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In this paper, we study a dynamic structure of discretized vector fields obtained from the Brussela-
tor, which is described by two-dimensional ordinary differential equations �ODEs�. We found that
a bifurcation structure of the logistic map is embedded in the discretized vector field. The embedded
bifurcation structure was unraveled by the dynamical orbits that eventually converge to a fixed
point. We provide a detailed mathematical analysis to explain this phenomenon and relate it to the
solution of the original ODEs. © 2009 American Institute of Physics. �DOI: 10.1063/1.3212934�

A qualitative change in the dynamics, which occurs as a
system parameter varies, is called a bifurcation. A bifur-
cation diagram is a well-known utility in the dynamical
systems to observe the qualitative changes such as the
emergence and vanishment of periodic orbits and the al-
teration of their stabilities. In this paper, we shall study
some dynamical orbits of a discretized vector field in
which a bifurcation structure is embedded. Strange as it
may sound, the embedded bifurcation structure has no
relation to such qualitative changes representing bifurca-
tions. We observe that some dynamical orbits of a two-
dimensional map exhibit bifurcation structure in a phase
space and eventually converge to their equilibrium. A
crucial clue to understand the emergence of the embed-
ded bifurcation structures is given in this paper, that is,
the bifurcations of a random logistic map. In addition,
the convergence of the dynamical orbits is guaranteed by
the existence of an arbitrarily small bounded trapping
region containing the equilibrium.

I. INTRODUCTION

In 1968, Prigogine and Lefever proposed a hypothetical
model of chemical reactions showing oscillations, called
Brusselator. This model is one of the simplest chemical mod-
els exhibiting a pattern forming instability called Turing in-
stability. In the absence of diffusion, only accounting for the
reaction kinetics, we have a system of ordinary differential
equations �ODEs� in dimensionless form

dx

dt
= A − �1 + B�x + x2y,

dy

dt
= Bx − x2y , �1�

where A and B are positive constants, which govern the pat-
tern selection in the model by defining the reaction kinetics.
For detailed explanations of this model see Ref. 1.

We consider Euler’s discretization of the ODEs for Brus-
selator in Eq. �1�. Euler’s discretization scheme for Eq. �1� is
as follows. With a fixed time discretization step �t,

xn+1 = xn + �t�A − �1 + B�xn + xn
2yn� ,

yn+1 = yn + �t�Bxn − xn
2yn� .

Then we obtain a nonlinear two-dimensional dynamical sys-
tem f :R2→R2 given by f�x ,y�= �f1�x ,y� , f2�x ,y�� such that

f1�x,y� = a + �1 − � − b�x + �x2y , �2�

f2�x,y� = y + bx − �x2y , �3�

where the parameters are

a = A�t, b = B�t, and � = �t . �4�

We here call map f a direction field, in contrast to a vector
field of the original Brusselator.

In this paper, we present a study of the dynamics of map
f in the direction field in which a bifurcation structure is
embedded. The bifurcation structure emerges out of some
dynamical orbits of f , and the structure eventually disappears
while the orbit approaches to the equilibrium. We show that
the embedded bifurcation structure is based on the tangent
bifurcation and the period-doubling bifurcation, which occur
in the dynamics of a type of logistic map. We also investigate
the limiting behavior of the dynamical orbits displaying the
bifurcation structures. Depending on the stabilities of the
fixed point�s�, the orbits have the possibility to converge to a
fixed point, form a limit cycle around the fixed point, or
escape to infinity. We find a sufficient condition of param-
eters for the existence of arbitrarily small bounded trapping
regions containing the fixed point. This implies that the or-
bits are confined in an arbitrarily small trapping region and
eventually converge to the fixed point.

Discretization is concerned with the transformation of
continuous differential equations into discrete difference
equations, suitable for numerical computing. In general, it is
unfavorable that the analytic properties of the solutions in the
original system are obtained from the study of its discretized
map because various types of errors may occur and be accu-
mulated at each iteration in its trajectories and, hence, the
stroboscopic motion in an orbit of the discretized map f may
deviate from the right trajectory. In this paper, we shall dis-
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cuss in detail how the dynamical properties obtained from
the discretization are applied to the flows of the solutions in
the original system in avoiding the risks mentioned above.

II. PRELIMINARIES

In this section, we arrange the notations and assumptions
that are used in this paper. Also, a linear analysis about the
stability of map f is carried out. We rewrite the two-
dimensional dynamical system f = �f1 , f2� in the following
form:

xn+1 = f1�xn,yn� = a + �1 − � − b�xn + �xn
2yn, �5�

yn+1 = f2�xn,yn� = yn + bxn − �xn
2yn, �6�

where f1 and f2 are defined in Eqs. �2� and �3�, respectively.
We clarify certain conditions of the parameters to be

assumed in this paper. As seen in Eq. �4�, the parameter � is
the discretization step �t for Eq. �1�, and a and b are mul-

tiples of the discretization step �t. Thus, without imposing
much of the physical constraints to the system, it is plausible
to assume that

�1� � is sufficiently small and
�2� a /�=O�1� and b /�=O�1�,

where O�1� indicates that a /� and b /� are of the order of 1.
For all positive values of a, b, and �, there is only one

fixed point of f

p�
ª �x�,y�� = � a

�
,
b

a
� .

We use the transformation matrix Dfp to analyze the linear
stability of the system. For a point p= �x ,y��R2,

Dfp = �1 − � − b + 2�xy �x2

b − 2�xy 1 − �x2� .

