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Abstract

We shall consider piecewise invertible systems exhibiting intermittency
and establish a generalized variational principle adapted to non-stationary
process in the following sense ; the supremum is attained by nonsingular
(not necessarily invariant) probability measures and if the system exhibits
hyperbolicity then it reduces to the usual variational principle for the
pressure. Our method relies on Ruelle’s program in the study of nonequi-
librium statistical mechanics to analyze dissipative phenomena. We show
nonpositivity of entropy production at weak Gibbs measures and clarify
when it indeed vanishes. We also discuss a generalized variational princi-
ple in the context of σ-finite invariant measures.

1 Introduction

In the study of non-equilibrium statistical mechanics, Ruelle introduced the
concept of entropy production to explain irreversibility on the basis of micro-
scopic dynamics and to give quantitative prediction for dissipative phenomena.
In his program, invertible time evolution that does not preserve any smooth
measure was considered ([R1],[R2],[GR]). In this paper, we shall take the first
step towards placing these approaches in a more general framework. We shall
concern with dissipative phenomena observed in complex systems exhibiting in-
termittency. More specifically, we shall consider non-stationary non-invertible
process of which statistical laws are determined by either (bi-)nonsingular prob-
ability measures or σ-finite infinite invariant measures. Let (X, d) be a complete
separable metric space and let F be the σ-algebra of subsets of X generated
by the collection of open sets. We shall consider piecewise invertible systems
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(T,X,Q = {Xi}i∈I) (see the definition in §3) and (bi-)nonsingular probabil-
ity measures m on (X,F) with respect to T. Let Lm be the transfer operator
associated with m. Then we define

eT (m) := lim sup
n→∞

1
n

∫
X

logLn
m1 ◦ Tn(x)dm(x),

which is called the asymptotic averaged entropy production of T at m.
The main purpose of this article is to show the following facts.

(1) If eT (m) at m is nonzero, then there is a gap between the next two gener-
alized entropies :

hm(T,Q) := lim sup
n→∞

1
n

Hm(∨n−1
k=0T−kQ)

and

ĥm(T,Q) := lim sup
n→∞

1
n

∫
X

Im(∨n−1
k=0T−kQ| ∨∞k=n T−kQ)(x)dm(x).

(2) eT (m) at a weak Gibbs measure m is nonpositive. We shall give a sufficient
condition for eT (m) being zero.

(3) For a given potential φ, we shall introduce a generalized pressure GPT (φ) in
the context of nonsingular probability measures. Then we shall establish
a generalized variational principle for GPT (φ). Moreover, we shall clarify
when it can be reduced to the usual one for the pressure PT (φ) in the
frame work of invariant probability measures. This allows us to obtain
naturally a weaker notion of equilibrium state for φ. More specifically, we
shall answer to the following questions :

Question (A) When does PT (φ) ≤ GPT (φ) hold ?

Question (B) When does the equality PT (φ) = GPT (φ) hold ? In this
case, does the usual equilibrium state for φ attain GPT (φ)?

We should remark that eT (m) = 0 if m is T -invariant. Even if m is not
T -invariant, eT (m) vanishes if {logLn

m1(x)}n≥1 is uniformly bounded. This
property fails typically in case that the potential φ = log dm

d(m◦T ) admits an
indifferent periodic point. As we will see in §5, our results can apply to various
types of intermittent systems. In particular, we have a complete answer to
the questions (A) and (B) if the second moment of the stopping time over a
hyperbolic region is finite. We should remark that this phenomena is observed
for another type of non-hyperbolic maps (unimodal and multimodal maps) for
which the usual variational principle can be established (see [PS1],[PS2], [PZ])).
Finally, we can verify that as long as we restrict our attention to uniformly
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expanding Markov systems and potentials of summable variations there is no
difference between our generalized variational principle and the usual variational
principle for the pressure.

The paper is organized as follows. In §2, we introduce definitions of gener-
alized entropies for nonsingular transformations. In §3, we collect fundamental
results for piecewise invertible sofic systems which play important roles in es-
tablishing our main results in §4. In particular, we give sufficient conditions
for (bi-)nonsingular probability measures satisfying the weak Gibbs property
([Y4]) and a formula of conditional probabilities that allows one to establish
the Dobrushin-Lanford-Ruelle equations ([Y8].[MRTMV]). In §5, we apply our
results to intermittent systems and establish a generalized variational principle
in the context of σ-finite invariant measures. All proofs of results in §3-5 are
postponed to §6.

2 Generalized entropies for nonsingular trans-
formations

Let (X, d) be a complete separable metric space and let F be the σ-algebra
of subsets of X generated by the collection of open sets. (X,F) is called a
standard Borel space. Let m be a Borel probability measure on the standard
Borel space (X,F). We call (X,F ,m) a standard probability space. We shall
consider a (bi-)nonsingular transformation T of the standard probability space
(X,F ,m), (i.e., m ◦ T−1 ∼ m). Suppose that Q = {Xi}i∈I is a measurable
disjoint countable partition of X. The information function of Q is defined
by Im(Q)(x) := −

∑
i∈I log m(Xi)1Xi

(x) (where 0 log 0 := 0) and the entropy
of the partition Q is defined by Hm(Q) :=

∫
X

Im(Q)(x)dm(x). We denote
Xi1...in

:=
⋂n−1

k=0 T−kXik+1 ∈ ∨n−1
k=0T−kQ which is called a cylinder of rank n

(with respect to T ).

Definition. The generalized entropy of T on (X,F ,m) with respect to Q =
{Xi}i∈I is defined by

hm(T,Q) := lim sup
n→∞

1
n

Hm(∨n−1
k=0T−kQ)

(
= lim sup

n→∞

∫
X

(
− 1

n
log m(Xi1...in(x))

)
dm(x)

)
,

where Xi1...in(x) denotes the unique cylinder of rank n containing x.

When m is T -invariant, hm(T,Q) just coincides with the entropy hm(T,Q) of T
with respect to Q. We also introduce another description of the entropy of a (bi-
)nonsingular transformation in terms of the conditional informations. In order
to simplify the notation, if P is a sub-σ-algebra of F generated by elements of
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a partition P then Im(Q|P ) denotes the conditional information of Q given P
defined by

Im(Q|P)(x) = −Σi∈I log m(Xi|P)(x)1Xi
(x).

Definition The generalized conditional entropy of T on (X,F ,m) with respect
to Q = {Xi}i∈I is defined by

ĥm(T,Q) := lim sup
n→∞

1
n

∫
X

Im(∨n−1
k=0T−kQ| ∨∞k=n T−kQ)(x)dm(x)

(
= lim sup

n→∞

1
n

∫
X

n−1∑
k=0

Im(T−kQ| ∨∞l=k+1 T−lQ)dm(x)

)
.

In particular, if m is T -invariant and satisfies Hm(Q) < ∞ then ĥm(T,Q) coin-
cides with the next description of hm(T,Q) in terms of conditional informations,

Hm(Q| ∨∞k=1 T−kQ) =
∫

X

Im(Q| ∨∞k=1 T−kQ)(x)dm(x).

