisted reaction.

To ensure the effect of plasma, we confirmed that no CNTs
were obtained at a substrate temperature of 650 ◦C without
plasma. Chiashi et al. [16] who performed single-walled CNT
(SWCNT) growth in a cold-wall CVD reported that the effec-
tive reaction temperature of alcohol CVD was estimated to be
slightly higher than 850 ◦C, whereas a low-temperature reaction
caused the generation of amorphous carbon.

Fig. 4 shows the OES spectra obtained using a 133-Pa
C2H5OH plasma. The measurements were performed at room
temperature to avoid the detection of light from the heating sys-
tem. As a result of this OES measurement, optical peaks from
C2, CH, CHO, CH2O, CO, Hα (H atom in the Balmer series),
O2, C+, and CO+ were identified. Fig. 5(a) shows the QMS
result obtained using a 133-Pa C2H5OH plasma. From the QMS
analysis, peaks corresponding to each molecular weight were

observed: H2 (between 1 and 3), CH4 (between 12 and 18),
CH3OH (between 24 and 31), and C2H5OH (between
38 and 46). Since the ionization process of particles by electron
collision is absolutely necessary for QMS detection, the decom-
position of the C2H5OH molecule occurs. We measured the
QMS peaks obtained in the 133-Pa C2H5OH atmosphere [with-
out plasma, Fig. 5(b)]. Fig. 5(c) shows the subtraction of the
spectral intensity of plasma-off [Fig. 5(b)] from that of plasma-
on [Fig. 5(a)]. The result indicates that the peaks of C2H5OH-
derived molecules (CH4, CH3OH, and C2H5OH) decreased
by igniting the plasma. This shows that the decomposition of
C2H5OH is promoted by generating plasma. By contrast, the
species of H2, O, CO, and C2H4 (atomic/molecular weight =
2, 16, 28, and 28, respectively) increased by the recombina-
tion/dissociation processes. These results reflect the observation
that plasma processes can promote the production of several
species by plasma reactions.

In this paper, we discuss the decomposition/dissociation
reactions of C2H5OH plasma. Several groups [17]–[21] have
reported the chemical-reaction processes of C2H5OH plasma.

C2H5OH → C + CO + 3H2 (1)

C2H5OH + 3H2O → 2CO2 + 6H2 (2)

C2H5OH + H2O → 2CO + 4H2 (3)

C2H5OH → C2H4 + H2O (4)

C2H5OH → C2H5 + OH. (5)

Reaction (1) is a collision-impact process between electrons
and radicals in plasma [17] as well as a typical reaction oc-
curring on a catalyst surface for CNTs growth by nonplasma
alcohol CVD. However, the CNT formation in this experiment
could not be explained simply by this reaction, since no carbon
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Fig. 5. Mass spectra obtained by (a) C2H5OH PECVD and (b) C2H5OH
vapor (without plasma) at 133 Pa. (c) Subtraction of (b) from (a).

deposit was observed without plasma. Generation of CO, CO2,
and H2 as proposed by reactions (1)–(5) is consistent with the
presented OES and QMS analyses. A small amount of H2O
(≤ 0.2%) was present in the ethanol used, and therefore, re-
actions (2) and (3) take place. Considering the dissociation
energies by electron collision of CO, CO2, OH, H2, and H2O,
namely, 11.09, 5.2, 4.39, 8.8, and 7.0 eV, respectively [17],
[22]–[25], it was observed that these species were easily dis-
sociated in the plasma and possibly adsorb onto the catalyst
surface. This could explain the requirement of ferrocene for
CNT growth.

CO2, H2O, and OH, which work as oxidants, and CO and H2,
which operate as reductants, are simultaneously produced in
the gas phase through reactions (1)–(5). Several papers describe
their effects on CNT growth, e.g., supergrowth of SWCNTs by

the addition of a small amount of H2O (175 ppm) in the carbon
source (C2H4) [5], the oxidation of the catalyst by existing OH
radicals [6], and the optimization of the carbon/hydrogen ratio
by O atoms [4]. Among the aforementioned molecules (CO2,
H2O, OH, CO, and H2), only CO can be used as a carbon source
for CNT by a CO disproportionation reaction below 900 ◦C
[26]. These species produced in the plasma have a strong
influence on the catalyst state and CNT growth by varying their
concentration in the gas phase.

A recent experiment by Oshima et al. [27] showed that
C2H5OH thermally decomposed at 840 ◦C without plasma and
a metal catalyst, and C2H4, C2H2, C2H4O, CH4, CO, CO2, and
H2O were generated through the thermal reactions. This paper
suggested that hydrocarbons such as C2H4 and C2H2 can be
used as a CNT precursor. Our previous work using CH4/H2

plasma concluded that C2H+
5 and CxHy (x, y ≥ 2) are the main

precursors [7], [8], [10] and that Al2O3/Fe/Al2O3 catalyst
resulted in high yields of CNTs. According to the present QMS
measurement, the radicals derived from the C2H5OH molecule
are the major species in the plasma. The species observed by
QMS are different from those by OES because the emission
peaks of hydrocarbon radicals are located in the infrared region
and outside the measurement range. Considering these results,
we speculate that C2H4 and C2H5 which were generated by
electron impact collision with C2H5OH would be CNT pre-
cursors in this system. Since the molecular weight of CO
and C2H4 are equivalent, it is difficult to distinguish between
these two species [Fig. 5(c)]. The presence of CO indicates
that carbon is provided by the CO disproportionation reaction
[26]. By employing plasma, the electron-collision process in
the plasma reduces the effective temperature for CNT growth
by approximately 200 ◦C, when compared with the nonplasma
CVD process [27].

IV. CONCLUSION

In this paper, we reported multiwalled CNT growth by
alcohol PECVD at 650 ◦C. By adding 0.01-wt% ferrocene
in C2H5OH, the yield of CNTs increased, and well-aligned
CNTs were grown on an Al2O3/Fe/Al2O3 substrate. Using
plasma OES, the spectral peaks from the resulting atoms and
molecules (C2, CH, CHO, CH2O, CO, H, O2, C+, and CO+)
were identified. In the QMS measurement, the peaks of H2,
CH4, CH3OH, and C2H5OH were detected, and a decrease in
intensity of CH4, CH3OH, and C2H5OH by generating plasma
was shown. By utilizing the plasma dissociation process for
alcohol, oxidants (such as CO2, H2O, OH) and reductants
(CO, H2), as well as CxHy (x ≥ 1, y ≥ 3) that are precursors
for CNT growth, can be effectively produced at a lower temper-
ature in plasma.
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