The eigenvalues �p
�i� �i=1,2� of Dfp are

�p
�i� = 1 −

� + b − 2�xy + �x2 � 	�� + b − 2�xy + �x2�2 − 4�2x2

2
. �7�

Especially, the eigenvalues at the fixed point p� are

�p�
�i� = 1 −

� − b + a2/� � 	�� − b + a2/��2 − 4a2

2
. �8�

Under the assumptions that a and � are sufficiently small and
a /�=O�1�, we have

�p�
�1� = 1 + �1, �p�

�2� = 1 + b + �2,

where �i→0 �i=1,2� as a and �→0. In Refs. 2 and 3 there
are more detailed discussions concerning the stabilities of the
fixed point.

Referring to Eqs. �7� and �8�, it is notable that the values
of parameters a, b, and � can be rescaled while holding the
same qualitative dynamical properties concerning the stabil-
ity of the system topologically. More precisely, when �t is
rescaled by a small scaling factor ��1, since a, b, and � are
multiples of �t, the fixed point is unchanged, that is, p�

= �a /� ,b /a�, and the eigenvalues in Eq. �7� at p= �x ,y� are
replaced by

�p
�i� = 1 −

�

2
�� + b − 2�xy + �x2

� 	�� + b − 2�xy + �x2�2 − 4�2x2� .

We define two sets of curves in the plane as follows:

N1 = 
�x,y�:f1�x,y� − x = a − �� + b�x + �x2y = 0� ,

�9�
N2 = 
�x,y�:f2�x,y� − y = bx − �x2y = 0� .

Clearly, N1�N2 determines the fixed point p�. Moreover, N1

and N2 play the same role as the nullclines of the ODEs for
the Brusselator given in Eq. �1�. The curves in N1 and N2

indicate the boundaries beyond which a point in the plane
moves right or left by f1 and moves upward or downward by
f2. In fact, the nullclines of the Brusselator are exactly the
same as N1 and N2 defined in Eq. �9�. Therefore, without
confusion, we name N1 and N2 nullclines for f1 and f2, re-
spectively.

III. BIFURCATION STRUCTURES

We look into the mechanism of how the orbits of f gen-
erate the bifurcation structure. The creation of the dynamical
orbits in which a bifurcation structure is embedded is in-
volved in the procedure of the bifurcations in a random lo-
gistic map. We shall give a detailed mathematical justifica-
tion as to why the bifurcation structures are embedded in the
direction field f defined in Eqs. �2� and �3� and compute the
exact location of the bifurcation structures.

Regarding the variable y in Eq. �2� as a parameter, we
obtain a one-dimensional map gy�x�= f1�x ,y�, where

gy�x� = �yx2 + �1 − � − b�x + a . �10�

Then map gy can be viewed as a random logistic map. We
compare the following two dynamical structures �see Fig. 1�:

�1� a bifurcation diagram of the one-dimensional map gy

where the bifurcation parameter y increases from a
proper negative value and

�2� a dynamical orbit 
fn�x0 ,y0��n=0
� , where �x0� is suffi-

ciently small and y0 is a well-chosen negative value.
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In general, the bifurcation of a logistic map occurs only
when there exists an invariant interval under the map. Thus,
our current goals are �1� to determine the largest upper bound
and the smallest lower bound of the parameter y in Eq. �10�
so that for all y between the two bounds there exists an
invariant interval under map gy and �2� to find the maximum
invariant interval Ey under map gy, i.e., gy�Ey��Ey. Here, we
set y� as the largest upper bound of the parameter y. To find
the smallest lower bound of y and to specify the maximum
invariant interval Ey for each y, we consider the following
cases where y�0, y=0, and 0�y	y� in order.

Case 1 �y�0�. The equation gy�x�=x yields two fixed
points of gy, ry

�1� and ry
�2�, with ry

�1��0�ry
�2�,

ry
�1� =

�� + b� + 	�� + b�2 − 4a�y

2�y
,

�11�

ry
�2� =

�� + b� − 	�� + b�2 − 4a�y

2�y
.

The maximum value my of gy is

my = a −
�1 − � − b�2

4�y
at x = −

1 − � − b

2�y
. �12�

Let 
y and �y be the endpoints of Ey. In order for the
interval Ey to be invariant under map gy, we need the follow-
ing:

�1� two endpoints 
y and �y are two roots of the equation
gy�x�=ry

�1� and
�2� the rate of normalization of gy�Ey� by Ey is less than or

equal to 1

�see Fig. 2�a��. The equation gy�x�=�yx2+ �1−�−b�x+a
=ry

�1� has two roots, and these roots must be 
y and �y,


y =
�� + b� + 	�� + b�2 − 4a�y

2�y
,

�13�

�y =
− 2 + � + b − 	�� + b�2 − 4a�y

2�y
.

The normalization rate ��y� of gy�Ey� by Ey is

��y� =
my − 
y

�y − 
y
=

1 + 	�� + b�2 − 4a�y

4
. �14�

From the inequality ��y�	1, we obtain

��y� 	 1 ⇒ y 
 −
9 − �� + b�2

4a�
.