3 Weak Gibbs measures for piecewise invertible
systems

We shall consider a measurable countable disjoint partition Q = {Xi}i∈I of X
which satisfies cl(

⋃
i∈I intXi) = X and cl int Xi ⊃ Xi if int Xi 6= ∅. Let T be a

noninvertible transformation of X satisfying the next conditions.

(C1)
⋃

i∈I intXi ⊂ T (
⋃

i∈I intXi) and T (
⋃

intXi=∅ Xi) ⊂
⋃

intXi=∅ Xi.

(C2) (Local invertibility) T |Xi
is one to one for every Xi ∈ Q, and for

Xi ∈ Q with int Xi 6= ∅, T |intXi
: intXi → T (intXi) is a homeomorphism.

Moreover (T |intXi
)−1 is extended to a homeomorphism vi : clT (intXi) →

cl int Xi.

(C3) (T -generator condition) ∨∞n=0T
−nQ = ε (the partition into points).

We call (T,X,Q) a piecewise invertible system. We remark that for every
Xi1...in :=

⋂n−1
k=0 T−kXik+1 with int Xi1...in 6= ∅, Tn|Xi1...in

: Xi1...in → TnXi1...in

is one to one. Moreover, Tn|intXi1...in
: intXi1...in → Tn(intXi1...in) is a homeo-

morphism and (Tn|intXi1...in
)−1 is extended to a homeomorphism vi1...in := vi1◦

vi2 ◦ . . .◦vin : clTn(intXi1...in) → cl intXi1...in . For every n ≥ 1 we define An :=
{(i1 . . . in) ∈ In| intXi1...in 6= ∅} and U (n) := {Tn(intXi1...in)|∀(i1 . . . in) ∈ An}.
We denote U :=

⋃
n≥1 U (n). Then we have

Lemma 3.1
⋃

U∈U(1) U =
⋃

U∈U U.
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Suppose that the next condition is satisfied.

(Finite range structure FRS) U is a finite set.

Then (T,X,Q) provides nice (countable) symbolic dynamics similar to sofic
shifts (see [Y1],[Y2]). Therefore, we call (T,X,Q) satisfying the FRS condition
a sofic system. If T intXi ∩ intXj 6= ∅ implies T intXi ⊃ intXj , then U = U (1)

and the (T,X,Q) is called a Markov system. In particular, if U consists of a
single element then (T,X,Q) is called a Bernoulli system. We also call Xi ∈ Q
with T (intXi) =

⋃
U∈U U a Bernoulli cylinder. NT (X) denotes the set of all

(bi-)nonsingular probability measures with respect to T and MT (X) denotes
the set of all T - invariant probability measures. Then MT (X) ⊂ NT (X). We
recall that a (bi-)nonsingular transformation T of the standard probability space
(X,F ,m) is locally invertible (i.e., ∃P = {Yj}j∈J a disjoint partition of X s.t.
m(X\

⋃
j∈J Yj) = 0 and T is invertible on each Yj ∈ P) iff T−1{x} is countable

for m-a.e. x ∈ X (c.f.[Aa]). Since the condition (C2) implies that T is countable
to one, if m ∈ NT (X) then m◦T ≤ m so that there exists a measurable function
φ : X → R satisfying φ(x) = log dm

d(m◦T ) (x) ( m-a.e. x ∈ X). Then the transfer
operator Lm : L1(m) → L1(m) associated with m is defined by ; ∀f ∈ L1(m)

Lmf(x) =
∑

y∈T−1{x}

exp[φ(y)]f(y) (m-a.e.x ∈ X).

We note that m ∈ NT (X) with m(
⋃

U∈U U) = 1 satisfies m(
⋃

i∈I intXi) = 1. In
this case, m-a.e. x ∈ X,Lmf(x) = Lφf(x), where Lφ is the so-called Perron-
Frobenius operator associated with φ defined by

Lφf(x) :=
∑
i∈I

exp[φ(vi(x)]f(vi(x))1cl(T (intXi))
(x). (C.f.[Y 7].)

Since m(
⋃

U∈U U) = 1 gives m(
⋃

(i1...in)∈An
intXi1...in) = 1(∀n ≥ 1), we see

that for every n ≥ 1 and m-a.e. x ∈ X

Ln
mf(x) = Lφ

nf(x)

=
∑

(i1...in)∈An

exp[
n−1∑
k=0

φ ◦ T k(vi1...in(x))]f(vi1...in(x))1cl(T n(intXi1...in ))(x).

In particular, if (T,X,Q) is a Bernoulli system and {exp[φ ◦ vi] : X → R}i∈I is
an equi-continuous family satisfying supx∈X

∑
i∈I exp[φ ◦ vi(x)] < ∞, then Lφ

preserves C(X).
We introduce a weaker notion of Bowen’s Gibbs measure (c.f.[Y4]).

Definition A Borel probability measure m on (X,F) is called a weak Gibbs
(WG) measure for φ with a constant P if there exists a sequence of positive
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numbers {Kn}n≥1 with limn→∞
1
n log Kn = 0 such that ∀n ≥ 1,∀Xi1...in ∈

∨n−1
k=0T−kQ with m(Xi1...in) > 0 and for m-a.e. x ∈ Xi1...in

K−1
n ≤ m(Xi1...in)

exp[
∑n−1

k=0 φT k(x) + nP ]
≤ Kn.

Proposition 3.1 Let m be a T -invariant weak Gibbs measure for φ with 0. If
either Hm(Q) < ∞ or

∫
X

φdm > −∞ is satisfied, then hm(T,Q) +
∫

X
φdm =

hm(T ) +
∫

X
φdm = 0.

We should remark that if Hm(Q) < ∞ then hm(T,Q) = hm(T ) because of (C3)
! Next we introduce another notion of Gibbs measures which is more closely
related to the Gibbsian states in statistical mechanics.

Definition A Borel probability measure m on (X,F) is called a (WG-1) mea-
sure for φ if ∀n ≥ 1,∀Xi1...in ∨n−1

k=0 T−kQ with m(Xi1...in) > 0, and for
m-a.e. x ∈ T−nTnXi1...in ,

m(Xi1...in
|T−n(∨∞k=0T

−kQ))(x) =
(Lφ

n1Xi1...in

Lφ
n1

)
◦ Tn(x).

Indeed, the (WG-1) property allows one to establish the Dobrushin-Lanford-
Ruelle (DLR) equations (see [Y8] and [MRTMV] for more details).

Definition We say that φ : X → R is a potential of weak bounded variation
(WBV) if there exists a sequence of positive numbers {Cn}n≥1 satisfying
limn→∞

1
n log Cn = 0 and ∀n ≥ 1,

sup
Xi1...in∈∨

n−1
k=0 T−kQ

supx∈Xi1...in
exp[

∑n−1
k=0 φ(T kx)]

infx∈Xi1...in
exp[

∑n−1
k=0 φ(T kx)]

≤ Cn.