Therefore, for all y� �y�ini� ,0�, the interval Ey = �
y ,�y� is
invariant under gy, where

y�ini� ª −
9 − �� + b�2

4a�
. �15�

FIG. 1. �Color online� Comparison of a dynamical orbit of f to a bifurcation diagram of gy at the same parameter values of a=0.015, b=0.01, and �
=0.035. �a� The bifurcation diagram of a random logistic map. The bifurcation parameter y of gy�x� defined in Eq. �10� varies from �4284 to �1850. �b� A
dynamical orbit of map f . This orbit originates in the point �0,�4284�, and about 160 000 iterations are displayed in the background of the bifurcation diagram
in �a�.
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Case 2 �y=0�. From the equation

gy�x� = �1 − � − b�x + a ,

we have only one fixed point a / ��+b� of gy. For all x�R,

�gy��x�� = �1 − � − b� � 1,

so the fixed point a / ��+b� is a sink, and every interval con-
taining the fixed point is invariant under gy. Thus, we set
Ey =R �see Fig. 2�b��.

Case 3 �0�y	y��. The fixed points of gy are still ry
�1�

and ry
�2�, given in Eq. �11�. In this case, since the graph of gy

is convex from above, the inequalities

0 � ry
�2� � ry

�1� and �y � 
y ,

hold, and the value my in Eq. �12� is the minimum of gy.
Similar to Case 1, one can show that ��y�	1 for all y
� �0,y��. Thus, Ey = ��y ,
y� is the maximum interval invari-
ant under gy �see Fig. 2�c��.

Consequently, for each y� �y�ini� ,y
��, there exists the

maximum interval Ey invariant under map gy. We slightly
modify the notation of ry

�2�, defined in Eq. �11�, as follows:

ry
�2� =

2a

�� + b� + 	�� + b�2 − 4a�y
.

Since ry
�2�=a / ��+b� holds at y=0, ry

�2��Ey, and ry
�2� can be

regarded as a fixed point of the map gy for all y� �y�ini� ,y
��.

We inspect the stability of gy at the fixed points ry
�1� and

ry
�2�. For all y� �y�ini� ,0�� �0,y��, we have


dgy

dx



x=ry
�1�

= 1 + 	�� + b�2 − 4a�y � 1,

and hence, ry
�1� is always a source of gy. However, the stabil-

ity of ry
�2� changes at a value y�bif�� �y�ini� ,0�. For y=y�ini�,

�y =my, so ry
�2� is a source �see Fig. 2�a��. As y increases from

y�ini� to 0,

�1� the maximum value my, given in Eq. �12�, monotone
increases and

�2� the length of the interval Ey, which is ��y −
y�, mono-
tone increases.

For y�ini�	y�0, the derivative of the normalization rate
��y� is

���y� = −
a�

2	�� + b�2 − 4a�y
� 0.

Thus, the increasing rate of my is less than that of the length
of Ey, and hence, there exists a constant y�bif��0 such that
ry

�2� is a sink for y� �y�bif� ,0�, while it is a source for y
� �y�ini� ,y�bif��. At y=y�bif� the last bifurcation of gy occurs,
and its exact value is obtained from the following equality:


dgy

dx



x=ry
�2�

= 1 − 	�� + b�2 − 4a�y = − 1.

Therefore, we have

y�bif� = −
4 − �� + b�2

4a�
.

Using the same argument as above, one can show that ry
�2� is

also a sink for all y� �0,y��.
We define two sets of curves as follows:

R1 = 
�ry
�1�,y��y�ini� 	 y � 0,0 � y 	 y�� ,

�16�
R2 = 
�ry

�2�,y��y�ini� 	 y 	 y�� .

Clearly, Ri�N1 for i=1,2.
Remark 1: The random logistic map gy possesses the

period-doubling bifurcation and the tangent bifurcation
which appear around R1 and R2. Specifically, we have the
following.

�1� When y�bif��y�y�, while ry
�1� �y�0� is a source of gy,

ry
�2� is a sink of gy. Thus, all attracting orbits of gy ap-

proach the curve R2 , and there exists the tangent bifur-
cation.

�2� When y�ini��y�y�bif�, both ry
�1� and ry

�2� are sources.
Thus, almost all orbits of gy appear around 
y and �y

randomly, and there exists the period-doubling bifurca-
tion.

�3� Set R1 is composed of the values 
y in Eq. �13�, one of
the endpoints of the maximum invariant interval Ey be-

α

yα

xn

βy

ry
(2)=

γ + b

a

βy

xn

n+x 1 βy

yα

yα

(2)ry

n+x 1
yα

xn

yαβy

βy

1 − γ −b

2γy

1 − γ −b

2γy

Case 2 y(b) [ =0 ]. <(c) [ 0< ].Case 3 y y*(a) [ <0 ].Case 1 y

a

a

ry
(2)

my

a

o

oo

invariant interval y invariant interval y

invariant interval y

E E

n+

E

x 1 βy

y

FIG. 2. �Color online� The graphs of gy �thick curves� and the invariant intervals Ey of gy �line segments on the xn-axis�. �a� Ey = �
y ,�y� when y�ini�	y
�0. �b� Ey =R when y=0. �c� Ey = ��y ,
y� when 0�y	y�. The fixed point ry

�2� of gy is a sink as shown in �b� and �c�.
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cause 
y =ry
�1� for all y� �y�ini� ,0�� �0,y��.

Generally, the period-doubling bifurcation and the tangent
bifurcation are generic types of bifurcations, which means
that the basic character of the bifurcation cannot be altered
by arbitrarily small perturbations that are smooth in the vari-
able and the parameter. That is, if gy�x� is replaced by
gy�x�+�h�x ,y�, where h is smooth, then, if � is small enough,
the qualitative bifurcation behavior is unchanged. See Ref. 4
for the generic types of bifurcations.