Remark (A) If V arn(T, φ) := supY ∈∨n−1
k=0 T−kQ supx,y∈Y |φ(x) − φ(y)| → 0 as

n →∞, then φ satisfies the WBV property. If {φ◦vi : cl(T intXi) → R}i∈I

is a family of partially defined equi-continuous functions and σ(n) :=
supY ∈∨n−1

k=0 T−kQ diamY → 0 as n →∞, then V arn(T, φ) → 0(n →∞).

Theorem 3.1 Let (X,F) be a standard Borel space and let (T,X,Q = {Xi}i∈I)
be a piecewise invertible system. Suppose that m ∈ NT (X) admits a function
φ : X → R satisfying φ = log dm

d(m◦T ) . Then we have the followings :

(i) m is a (WG-1)-measure for φ.

(ii) If φ satisfies the WBV property and infU∈U m(U) > 0, then m is a weak
Gibbs measure for φ with 0.

We refer the reader to [Y3, Y7] which contains sufficient conditions for φ
possessing m ∈ NT (X) with φ = log dm

d(m◦T ) .
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4 The asymptotic averaged entropy production
and a generalized variational principle

Now we come to discuss properties of the asymptotic averaged entropy produc-
tion of T associated with (bi)nonsingular probability measures.

Lemma 4.1 Let (X,F) be a standard Borel space and let (T,X,Q) be a piece-
wise invertible system. If m ∈ NT (X), then ∀n ≥ 1 and for m-a.e. x ∈ X

Im(∨n−1
k=0T−kQ|T−nε)(x) +

n−1∑
k=0

log
dm

d(m ◦ T )
◦ T k(x) = logLn

m1 ◦ Tn(x).

As we have already remarked in §1, our main interest is in case that the WBV
sequence {Cn}n≥1 for φ := log dm

d(m◦T ) diverges as n →∞.

Definition A periodic point x0 with T qx0 = x0 is called indifferent with respect
to m if

∑q−1
k=0 φ ◦ T k(x0) = 0 for φ : X → R with exp[φ] = dm

d(m◦T ) .

Neither summability of variations of φ nor the uniformly bounded distortion
property for expφ holds under the existence of an indifferent periodic point
with respect to m (see Lemma 6.1 in [Y5]). The next result insists that eT (m)
at a weak Gibbs measure m is nonpositive and it becomes indeed zero under
certain conditions.

Theorem 4.1 Let (X,F) be a standard Borel space and let (T,X,Q) be a piece-
wise invertible sofic system. Suppose that m ∈ NT (X) with m(

⋃
U∈U U) = 1

admits a potential φ of WBV satisfying exp[φ] = dm
d(m◦T ) . Then m is a weak

Gibbs measure for φ (with 0) and eT (m) ≤ 0. Assume further that either of the
following conditions is satisfied.

(i) (T,X,Q) is a Bernoulli system.

(ii) m possesses an indifferent periodic point x0 with period q which is contained
in a Bernoulli cylinder of rank q.

Then we have

eT (m) = lim
n→∞

1
n

∫
X

logLn
m1 ◦ Tn(x)dm(x) = ĥm(T,Q)− hm(T,Q) = 0.

Lemma 4.2 Under the assumptions in the theorem 4.1,

lim
n→∞

∣∣∣∣∣∣∣∣ 1n logLn
m1
∣∣∣∣∣∣∣∣

L∞(m)

= 0

and the decay rate is subexponential.
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Definition. For a given potential φ : X → R we define

NT (X, φ) := {µ ∈ NT (X)|Iµ(T−kQ|T−(k+1)ε) + φ ◦ T k,

Iµ(T−kQ|T−(k+1)ε) + log
dµ

d(µT )
◦ T k ∈ L1(µ) (∀k ≥ 0)}.

For every µ ∈ NT (X, φ), we denote

F(φ, µ) := ĥµ(T,Q)+lim inf
n→∞

∫
X

∑n−1
k=0 φT k(x)

n
dµ(x)−eT (µ)−lim sup

n→∞

1
n

min{An, Bn},

where

An :=
∫

X

n−1∑
k=0

(
Lk

µ1(x)
exp[φ]

dµ/d(µT )
(x)− 1

)
dµ(x)

and
Bn :=

∫
X

(Lφ
n1(x)− 1) dµ(x).

Theorem 4.2 Let (X,F) be a standard Borel space and let (T,X,Q = {Xi}i∈I)
be a piecewise invertible sofic system. If m ∈ NT (X) with m(

⋃
U∈U U) = 1

admits a function φ satisfying exp[φ] = dm
d(m◦T ) and supx∈XLφ1(x) < ∞, then

the next two properties hold.

(i) If φ satisfies the WBV property and m possesses an indifferent periodic point
with period q in a Bernoulli cylinder of rank q, then

eT (m) = ĥm(T,Q) + lim inf
n→∞

∫
X

1
n

n−1∑
k=0

φ ◦ T k(x)dm(x) = 0.

(ii) For every µ ∈ NT (X, φ)

lim sup
n→∞

1
n

∫
X

(
Iµ(∨n−1

k=0T−kQ|T−nε)(x) +
n−1∑
k=0

φ ◦ T k(x)

)
dµ(x)

≤ eT (µ) + lim sup
n→∞

1
n

min{An, Bn} < ∞.

Definition We define a generalized pressure GPT (φ) of φ by

GPT (φ) := sup{F(φ, µ) | µ ∈ NT (X, φ)}.

We say that µ ∈ NT (X, φ) is a weak equilibrium state for φ if F(φ, µ) =
GPT (φ). WET (φ) denotes the set of all weak equilibrium states for φ.
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Theorem 4.3 (A generalized variational principle) Let φ be a potential
of WBV with supx∈XLφ1(x) < ∞. Assume that there exists m ∈ NT (X) with
m(
⋃

U∈U U) = 1 satisfying exp[φ] = dm
d(m◦T ) and possesses an indifferent periodic

point x0 with T qx0 = x0 in a Bernoulli cylinder of rank q. Then GPT (φ) = 0
and we have the followings.

(i) Every µ = hm with h
hT ≡ 1 (m-a.e.) satisfies µ ∈ WET (φ).

(ii) If the indifferent periodic point x0 satisfies 1
q

∑q−1
k=0 exp[φ(T kx0)] = 1, then

1
q

∑q−1
k=0 δT kx0 ∈ WET (φ).

Remark (B) If m is not T -invariant, then µ = hm with h
hT ≡ 1 is also not

T -invariant. If m is a WG measure for φ, then the supremum is attained
by every WG measure for the common potential φ.

Since m itself and 1
q

∑q−1
k=0 δT kx0 are weak equilibrium states for φ, we have

the next result.

Corollary 4.1 WET (φ) consists of more than two elements.