We now consider an orbit of f , O f�x0 ,y0�
= 
fn�x0 ,y0��n=0

� , where its initial point is �x0 ,y0�= �0,y�ini��.
Under the following assumptions on the sequence �yn� of
O f�x0 ,y0�:

�1� �yn� keeps moving upward from y�ini� to y� and
�2� �yn+1−yn� is sufficiently small,

the tangent bifurcation and the period-doubling bifurcation
are suitably embedded in some dynamical orbits of the map
f by their generic properties.

In this respect, our goal here is to validate the two as-
sumptions given above for the sequence 
yn�. This implies
that the variable y in Eqs. �2� and �3� plays a role of the
bifurcation parameter in gy, and so map f follows the dynam-
ics of a random logistic map.

We define a set

D = �
y�ini�	y	y�bif�


�x,y� � R2�
y 	 x 	 �y� ,

and also define four subregions in D as follows:

D1 = 
�x,y� � D�f1�x,y� � x, f2�x,y� � y,x � 0� ,

D2 = 
�x,y� � D�f1�x,y� � x, f2�x,y� � y,x � 0� ,

�17�
D3 = 
�x,y� � D�f1�x,y� � x, f2�x,y� � y,x � 0� ,

D4 = 
�x,y� � D�f1�x,y� � x, f2�x,y� � y,x � 0� .

Figure 3 illustrates the placement and appearance of Di

�i=1,2 ,3 ,4� and the direction fields of trajectories of f in Di.
Due to the property f2�x ,y��y of D2 in Eq. �17�, it cannot
be guaranteed that the orbit O f�x0 ,y0� keeps moving verti-
cally upward while it travels inside D. We resolve this prob-
lem in the following way. For all �x ,y��D2,

− 1 �
f2�x,y� − y

f1�x,y� − x
=

bx − �x2y

�a − �x� − �bx − �x2y�
� 0 �18�

because �a−�x��0 and �bx−�x2y��0. The boundedness of
Eq. �18� yields a constant

�min = inf
�x,y��D3

� f2�x,y� − y

f1�x,y� − x
� , �19�

where −1��min�0. We pick an arbitrary point �xn ,yn� in
the orbit that belongs to D.

If �xn ,yn��D4, then for sufficiently small ��0,

xn � �y�bif�
=

2a�4 − � − b�
4 − �� + b�2 � 2a �

a

�
⇒ a − �xn � 0. �20�

Also, from the fact xn+1−xn�0, we obtain

�bxn − �xn
2yn� � a − �xn. �21�

Thus, by Eqs. �20� and �21� we have

yn+1 − yn

xn+1 − xn
�

bxn − �xn
2yn

�a − �xn� − �bxn − �xn
2yn�

� − 1 � �min.

The property of D4 in Eq. �17�, that is, xn+1−xn�0, yields

yn+1 − yn � �min�xn+1 − xn� . �22�

On the other hand, we consider the case that �xn ,yn�
�D1�D2�D3. Then

�1� �yn+1−yn� / �xn+1−xn��0��min holds for �xn ,yn�
�D1�D3 by Eq. �17�.

�2� �yn+1−yn� / �xn+1−xn���min holds for �xn ,yn��D2 by
Eq. �19�.

The property of D1�D2�D3 in Eq. �17�, that is, xn+1−xn

�0, yields

yn+1 − yn � �min�xn+1 − xn� . �23�

By Eqs. �22� and �23�, fn�x0 ,y0� becomes more distant from
the line with slope �min passing through �x0 ,y0� up to y=y�bif�
as n increases even if it does not always move upward, and
finally, the orbit O f�x0 ,y0� reaches the bifurcation point
y=y�bif�. Then from y=y�bif�, the orbit moves along the curve
R2, so it has no intersection with D2, and hence, it moves
strictly upward to y=y�, i.e., yn+1�yn.

Finally, we show the variation �yn+1= �yn+1−yn� /� is as
small as needed. The orbit O f�x0 ,y0� stably approaches the
curve R2 when it moves upward from y=y�bif� to y=y�. Thus,
we estimate �yn+1 only, while O f�x0 ,y0� travels from y=y�ini�
to y=y�bif�. For y� �y�ini� ,y�bif��,

�yn+1 =
yn+1 − yn

�
= − yxn

2 +
b

�
xn.

The minimum �min of �yn+1 is

�min =
b2

4�2y
at xn =

b

2�y
� �
y,�y� .

The maximum �max of �yn+1 is at xn=�y,

y

(bif)

(ini)

Ey y,= [α β ]

2N 2N N1
y = y

y = y

N1

D D D D1 2 3 4

FIG. 3. �Color online� Direction fields of f in Di �i=1,2 ,3 ,4�.
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�max = − y�y
2 +

b

�
�y

=
1

2�2y
��2 + ��	�� + b�2 + 4a�y

+ 2 − 2� + �2 + b� + 2a�y� .

Thus, �min	�yn+1	�max holds. For y�ini��y�y�bif�, the de-
nominator �2y in both �min and �max satisfies

�

4a
�4 − �� + b�2� � �2y �

�

4a
�9 − �� + b�2� .

Since a /� and b /� are assumed to be O�1�,

��min� � c1 and ��max� � c2,

where c1 and c2 are constants and are independent of �.
Thus, �yn+1 is bounded by two fixed constants �min and �max

that are independent of �. Therefore, �yn+1−yn� is of the
same order as � is, and hence, the sequence �yn� slowly
develops as n increases, as expected.