We shall observe further details for (ii) in Theorem 4.2 in case when µ ≤ m

with dµ/dm = h. First, we note that An :=
∫

X

∑n−1
k=0

(
hT
h (T kx)− 1

)
dµ(x) and

Bn :=
∫

X

(
hT n

h (x)− 1
)
dµ(x). Then the followings are obtained:

(a) In case when µ ∈MT (X), we see that

An = n(
∫

X

hT (x)dm(x)− 1), Bn =
∫

X

hTn(x)dm(x)− 1

and

F(φ, µ) =
∫

X

log
hT

h
(x)dµ(x)−min{

∫
X

hT (x)dm(x)−1, lim sup
n→∞

∫
X

hTn(x)
n

dm(x)}.

(Here, we use hµ(T,Q) +
∫

X
φ(x)dµ(x) +

∫
X

log h
hT (x)dµ(x) = 0 which

follows from Lemma 4.1).

(b) In case when m ∈MT (X), Ln
m1(x) = Lφ

n1(x) = 1 (µ-a.e. x ∈ X) so that

F(φ, µ) = ĥµ(T,Q)+lim inf
n→∞

∫
X

∑n−1
k=0 φT k(x)

n
dµ(x)−eT (µ)−lim sup

n→∞

1
n

min{An, 0}

.

Therefore,

(c) if both µ and m are T -invariant then F(φ, µ) =
∫

X
log hT

h dµ.
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Definition For given φ : X → R, we define

MT (X, φ) := {µ ∈MT (X)| Iµ(Q|T−1ε) + φ ∈ L1(µ), either hµ(T ) < ∞

or
∫

X

φdµ > −∞ with hµ(T ) =
∫

X

Iµ(Q|T−1ε)dµ is satisfied}.

The pressure of φ is defined by

PT (φ) := sup{hµ(T ) +
∫

X

φdµ | µ ∈MT (X, φ)}.

If µ ∈ MT (X, φ) satisfies hµ(T ) +
∫

X
φdµ = PT (φ), then µ is called an

equilibrium state for φ. ET (φ) denotes the set of all equilibrium states for
φ.

The next result gives an answer to the question (A) in §1.

Lemma 4.3 If PT (φ) coincides with

P̂T (φ) := sup{hµ(T ) +
∫

X

φdµ | µ = hm ∈MT (X, φ),

∫
X

log
hT

h
dµ = 0 and lim sup

n→∞

∫
X

hTn

n
dm = 0},

then PT (φ) ≤ GPT (φ).

We have the next answer to the question (B) in §1.

Theorem 4.4 Let (T,X,Q) be a piecewise invertible sofic system and let φ
be a potential of WBV with supx∈XLφ1(x) < ∞. Assume that there exists
m ∈ NT (X) with m(

⋃
U∈U U) = 1 satisfying exp[φ] = dm

d(m◦T ) and possesses
an indifferent periodic point with period q in a Bernoulli cylinder of rank q. If
there exists an absolutely continuous weak Gibbs measure µ ∈ MT (X, φ) for φ
(with 0) with respect to m and satisfies limn→∞

1
n

∫
X
Ln

m1dµ = 0, then we have

(i) F(φ, µ) = 0 = hµ(T ) +
∫

X
φdµ and µ ∈ WET (φ).

(ii) µ ∈ ET (φ) iff PT (φ) = P̂T (φ) and in this case PT (φ) = GPT (φ).

(iii) If supx∈X Ln
φ1(x) = o(n), then ET (φ) ⊂ WET (φ).

We will see in §5 that all examples admitting indifferent periodic points x0satisfy
that µ, 1

q

∑n−1
k=0 δT kx0 ∈ ET (φ) and 1

q

∑n−1
k=0 δT kx0 ,m ∈ WET (φ). In order to

clarify whether µ ∈ WET (φ) or not, we need to verify finiteness of the second
moment of the stopping time over hyperbolic regions (see Proposition 5.2).
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Corollary 4.2 (The uniqueness of weak equilibrium states) If the weak
Gibbs measure µ = hm for φ satisfies µ ∼ m and

||Ln
m1− h||L∞(m) −→ 0 (n →∞),

then
]ET (φ) = ]WET (φ) = 1.

Indeed, the assumption in Corollary 4.2 implies that µ and m are exact and
hence ergodic ([Aa]). Therefore, the condition h

hT ≡ 1 forces h to be m-a.e.
constant.

Remark (C) If m ∈ NT (X) admits an indifferent periodic point x0, then the
uniform convergence of Ln

m1 typically fails. Even if the L1(m) convergence
is valid, the invariant density h may be unbounded.

5 Applications to Intermittent Systems

In this section, we shall apply our results in previous sections to intermittent
phenomena caused by indifferent periodic points. Let (T,X,Q) be a piecewise
invertible sofic system and let φ be a potential of WBV with supx∈X Lφ1(x) <
∞. Assume that there exists m ∈ NT (X) with m(

⋃
U∈U U) = 1 satisfying

exp[φ] = dm
d(m◦T ) and possesses an indifferent periodic point with period q in

a Bernoulli cylinder of rank q. A denotes the set of all admissible cylinders⋃∞
n=1{Xi1...in

|(i1 . . . in) ∈ An}. For R ⊂ A, we define the stopping time over R,
R : X → N∪{∞} by R(x) = inf{n ∈ N : Xi1...in(x) ∈ R}. Then for every n ≥ 1,
we define Dn = {x ∈ X|R(x) > n} and Bn = {x ∈ X|R(x) = n}. Put D0 =
X. Define I∗ =

⋃∞
n=1{(i1 . . . in) : Xi1...in ⊂ Bn}. Then Q∗ = {Xα}α∈I∗ is a

countable partition of
⋃∞

i=1 Bi. Now we define Schweiger’s jump transformation
T ∗ :

⋃∞
i=1 Bi → X by T ∗x = TR(x)x. Put X∗ = X\(

⋃∞
m=0 T ∗−m(

⋂
n≥0 Dn).

Then (T ∗, X∗, Q∗) is a piecewise invertible sofic system. We impose the next
two conditions on R.

(1) Xi1...inj1...jm ∈ R whenever Xj1...jm ∈ R(the strong playback property).

(2) ∃0 < Γ < ∞, γ∗ > 1 such that for every (α1 . . . αn) ∈ I∗n with Xα1...αn ∈ A
and for all n ≥ 1,

d(vα1...αnx, vα1...αny) ≤ Γγ∗−nd(x, y) (∀x, y ∈ T ∗nXα1...αn).

If the induced potential φ∗ :=
∑R(.)−1

k=0 φT k satisfies equi-Hölder continuity
of {φ∗vα}α∈I∗ then the measure theoretical bounded distortion is valid for
expφ∗ (= dm

d(mT∗) ). Then we have a T ∗-invariant measure µ∗ of which den-
sity is bounded and piecewise Hölder continuous with respect to a finite par-
tition generated by U . Furthermore, if each U ∈ U contains a full cylinder in

11



R then the density is bounded away from zero and µ∗ is a Gibbs measure for
φ∗ which is exact and exponential mixing . Moreover, if limn→∞ m(Dn) = 0,
then m(X) = m(X∗) and the following formula gives a T -invariant σ-finite
conservative measure µ ∼ m, which is exact ([Y1], c.f.[Sch]).

µ(E) =
∞∑

n=0

µ∗(Dn ∩ T−nE)(∀E ∈ F).

Such µ is unique up to constant. In particular, if
∑∞

n=0 m(Dn) < ∞ then µ
is finite. We should recall that the distortion of dm

d(mT n) over cylinders of rank
n touching indifferent periodic points diverges as n → ∞ (c.f. Lemma 6.1 in
[Y5]). Therefore, all indifferent periodic points with respect to m are contained
in
⋂

n≥0 Dn. In particular,
⋂

n≥0 Dn consists of only indifferent periodic points
in our examples below. We have the following results.

Proposition 5.1 (Theorem 3.2 in [Y4]). Suppose that

(i) ∃0 < r1 < r2 < ∞ and ∃α > 1 such that

r1n
−α ≤ m(Dn) ≤ r2n

−α,

(ii) ∃0 < G1 < ∞ such that ∀Xd1...dn ∈ Dn,m(Dn) ≤ G1m(Xd1...dn).

Then µ is a weak Gibbs measure for φ with 0.

Definition A cylinder Xi1...in is called a Markov cylinder if for every U ∈ U
with U ∩ intXi1...in 6= ∅ it holds that int Xi1...in ⊂ U.

If (T,X,Q) is a piecewise invertible sofic system, then it follows from Theorem
3.1 in [Y2] that there exists a Markov cylinder. We have the next result

Proposition 5.2 If B1 consists of Markov cylinders and
∫

X
R2dm < ∞, then

µ satisfies

lim
n→∞

1
n

∫
X

Ln
m1dµ = 0.

Now we can apply all our results in §3 - §4 and Propositions 5.1-2 to the fol-
lowing intermittent systems preserving absolutely continuous probability mea-
sures.

Example 1. (A one-parameter family of maps on the interval [0, 1].)

Let X = [0, 1] and let m be the normalized Lebesgue measure of [0, 1]. For β > 0
define

Tβ(x) =

{
x

(1−xβ)1/β on X0 = [0, (1/2)1/β)
x

(1/2)1/β−1
+ 1

1−(1/2)1/β on X1 = [(1/2)1/β , 1]

12



The map Tβ has an indifferent fixed point 0. It is similar in its properties to
the more familiar Manneville-Pomeau maps : x → x + x1+β (mod 1), in that it
also has intermittent behavior. (T,X,Q = {X0, X1}) is a piecewise invertible
Bernoulli system and φ = log |T ′| satisfies the WBV property. Therefore, m
is a weak Gibbs measure for φ with 0. If β < 1 then Tβ admits an invariant
weak Gibbs equilibrium measure µ ∼ m. We see that eT (m) = eT (µ) = 0 and
µ, δ0 ∈ ET (φ). We also know that m, δ0 ∈ WET (φ). In particular, if β < 1

2 then
µ ∈ WET (φ), too.

Example 2. (Inhomogeneous Diophantine approximations [Y2, Y4-
Y8,]) We define X = {(x, y) ∈ R2 : 0 ≤ y ≤ 1,−y ≤ x < −y + 1}
and T : X → X by

T (x, y) =
(

1
x
−
[
1− y

x

]
+
[
−y

x

]
,−
[
−y

x

]
− y

x

)
,

where [x] = max{n ∈ Z|n ≤ x}(x ∈ N) and [x] = max{n ∈ Z|n <
x}(x ∈ Z\N). This map admits indifferent periodic points (1, 0) and
(−1, 1) with period 2, i.e., |det DT 2(1, 0)| = |det DT 2(−1, 1)| = 1. Let
a(x, y) = [ (1−y)

x ] − [−y
x ] and b(x, y) = −[− y

x ]. We can introduce an index
set

I := {(a, b) ∈ Z2 : a > b > 0, or a < b < 0}
and a partition Q := {X(a,b)∈I}, where X(a,b) = {(x, y) ∈ X : a(x, y) =
a, b(x, y) = b}. Let m be the normalized Lebesgue measure of X. (T,X,Q)
is a piecewise invertible Bernoulli system and φ = log dm

d(mT ) satisfies the
WBV property. Therefore, m is a weak Gibbs measure for φ with 0. There
exists a T -invariant weak Gibbs equilibrium measure µ ∼ m. We see that
eT (m) = eT (µ) = 0 and µ, 2−1(δ(1,0) + δ(−1,1)) ∈ ET (φ). We also know
that m, 2−1(δ(1,0) + δ(−1,1)) ∈ WET (φ).

Example 3. (A complex continued fraction [Y6, Y7]) We can define a
complex continued fraction transformation T : X → X on the diamond
shaped region X = {z = x1α + x2α : − 1/2 ≤ x1, x2 ≤ 1/2}, where
α = 1+i, by T (z) = 1/z−[1/z]1 . Here [z]1 denotes [x1+1/2]α+[x2+1/2]α,
where z is written in the form z = x1α+x2α, [x] = max{n ∈ Z|n ≤ x}(x ∈
N) and [x] = max{n ∈ Z|n < x}(x ∈ Z −N). This transformation has
an indifferent periodic orbit {1,−1} of period 2 and two indifferent fixed
points at i and −i. For each nα + mα ∈ I := {mα + nα : (m,n) ∈
Z2 − (0, 0)}, we define Xnα+mα := {z ∈ X : [1/z]1 = nα + mα}. Then
we have a countable Markov partition Q = {Xa}a∈I of X and (T,X,Q)
is a transitive sofic system. For φ(z) = − log |T ′(z)|(= −2 log |z|), we can
verify the WBV property of φ so that m is a weak Gibbs measure for 2φ
with 0. There exists a T -invariant ergodic probability measure µ ∼ m for
2φ, and we see that eT (m) = eT (µ) = 0. Moreover, µ, δi, δ−i, 2−1(δ1 +
δ(−1)) ∈ ET (φ) and m, δi, δ−i, 2−1(δ1 + δ(−1)) ∈ WET (φ).
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In case when
∑∞

n=0 m(Dn) = ∞, Theorem 4.4 does not apply so that we need
further observations. LetM∞

T (X) be the set of all σ-finite invariant measures on
(X,F) and define E∞T (X) := {v ∈M∞

T (X)|ν is conservative and ergodic }. For
every ν ∈ E∞T (X), we can define the induced transformation TA over A ∈ F with
0 < ν(A) < ∞ by TA(x) = TRA(x)(x), where RA(x) := inf{n ∈ N|Tn(x) ∈ A}.
Then νA := ν|A

ν(A) is TA-invariant and ergodic. ν can be represented by νA via
the next Kac’ formula:∫

X

1E(x)d(x) =
∫

A

RA(x)−1∑
k=0

1E(T kx)dνA(x) (∀E ∈ F).

Moreover, if Ai ∈ F satisfy 0 < ν(Ai) < ∞ (i = 1, 2) then TA1 = (TA1∪A2)A1

so that
hν1∪ν2(TA1∪A2)

νA1∪A2(A1)
= h(ν1∪ν2)A1

((TA1∪A2)A1).