Figure 4 displays the bifurcation structure embedded in a
full dynamical orbit of f . It illustrates how the bifurcation
structures are associated with the curves of the nullclines N1

and N2, and the curves in R1 and R2 defined in Eq. �16�.
Throughout this figure, we confirm the statements mentioned
in Remark 1.

Let us recall

y�ini� = −
9 − �� + b�2

4a�
, y�bif� = −

4 − �� + b�2

4a�
.

Then the smaller ��0, the larger the absolute values �y�bif��
and �y�ini�� and the smaller variation �yn+1. Therefore, as
��0 decreases, the dynamical orbits of the system possess
more evident bifurcation structures. In Sec. V, we shall dis-
cuss this fact in more details using numerical results obtained
from rescaling of the parameters.

IV. BOUNDED TRAPPING REGIONS

In this section, we study a bounded trapping region, i.e.,
a bounded open set U such that f�U��U. We examine
whether a bounded trapping region for the map f exists
around the fixed point, and if it exists, we specify a sufficient
condition of parameters for the existence of the trapping re-
gion. In Sec. III, it was verified that the orbits with bifurca-
tion structures always approach the fixed point, but it has
been undetermined whether it converges to the fixed point, it
rotates around the fixed point, or even it diverges. The exis-
tence of arbitrarily small trapping regions containing the
fixed point ensures that some dynamical orbits of f display
the bifurcation structures and eventually converge to the
fixed point.

The image under f of the vertical line x=x0 is a straight
line whose equation is

FIG. 4. �Color online� An entire dynamical orbit of f at a=0.015, b=0.01, and �=0.035. The orbit originates in �0,�4284.75� and converges to the fixed point
�3/7,2/3�. It appears around Ri �i=1,2�, defined in Eq. �16�, and it is located between the two boundaries of the invariant interval Ey under gy for y�ini�	y
	y�. To clearly observe the bifurcation structures in the orbit, we zoom horizontally in the orbit between y�ini� and y�bif� and zoom vertically in the orbit around
the fixed point.
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y = �− 1 +
1

�x0
2�x + �1 − ��x0 + a −

1 − � − b

�x0
−

a

�x0
2 . �24�

Also, if f�x0 ,y�= f�x0 , ỹ�, then y= ỹ. Thus, when a bounded
domain S is convex in the plane, a sufficient condition for S
to be a trapping region of f is

f��S� � int�S� , �25�

where �S is the boundary of S and int�S� is the interior of S.
We build a convex domain containing the fixed point p�

which is bounded in the plane. We set four constants,

s1 = x� − �1 and s2 = x� + �2,

t1 = y� − �1 and t2 = y� + �2,

where �i�0 and �i�0 �i=1,2� are as small as needed. Let S
be the rectangular box with four corners,

r1 = �s1,t1�, r2 = �s2,t1�, r3 = �s2,t2�, r4 = �s1,t2� .

The four sides of S are denoted by

B1 = r1r2, B2 = r2r3, B3 = r3r4, B4 = r4r1.

We assume that s1 and t1 is positive so that S is con-
tained in the first quadrant of the plane. We now find some
necessary conditions of parameters for S to be a trapping
region. The graphs of N1 and N2 in a small neighborhood of
p� are

y = h1�x� =
�� + b�x − a

�x2 , y = h2�x� =
b

�x
, �26�

respectively. As seen in Fig. 5, the existence of a rectangular
trapping region depends on the location of the maximum
point q= �q ,h1�q�� of the graph of N1. By examining the
direction fields in the subregions divided by N1 and N2 in a
small neighborhood of p�, one can derive a necessary condi-
tion for having a rectangular trapping region. If q	x�, as
seen in Fig. 5�b�, either no bounded trapping regions exist, or
it cannot be rectangular if it exists. Thus, a necessary condi-
tion for S to be a trapping region is that q�x�. From the
equality h1��q�=0, we get the value q as follows:

h1��q� =
− �� + b�q + 2a

�q3 = 0 ⇒ q =
2a

� + b
.

Then from the inequality q�x�, a necessary condition is
obtained as follows:

2a

� + b
�

a

�
⇒ � � b . �27�

We find another necessary condition for S to be a trap-
ping region. Every point on N1 moves vertically by map f ,
while every point on N2 moves horizontally. Based on this
fact, we have a criterion of the existence of a rectangular
trapping region.

Remark 2: The set S is a trapping region only if the
horizontal boundaries B1 and B3 must intersect N1 but not
N2, and also the vertical boundaries B2 and B4 must intersect
N2 but not N1.

Let �1 and �2 be the slopes of the tangent lines of N1 and
N2 at the fixed point p�, respectively. Under the assumption
that ��b�0, given in Eq. �27�, we have

�1 = h1��x
�� =

�2

a2 −
b�

a2 � 0, �2 = h2��x
�� = −

b�

a2 � 0,

where h1 and h2 are given in Eq. �26�. As seen in Fig. 6,
when ��1�	 ��2�, it is impossible to construct a rectangular
trapping region around p� which satisfies the criterion in Re-
mark 2. Therefore, another necessary condition is that
��1�� ��2�,

��1� − ��2� =
�2

a2 −
2b�

a2 � 0 ⇒ � � 2b . �28�

In this section, instead of assuming that � is sufficiently
small and that a and b are of the same order of �, we shall
assume that

� � 2b and � � a2 �29�

to prove that S is a rectangular trapping region. Indeed, the
additional assumption ��a2 in Eq. �29� is secured under the
original assumptions given in Sec. II. We prove that f�B1�
and f�B3� are placed between B2 and B4, and f�B2� and f�B4�
are placed between B1 and B3. This implies f�Bi��S holds
for i=1,2 ,3 ,4, that is, the condition given in Eq. �25� holds.