Hence we have

ν(A1)hν1(TA1) = ν(A1 ∪A2)hν1∪ν2(TA1∪A2) = ν(A2)hν2(TA2).

This number is used as the entropy hν(T ) of T with respect to ν (c.f.[T]). For
a function f : X → R, define fA(x) :=

∑RA(x)−1
k=0 fT k(x). If Ai ∈ F with

0 < ν(Ai) < ∞ (i = 1, 2), then the above Kac’ formula gives∫
A1

fA1(x)dνA1(x) =
∫

A1∪A2

fA1∪A2(x)dνA1∪A2(x) =
∫

A2

fA2(x)dνA2(x)

whenever the integrals are well-defined. Let A ∈ Q be a Markov cylinder and
let QA be a countable disjoint partition of {x ∈ A|RA(x) < ∞} consisting of all
cylinders Xi1...in ⊂ {x ∈ A|RA(x) = n− 1} with n ≥ 2. We define

E∞T (X, φ,A) := {ν ∈ E∞T (X) | 0 < ν(A) < ∞, IνA
(QA|T−1

A ε) + φA ∈ L1(νA),

either hνA
(TA) < ∞ or

∫
A

φAdνA > −∞ with hνA
(TA) =

∫
X

IνA
(QA|T−1

A ε)dνA}

and
P∞(T, φ,A) := sup

ν∈E∞
T

(X,φ,A)

{ν(A)(hνA
(TA) +

∫
A

φAdνA)}

(= sup
ν∈E∞

T
(X,φ,A)

{hν(T ) + ν(A)
∫

A

φAdνA}).

By using a similar argument in [Y1: Lemma 7.1] (c.f.[T]), we can prove the next
result.

Theorem 5.1 Let B1 be a Markov cylinder of rank 1. If φB1 ∈ L1(µB1), then
P∞(T, φ,B1) = hµ(T ) +

∫
X

φdµ = 0.
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The next example gives a countable non-Markovian sofic system preserving
an absolutely continuous invariant measures to which Theorem 5.1 can apply.

Example 4 (A two dimensional map related to a negative continued
fraction) Let X = {(x, y) : 0 < x ≤ 1, 0 ≤ y ≤ 1} and T is defined by

T (x, y) = (− 1
x
− [− 1

x
],

y

x
− [

y

x
]).

The first component of T is known as a map related to negative contin-
ued fraction which preserves a σ-finite infinite ergodic invariant measure
equivalent to the normalized Lebesgue measure of [0, 1]. We define

I = {(a, b) ∈ N× (N ∪ {0}) : a ≥ 2, a > b}

and a countable disjoint partition Q = {X(a,b)}(a,b)∈I , where X(a,b) is
defined by :

(x, y) ∈ X(a,b) iff − [−1/x] = a and [y/x] = b.

Then (T,X,Q) is a piecewise invertible non-Markovian sofic system. In-
deed, we see that U consists of U0 = X and U1 = {(x, y) ∈ X : x+y ≤ 1}.
Let m be the normalized Lebesgue measure of X. We can verify that
φ = log dm

d(mT ) is a potential of WBV and m is a weak Gibbs measure for
φ with 0. Let Dn be the union of cylinders of rank n touching {1} × [0, 1]
which consists of indifferent fixed points with respect to m. Then we see
that

∑
n≥0 m(Dn) = ∞ and T preserves a σ-finite infinite conservative

ergodic measure µ ∼ m. The invariant density is given by :

dµ

dm
(x, y) =

{
2−x

2(1−x)2 if x + y < 1
1

2(1−x) if x + y > 1

and there is no finite absolutely continuous invariant measure with respect
to m ([Y1,Y2]).

6 Proofs

Proof of Lemma 3.1. First we show that
⋃

U∈U(n) U ⊆
⋃

U∈U(n−1) U. Indeed,

⋃
U∈U(n)

U = Tn−1

 ⋃
(i1...in)∈An

(T intXi1 ∩ intXi2...in)



= Tn−1

 ⋃
(i2...in)∈An−1

 ⋃
i1∈I;(i1i2...in)∈An

(T intXi1 ∩ intXi2...in)
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⊆ Tn−1

 ⋃
(i2...in)∈An−1

intXi2...in ∩
⋃

U∈U(1)

U

 ⊆
⋃

U∈U(n−1)

U.

Next we assume x ∈
⋃

U∈U(n−1) U. Then ∃(i1 . . . in) ∈ An such that x ∈
Tn−1(intXi1...in−1). Therefore by (C1) we have vi1...in−1(x) ∈ intXi1...in−1 ⊂⋃

U ′∈U1) U ′. This implies that ∃Xj ∈ Q with intXj 6= ∅ satisfying

vi1...in−1(x) ∈ intXi1...in−1 ∩ T (intXj) = T (intXji1...in−1).

Since x ∈ Tn(intXji1...in−1) ∈ U (n), we complete the proof. 2

Proof of Proposition 3.1. First we note that the weak Gibbs property of m
gives

− 1
n

log Kn ≤
1
n

∫
X

(
log m(Xi1...in(x))−

n−1∑
k=0

φ ◦ T k(x)

)
dm(x) ≤ 1

n
log Kn.

Therefore, if m is T -invariant then for every n ≥ 1

− 1
n

log Kn ≤
1
n

∑
(i1...in)∈An

m(Xi1...in) log m(Xi1...in)−
∫

X

φ(x)dm(x) ≤ 1
n

log Kn.

From the above inequalities, we conclude hm(T,Q) +
∫

X
φdm = 0.2

Proof of Theorem 3.1. First we note that σ(T−nε) = T−nF . Therefore
∀A ∈ σ(T−nε),∃E ∈ F such that A = T−nE. It follows from the property of
Lφ that∫

A

(Lφ
n1Xi1...in

Lφ
n1

)
◦Tn(x)dm(x) =

∫
X

Lφ
n1(x)

(Lφ
n1Xi1...in

(x)
Lφ

n1(x)

)
1E(x)dm(x)

= m(A ∩Xi1...in
).

Since
(Lφ

n1Xi1...in

Lφ
n1

)
◦Tn gives a σ(T−nε)-measurable function, we complete the

proof of (i). Next we note that ∀Xi1...in with (i1 . . . in) ∈ An

m(Xi1...in) =
∫

T nXi1...in

dm

d(mTn)
(vi1...iny)dm(y) =

∫
T nXi1...in

exp[
n−1∑
k=0

φ◦T k(y)]dm(y).

Then (ii) follows from the WBV property of φ. 2

Proof of Lemma 4.1. It follows from (ii) in Theorem 3.1 that m satisfies the
(WG-1) property for every φ : X → R satisfying expφ = dm

d(mT ) . Therefore we
obtain for the unique cylinder Xi1...in(x) of rank n containing x

m(Xi1...in
(x)|T−nε)(x) =

dm
d(mT n) (x)

Ln
m1 ◦ Tn(x)
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and this equality gives the desired result. 2

Proof of Lemma 4.2. Let x0 be a fixed point with x0 ∈ Xi0 . First we
note that i0(n) := i0 . . . i0︸ ︷︷ ︸

n

∈ An(∀n ≥ 1) and TnintXi0(n) =
⋃

U∈U U. Since

m(
⋃

U∈U U) = 1, we have for m-a.e. x ∈ X

Ln
m1(x) =

∑
(i1...in)∈An

dm

d(m ◦ Tn)
(vi1...in

(x)) 1T nXi1...in
(x)

≥ dm

d(m ◦ Tn)
(vi0...i0(x)) = exp[

n−1∑
k=0

φ ◦ T k(vi0...i0(x))]

=
exp[

∑n−1
k=0 φ ◦ T k(vi0...i0(x))]

exp[
∑n−1

k=0 φ ◦ T k(vi0...i0(x0))]
≥ Cn

−1.

On the other hand, we see that

(∗) Ln
m1(x) ≤ Cn

∑
(i1...in)∈An

inf
y∈T nXi1...in

dm

d(m ◦ Tn)
(vi1...in(y))

≤ Cn

∑
(i1...in)∈An

m(Xi1...in) ≤ Cn.

If all cylinders are Bernoulli cylinders, then we have that

Ln
m1(x) ≥ Cn

−1
∑

(i1...in)∈An

m(Xi1...in) ≥ Cn
−1.

These observations give us || 1n logLn
m1||L∞(m) ≤ 1

n log Cn when either (i) or (ii)
with q = 1 is satisfied. Moreover, the decay rate 1

n log Cn is subexponential.
Let x0 be a periodic point with period q in a Bernoulli cylinder of rank q. Then,
as we have observed in the above, for every n = sq + r(0 ≤ r ≤ q − 1) we have
C−1

sq ≤ Lsq
φ 1(x) ≤ Csq which allows one to see that

Ln
φ1(x) ≤ CsqLr

φ1(x) ≤ CsqCr

and
Ln

φ1(x) ≥ C−1
sq Lr

φ1(x) ≥ C−1
sq C−1

r

∑
(i1...ir),x∈T rXi1...ir

m(Xi1...ir ).

We complete the proof. 2

Proof of Theorem 4.1. The first assertion follows from the WBV property for
φ directly. Indeed we can take the WBV sequence {Cn}n≥1 for φ as the weak
Gibbs sequence {Kn}n≥1 for m. As we have observed the inequalities (*) in
the proof of Lemma 4.2, 1

n

∫
X
Ln

m1(x) logLn
m1(x)dm(x) ≤ 1

n log Cn holds for all
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n ≥ 1. Therefore, lim supn→∞
1
n

∫
X
Ln

m1(x) logLn
m1(x)dm(x) ≤ 0. The second

assertion is proved. It follows from Lemma 4.2 that

0 = eT (m) = lim
n→∞

1
n

∫
X

logLn
m1 ◦ Tn(x)dm(x)

= lim sup
n→∞

1
n

∫
X

Im(∨n−1
k−0T−kQ|T−nε)(x)dm(x)+lim inf

n→∞

1
n

∫
X

log
dm

d(mTn)
(x)dm(x).

Hence we have

ĥm(T,Q) = − lim inf
n→∞

1
n

∫
X

log
dm

d(mTn)
(x)dm(x)

= lim sup
n→∞

1
n

∫
X

(
− log

dm

d(mTn)
(x)
)

dm(x).

On the other hand, the WG property of m for φ allows us to see that

lim sup
n→∞

1
n

∫
X

(− log m(Xi1...in
(x))dm(x) = lim sup

n→∞

1
n

∫
X

(− log
dm

d(mTn)
(x))dm(x).

We complete the proof. 2

Proof of Theorem 4.2. As we have already observed in the proof of Theorem
4.1, the WG property allows us to have

ĥm(T,Q) = lim sup
n→∞

∫
X

1
n

n−1∑
k=0

(−φ◦T k(x))dm(x) = − lim inf
n→∞

∫
X

1
n

n−1∑
k=0

φ◦T k(x)dm(x).

Thus (i) is proved. For the proof of (ii), first we note the next equality.∫
X

(
Iµ(∨n−1

k=0T−kQ|T−nε)(x) +
n−1∑
k=0

φ ◦ T k(x)

)
dµ(x)

=
∫

X

(
Iµ(∨n−1

k=0T−kQ|T−nε)(x) + log
dµ

d(µTn)
(x) +

n−1∑
k=0

log
exp[φ]

dµ/d(µT )
◦ T k(x)

)
dµ(x).

Then by using the property that log x ≤ x− 1(∀x > 0) we have∫
X

(
Iµ(∨n−1

k=0T−kQ|T−nε)(x) +
n−1∑
k=0

φ ◦ T k(x)

)
dµ(x)

≤
∫

X

(
Iµ(∨n−1

k=0T−kQ|T−nε)(x) + log
dµ

d(µTn)
(x)
)

dµ(x) + min{An, Bn},
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where An :=
∫

X

∑n−1
k=0( exp[φ]

dµ/d(µT )◦T
k−1)dµ, and Bn :=

∫
X

(
exp[
∑n−1

k=0
φ◦T k]

dµ/d(µT n) − 1
)

dµ(x).

Moreover, we can write

Bn =
∫

X

Ln
µ

(
exp[

∑n−1
k=0 φ ◦ T k(x)]

dµ/d(µTn)(x)
− 1

)
dµ(x)

=
∫

X

∑
y∈T−nx

dµ

d(µTn)
(y)

(
exp[

∑n−1
k=0 φ ◦ T k(y)]

dµ/d(µTn)(y)
− 1

)
dµ(x)

=
∫

X

∑
y∈T−nx

(
exp[

n−1∑
k=0

φ ◦ T k(y)]− dµ

d(µTn)
(y)

)
dµ(x) =

∫
X

(Lφ
n1(x)−1)dµ(x).

Then we obtain the desired inequality immediately. 2

Proof of Theorem 4.3. GPT (φ) = 0 follows from Theorem 4.2 directly. By
(i) in Theorem 3.1, we see that µ = hm with h

hT ≡ 1 is a (WG-1) measure for
the common potential φ. Therefore, ∀n ≥ 1 and µ-a.e. x ∈ X

(∗∗) Iµ(∨n−1
k=0T−kQ|T−nε)(x) +

n−1∑
k=0

φ ◦ T k(x) = logLn
µ1 ◦ Tn(x)

because of Lemma 4.1, and for µ ∈ NT (X, φ) we have

1
n

∫
X

Iµ(∨n−1
k=0T−kQ|T−nε)(x)dµ(x) +

1
n

∫
X

n−1∑
k=0

φ ◦ T k(x)dµ(x)

=
1
n

∫
X

logLn
µ1 ◦ Tn(x)dµ(x).

Since µ ≤ m, µ(
⋃

U∈U U) = 1 holds so that F(φ, µ) = 0 follows from Theorem
4.1. (i) is proved. For proving (ii), WOLG we assume x0 is a fixed point. Then
µ = δx0 ∈ MT (X) satisfies dµ

dµT = 1 and Lµf(x) = f(x0) so that An = 0. Also
we have Bn ≥ 0 because x0 is an indifferent fixed point for m. We complete the
proof. 2.