We consider partial derivatives of f1 and f2 at p= �x ,y�
�S,

�f1�x�x,y� = 1 − � − b + 2�xy, �f2�y�x,y� = 1 − �2x .

Since x
s1�0 and y
 t1�0, �f1�x�x ,y��0 holds. This im-
plies that as x increases on the horizontal boundaries of S,
f1�x , ti� �i=1,2� monotone increases, and hence, f�B1� and
f�B3� are located between B2 and B4. To complete the proof

N

2 N2

1

(b)

q

q
p*

q < x*q > x*(a)

p*

N

N1

FIG. 5. �Color online� Two possible locations of the maximum point q of
the graph of N1 around p�. The arrows represent the direction fields of f
around p� in the subregions divided by N1 and N2.

ξ1
slopeξ1

(a) | ξ | > | ξ | (b) | ξ | < | ξ |1 2 1 2

slopeξ2

N1

N2

slopeξ2

N1
N2

slope

FIG. 6. �Color online� Tangent lines of N1 and N2 around p�. By comparison
of the slopes �1 and �2 of the two tangent lines, it is examined whether the
criterion mentioned in Remark 2 holds.
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of Eq. �25�, we need to show that f�B2� and f�B4� are placed
between B1 and B3.

We suppose �f2�y�x ,y�
0. As y increases on the vertical
boundaries B2 and B4, f2�si ,y� �i=1,2� monotone increases.
Thus, f�B2� and f�B4� are located between B1 and B3, and
this completes the statement �25�. In this case, the assump-
tion ��a2 is not required �see Fig. 7�a��.

On the other hand, we suppose �f2�y�x ,y��0. Since
�f2�x�x� ,y��=−b, there exists an open set U in a small neigh-
borhood of p�= �x� ,y�� such that �f2�x�x ,y��0 holds for all
�x ,y��U. Thus, we have the following:

�1� f2�x , ti� �i=1,2� monotone decreases as x increases on
B1 and B3 and

�2� f2�s1 , ti�� f2�s2 , ti� for i=1,2.

As seen in Fig. 7�b�, we need the following inequalities:

f2�s2,t2� � t1 and f2�s1,t1� � t2. �30�

We define an open set K in the plane by

K = ��x,y� � R2
��2� �
�y − y��
�x − x��


� ��1�� . �31�

Under the assumption that ��2b in Eq. �28�, ��2�� ��1�
holds, so K is nonempty and it is composed of four con-
nected components in the plane, whose closures intersect
only at p� �see Fig. 8�. Following the criterion in Remark 2,
we dispose each corner of S in each subregion of K without

repetition. Then once �2 is fixed, �1 can be determined as
follows:

��2�
��1�

�2 � �1 �
��1�
��2�

�2 �32�

�see Fig. 8�a��. Also, once �1 and �2 are fixed, �i �i=1,2�
must satisfy the following properties:

�1

��1�
� �i �

�1

��2�
⇒

a2

��� − b�
�1 � �i �

a2

b�
�1 �33�

and, similarly,

�2

��1�
� �i �

�2

��2�
⇒

a2

��� − b�
�2 � �i �

a2

b�
�2 �34�

�see Fig. 8�b��. Note that if �2 is sufficiently small, then so
are �1, �2, and �1. As seen in Eqs. �32�–�34�, these constants
�i and �i �i=1,2� are bounded by a constant multiple of one
of the others. Thus, once one of �1, �2, �1, and �2 is suffi-
ciently small, so are the others.

We estimate two differences �f2�s2 , t2�− t1� and
�t2− f2�s1 , t1�� to show that the two differences are both posi-
tive to see if the conditions in Eq. �30� hold. We consider

f2�s2,t2� − t1 = t2 + bs2 − �s2
2t2 − t1

= �y� + �2� + b�x� + �2�

− ��x� + �2�2�y� + �2� − �y� − �1�

= �1 − �b +
b�

a
�2��2 + �1 −

a2

�
− 2a�2 − ��2

2��2.

Due to the assumption that ��a2, for sufficiently small
�2�0,

�1 −
a2

�
− 2a�2 − ��2

2� � 0,

and also, from the inequality �33�,

�b +
b�

a
�2��2 � �b +

b�

a
�2� a2

b�
�1 = �a2

�
+ a�2��1 � �1.

Thus, f2�s2 , t2�� t1 holds. On the other hand, we have

t2 − f2�s1,t1� = t2 − t1 − bs1 + �s1
2t1

= �y� + �2� − �y� − �1� − b�x� − �1�

+ ��x� − �1�2�y� − �1�

= �1 −
a2

�
+ 2a�1 − ��1

2��1 + �2 − �b −
b�

a
�1��1.

Similarly, due to the assumption that ��a2, for sufficiently
small �1�0,

�1 −
a2

�
+ 2a�1 − ��1

2� � 0,

and also, from the inequality �34�,

B3

( )f B1

( )f B2

( )f B3

( )f B4

( )f B1

( )f B3

( )f B4

( )f B22

1 B1

B2B2B4 B4

B3

2r

r

1

4

p*

r

p*

(a) (b)

N1 N1

N2N

B
r

r3

2

r

1

4

r

r3

FIG. 7. �Color online� Two possible cases of the image of S by f . �a�
�f2�y�x ,y�
0. �b� �f2�y�x ,y��0. In the case of �b�, the images f�r1� and
f�r3� must be contained in S.