Proof of Lemma 4.3. First we note the following inequalities;

GPT (φ) ≥ sup{F(φ, µ)|µ ∈MT (X, φ)}

= sup{hµ(T ) +
∫

X

φdµ− lim sup
1
n

min{An, Bn} | µ ∈MT (X, φ)}

≥ sup{hµ(T ) +
∫

X

φdµ− lim sup
1
n

min{An, Bn} | µ ∈MT (X, φ), µ ≤ m}

= sup{hµ(T )+
∫

X

φdµ−min{
∫

X

hTdm−1, lim sup
n→∞

∫
X

hTn

n
dm} | µ = hm ∈MT (X, φ)}
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≥ sup{hµ(T )+
∫

X

φdµ−min{
∫

X

hTdm−1, lim sup
n→∞

∫
X

hTn

n
dm} | µ = hm ∈MT (X, φ),

and
∫

X

log
hT

h
dµ = 0}.

As
∫

X
log hT

h dµ ≤
∫

X

(
hT
h − 1

)
dµ holds, we have

GPT (φ) ≥ sup{hµ(T ) +
∫

X

φdµ | µ = hm ∈MT (X, φ),
∫

X

log
hT

h
dµ = 0,

and lim sup
n→∞

∫
X

hTn

n
dm = 0} = P̂T (φ).2

Proof of Theorem 4.4. We first show that
∫

X
log h

hT dµ = 0. By (i) in The-
orem 3.1, µ is a (WG-1) measure for φ̂ : X → R with φ̂ := log dµ

d(µT ) =
log dm

d(mT ) + log h
hT . Therefore, the equality (**) in the proof of Theorem 4.3

holds for φ̂ so that∫
X

(
Iµ(Q|T−1ε)(x)dµ(x) + φ̂(x)

)
dµ(x) = 0.

On the other hand, since the WG property of µ for φ gives Hµ(Q) < ∞, from
Proposition 3.1 we see that∫

X

(
Iµ(Q|T−1ε)(x)dµ(x) + φ(x)

)
dµ(x)

= Hµ(Q|T−1ε) +
∫

X

φ(x)dµ(x) = hµ(T ) +
∫

X

φ(x)dµ(x) = 0.

This implies
∫

X
log h

hT dµ = 0. The observation (a) and the inequality
∫

X
log hT

h dµ ≤∫
X

(
hT
h − 1

)
dµ allow us to have

lim sup
n→∞

1
n

min{An, Bn} = min{
∫

X

hTdm− 1, 0} = 0.

Hence we have F(φ, µ) = 0 = hµ(T ) +
∫

X
φ(x)dµ(x). On the other hand, from

Theorem 4.3 we know GPT (φ) = 0. We proved (i). If P̂T (φ) = PT (φ), then
PT (φ) ≤ 0 which implies µ ∈ ET (φ). Conversely, if µ ∈ ET (φ) then PT (φ) = 0 ≥
GPT (φ). Since µ attains P̂T (φ), we have P̂T (φ) = PT (φ) = GPT (φ). We proved
(ii). Let ν ∈ ET (φ). Then we see that

An

n
=
∫

X

(
expφ

dν/d(νT )
− 1
)

dν ≥
∫

X

log
expφ

dν/d(νT )
dν = hν(T ) +

∫
X

φdν = 0.

Hence we have F(φ, ν) = 0. We complete the proof. 2
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Proof of Proposition 5.2. By Theorem 3.1 in [Y4], ∃0 < H < ∞ so that∫
X

Ln
φ1(x)dµ(x) =

∞∑
k=1

∫
Bk

Ln
φ1(x)h(x)dm(x) ≤ H

∞∑
k=1

k

∫
Bk

Ln
φ1(x)dm(x)

= H

∞∑
k=1

k

∫
X

1Bk
◦ Tn(x)dm(x) = H

∞∑
k=1

k ×m(T−nBk).

Let V be a finite disjoint partition of X generated by U . Then we can write

Bk =
⋃

V ∈V
BV

k , where BV
k :=

⋃
Xb1...bk

⊂Bk∩V

Xb1...bk
.

Define AV
n := {(i1 . . . in) ∈ An|TnXi1...in

⊃ V }. For every Xb1...bk
⊂ Bk ∩ V, we

can define a finite disjoint partition of AV
n by AV

n =
⋃n

l=0AV,l
n (b1 . . . bk), where

AV,l
n (b1 . . . bk) := {(i1 . . . in) ∈ AV

n |Xi1...in−l
∈ R, Xin−l+1...inb1...bk

⊂ Bk+l}.

Therefore, we have

m(T−nBk) ≤
∑
V ∈V

∑
Xb1...bk

⊂Bk∩V

m(
⋃

(i1...in)∈AV
n

Xi1...inb1...bk
)

=
∑
V ∈V

∑
Xb1...bk

⊂Bk∩V

 n∑
l=0

∑
(i1...in)∈AV,l

n (b1...bk)

m(Xi1...in−l
∩ T−(n−l)Xin−l+1...inb1...bk

)

 .

Since dm
d(mT∗) satisfies the uniformly bounded distortion property, ∃1 ≤ C < ∞

such that

m(Xi1...inb1...bk
) ≤ Cm(Xi1...in−l

)m(Xin−l+1...inb1...bk)).

Hence we have

m(T−nBk) ≤ C
∑
V ∈V

∑
Xb1...bk

⊂Bk∩V

 n∑
l=0

∑
(i1...in)∈AV,l

n (b1...bk)

m(Xi1...in−l
)m(Xin−l+1...inb1...bk))

 .

The RHS is bounded from above by

C
∑
V ∈V

n∑
l=0

∑
Xi1...in−l

⊂ Dc
n−l

m(Xi1...in−l
)


∑

Xb1...bk

⊂ Bk ∩ V


∑

(in−l+1 . . . in) :
(i1 . . . in) ∈ An,
Xin−l+1...inb1...bk

⊂ Bk+l

m(Xin−l+1...inb1...bk
)
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= C
∑
V ∈V

n∑
l=0

 ∑
Xi1...in−l

⊂Dc
n−l

m(Xi1...in−l
)

m(Bk+l).

Therefore, we have m(T−nBk) ≤ C]V
∑n

l=0 m(Bk+l). Since
⋃n

l=0 Bk+l ⊂ Dk−1,
n−1

∫
X
Ln

φ1dµ is bounded from above by HC]V
∑∞

k=1 k (m(Dk−1)) . We remark
that ∃1 ≤ r′1 < r′2 < ∞ such that ∀n ≥ 1

r′1n
−(α+1) ≤ m(Bn) ≤ r′2n

−(α+1).

Finally we see that
∫

X
R2dm =

∑∞
k=1 k2m(Bk) < ∞ implies

∑∞
k=1 km(Dk) <

∞. We complete the proof. 2
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