1

t2

−| |

2

t1

s2s1

t

−| |

t

(a) (b)

p*

K

2(δ )fixed

p*

K
1

2(δ )fixed

(δ )fixed

ξ1 1ξ| | ξ1 1ξ| |

ξ2| |

ξ2 ξ2

ξ2| |

−| |

−| |

FIG. 8. �Color online� The region K �gray color� defined in Eq. �31�. Tan-
gent lines �solid lines� of nullclines N1, N2 and their symmetric lines �dotted
lines� in a neighborhood of the fixed point. Each of the values ���i� �i=1,2�
on the lines represents the slope of the line. �a� Location of t1. Once �2 and
t2 are fixed, �1 and t1 are determined. �b� Locations of s1 and s2. Once �1, �2

and t1, t2 are fixed, �1, �2 and s1, s2 are determined.
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�b −
b�

a
�1��1 	 �b −

b�

a
�1� a2

b�
�2

= �a2

�
− a�1��2 � �2.

Thus, f2�s1 , t1�� t2 holds. Therefore, we obtain the following
theorem.

Theorem 3: For all parameters a�0, b�0 , and ��0
satisfying ��2b and ��a2 , there exists a bounded trapping
region of map f containing the fixed point p�.

Once we build a rectangular trapping region S around
p�, one can build an arbitrarily small rectangular region con-
tained in S, which satisfies all the conditions for trapping
region mentioned in this section. Thus, we have

�
n=0

�

fn�S� = 
p�� ,

and hence, the dynamical orbits converge to the fixed point
p� without rotating around p� when ��2b and ��a2 hold.

In Theorem 3, the assumption ��2b corresponds to B
�1 /2 in the original system �1�. Also, ��a2 corresponds to
A2��−1, which is true for all sufficiently small discretization
steps �. Thus, we obtain the following corollary from Theo-
rem 3.

Corollary 4: When B�1 /2, all the solutions of the sys-
tem �1� converge to the equilibrium but have no limit cycle
around the fixed point.

V. NUMERICAL RESULTS

In Sec. III, we have understood that the tangent bifurca-
tion and the period-doubling bifurcation are properly embed-
ded in some dynamical orbits of f , and the orbits approach
the fixed point p� up to y=y�. In Sec. IV, it has been shown
that under certain conditions of parameters, there exists a
rectangular trapping region containing the fixed point p�, for
which such dynamical orbits found in Sec. III converge
to p�.

In this section, we rescale the parameters to observe how
the embedded bifurcation structures and the bounded trap-
ping regions are developed and transformed. As remarked in
Sec. II, while the parameters are rescaled by a small scaling
factor, the discretized vector field f holds the same qualita-
tive dynamical properties topologically. We provide some
numerical examples of our findings and then confirm that
their dynamical properties are unchanged while the param-
eters being rescaled.

For given parameters a=a0, b=b0, and �=�0, we con-
sider rescaled parameters by a small factor ��1 caused by
scaling the discretization step �t, that is, a=�a0, b=�b0, and
�=��0. Let f� be the discretized vector field of the system at
the rescaled parameters. Suppose O� is a dynamical orbit of
f� with the initial point �x� ,y��, where �x� ,y�� are placed
between R1 and R2, and

y� = −
9 − �2��0 + b0�2

4�2a0�0
.

Here, y� is the value in Eq. �15� at the rescaled parameters,
and so x� is contained in the maximal invariant interval Ey�

.

Thus, a bifurcation structure is embedded in O�. The graphs
h1 and h2, given in Eq. �26�, are independent of rescaling of
parameters, so that for all scaling factor �� �0,1�, we have
the same nullclines N1 and N2 for f� whose equations are

h1�x� =
��0 + b0�x − a0

�0x2 and h2�x� =
b0

�0x
. �35�

Thus, for each �� �0,1�, the orbit O� appears around the
same nullclines and so does the bifurcation structures. In
Fig. 9, we deal with a few sets of rescaled parameters to
obtain successive bifurcation structures of dynamical orbits
that appear around the same nullclines. It is observed that the
dynamical orbits move upward along the same nullclines and
converge to the same fixed point.

In this paper, it is assumed that � is sufficiently small
and a and b are of the same order of �. Indeed, even without
these assumptions, a bifurcation structure is embedded in the
vector field in the same way as in Sec. III. However, due to
the magnitudes of the variations �x and �y, it is not so
clearly observable until the parameter � is sufficiently small.
At the end of Sec. III, it was remarked that the smaller the
parameter �, the more evident the bifurcation structure em-
bedded in the direction field. In Fig. 10, we confirm that the
smaller the scaling factor �, the longer, thinner, and more
apparent the bifurcation structure in the orbit O�. Moreover,
it is observed that the shapes of bifurcation structures for the
rescaled parameters are the same as the others.

Finally, we generalize map f as follows. We consider the
two-dimensional map f �r� :R2→R2 defined by f �r�= �f1

�r� , f2
�r��,

where

f1
�r��x,y� = a + �1 − � − b�x − �x2yr,

�36�
f2

�r��x,y� = y + bx − �x2yr.

Then for all r�0, f �r� possesses the same properties as f
does. Map f �r� has a bifurcation structure in its orbit and also
there exists a bounded trapping region for some range of
parameters. Using the same argument in Secs. III and IV, one
can verify these properties for f �r�. Figure 11 displays the
bifurcation structures in the orbit of f �r� in the cases of r=0.5
and r=2 in Eq. �36�.

A question arises here. How are these bifurcation struc-
tures observed in the case of infinitesimal discretization of
time step? The original Brusselator cannot produce such
complicated orbits because of its differentiability and dimen-
sionality. As long as the scaling factor is nonzero, there is a
bifurcation structure in the orbit of f that produces an oscil-
lation around a nullcline. As the scaling factor becomes
smaller, the bifurcation structure gets longer and thinner and,
hence, the amplitude of the oscillation of the orbit gets
smaller. Suppose that the scaling factor is infinitesimal. Then
the orbit forms a flow representing a solution of the original
system. However, since the scaling factor is nonzero, the
oscillation of the orbit is still alive but infinitesimal. Thus,
while the flow converges to the equilibrium, it must experi-
ence an oscillation, which is invisible.

More specifically, we consider the following. As the
scaling factor ��0 becomes infinitesimal, the orbit O� turns
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out to be a flow �t=�t�x ,y� that is a solution of the system
of ODEs in Eq. �1�. Since the system �1� has the same
nullclines N1 and N2 as in Eq. �35�, the initial point �x� ,y��
of �t is still located between the y-axis and the curve R2, and
�y�� becomes arbitrarily large. The flow �t intersects all the
maximal invariant intervals Ey for all y� �y� ,y�� because all

the mathematical expressions in Sec. III hold for all suffi-
ciently small ��0. Thus, by Corollary 4, under the assump-
tion that B�1 /2, the flow �t moves upward along the curves
R2�N1 and eventually converges to the equilibrium p� as
the orbit O� do so. However, the flow �t cannot cross the
curve, and it is just placed next above R2. This means that �t

FIG. 9. �Color online� Bifurcated evolutions obtained by rescaling the parameters. The two outer curves are of N1, while the inner curves are of N2. The
topmost bifurcation structure is obtained from the parameters a=0.06, b=0.03, and �=0.09. The successive each bifurcated evolution is rescaled by the factor
of 0.6 from the respective upper one.

FIG. 10. �Color online� Bifurcated evolution rescalings. �a�–�d� correspond to the bifurcation structures in Fig. 9 from the top to the bottom.
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smoothly evolves along the line R2 with no oscillating be-
haviors, while the orbit O� exhibits the bifurcation structure
around R2.

The essence of generating the embedded bifurcation
structures is that the orbit O� crosses the curve R2 suffi-
ciently many times. However, the flow �t of the original
Brusselator cannot do so. Thus, by adding small perturbation
terms to the original system, we may have �t cross R2 suffi-
ciently many times while keeping most of properties of the
original Brusselator. The ways to give the perturbation terms
to the original Brusselator are �1� to add spatial diffusion
terms to the system to produce the reaction-diffusion equa-

tion and �2� to add a periodic term or a stochastic term to the
system to make a periodic forced Brusselator or a stochastic
forced Brusselator �see Ref. 5�.

Suppose that �0�2b0 and �0�a0
2. Then by Theorem 3,

there is a rectangular trapping region S for f� when �=1. For
all �� �0,1�, we have

��0 � 2�b0 and ��0 � ��a0�2.

Thus, there also exist bounded trapping regions for f�. Actu-
ally, one can confirm that all the mathematical expressions in
Sec. IV are true for all rescaled parameters by �. Thus, S is
a rectangular trapping region for f� for all �� �0,1�. This is
the reason that the original system possesses the same trap-
ping region as the discretized vector field �see Fig. 12�.

It is a well-known fact that the original Brusselator �1�
has a trapping region for all values of the system parameters
A�0 and B�0 �see Refs. 6 and 7�. Thus, the solution of the
system converges to either a limit cycle or the equilibrium,
depending on the stability of the equilibrium.

VI. CONCLUSION

In this paper, we studied dynamical behaviors of some
orbits in the discretized vector fields of the Brusselator. Bi-
furcation structures are embedded in some orbits in the di-
rection field. The orbits enter to stay in bounded trapping
regions containing the fixed point and eventually converge to
the fixed point. Additionally, we rescaled the parameters to

FIG. 11. Bifurcation structures in a dynamical orbit of f �r� defined in Eq. �36�. �a� The orbit originating in �0 12 481.08� at a=0.1, b=0.05, �=0.2, and r
=0.5. �b� The orbit originating in �0,612.37� at a=0.002, b=0.001, �=0.003, and r=2.
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FIG. 12. �Color online� A trapping region S= �0.54,1.04�� �0.3,0.65� and
its images under f at the parameter values a=0.6�, b=0.3�, and �=0.9� for
�=0.6n, n=1,2 ,3 ,4 ,5 from front to back in order of the images.
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observe how the dynamical properties of orbits concerning
the embedded bifurcation structures and the bounded trap-
ping regions are evolved.

Furthermore, it would be interesting to note the similar-
ity of the present bifurcation phenomena to biological evo-
lution. A slowly varying y variable may be viewed as genes,
and a relatively fast varying x variable as representing phe-
notypic expressions. Biological evolution is said to be a pro-
cess of increasing diversity in all species, but it can also be
viewed as an opposite process, restricted to one species be-
cause of the presence of the selection mechanisms. The se-
lection mechanisms through adaptation processes to the en-
vironments can reduce the complexity of the behaviors.
Then, it is not surprising to see characteristics of biological
evolution in the dynamics of evolution equations.
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