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Anisotropic Superconductivity in Highly Disordered Systems∗
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The gap equation for anisotropic superconductivity is solved in the presence of elastic scatterings
by nonmagnetic and magnetic impurities, which are treated by the self-consistent Born approxima-
tion, and inelastic scatterings, which are phenomenologically treated. When elastic scatterings are
strong, even at T = 0 K, coherence peaks almost disappear and the gap is a pseudogap, i.e., the
density of states ρ(ε) is nonzero at the chemical potential, which means that the T -linear specific
heat coefficient is nonzero in the superconducting state. At T = 0 K in such a case, the low-energy
part of ρ(ε) or the gap spectrum has a concave-cap V shape, which is in contrast to a convex-cup
V shape in the absence of scattering. When elastic or inelastic scatterings are strong, the ratio
εG(0)/kBTc is much larger than its mean-field value of about 4, where εG(0) is the gap at T = 0 K
and Tc is the superconducting critical temperature. The large εG(0)/kBTc ' 8 and the linear de-
crease in Tc in residual resistivity, both of which are observed in cuprate superconductors and the
latter of which is inconsistent with the Abrikosov and Gor’kov theory, can be explained by the
temperature-dependent pair breaking estimated from the T -linear coefficient of resistivity, which is
about 1 µΩcm/K.
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1. Introduction

High-temperature superconductivity in cuprate oxide is
an interesting and important issue in solid-state physics.1–6
Many issues on it remain contentious despite the two
decades that has already passed since its discovery. A par-
ent cuprate is a highly anisotropic quasi-two-dimensional
compound composed of CuO2 planes. When not doped,
it is an antiferromagnet below the Néel temperature TN ,
which is within 200-500 K depending on the cuprate, and
is a Mott insulator above TN . The Néel state is stabilized
by the superexchange interaction between nearest neighbor
Cu ions, which is as strong as J = −(0.10-0.15) eV.7 When
holes are doped, the Néel state disappears and a dx2−y2 -
wave superconducting state appears.2 Both TN and Tc are
very low or negligible for δ ' 0.05, where Tc is the super-
conducting critical temperature and δ is the concentration
of doped holes per unit cell. The transition between the two
phases is apparently continuous as a function of δ, although
magnetism and superconductivity cannot be characterized
by the symmetry breaking or lowering from a phase to the
other phase. Disorders certainly play a crucial role in the
apparently continuous transition.

Since Tc is highest at δ = δopt, where δopt = 0.15-0.18,
δ = δopt denotes optimaldoping; δ < δopt and δ > δopt

denote underdoping and overdoping, respectively. The ob-
served resistivity R(T ) at T > Tc is approximately de-
scribed by8,9

R(T ) = R(0) + r1T. (1.1)

The resistivity extrapolated to T = 0 K or the residual
resistivity R(0) is due to a disorder. It is large for under-
doped cuprates. When δ ' 0.05, for example, it is as large
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as R(0) ' 103 µΩcm. Disorders certainly suppress dx2−y2 -
wave superconductivity in underdoped cuprates with δ '
0.05. The residual resistivity R(0) is small for optimally
doped cuprate oxides. Disorder is not crucial in optimally
doped cuprates. The T -linear coefficient r1 is large for
0.05 . δ . δopt such as

r1 ' 1µΩcm/K. (1.2)

Since inelastic scatterings by superconducting fluctuations,
which develop near the center of the Brillouin zone, are
almost forward scatterings, their contribution to the resis-
tivity must be small. The T -linear coefficient r1 can be
explained in terms of inelastic scatterings by antiferromag-
netic spin fluctuations in two or highly anisotropic quasi-
two dimensions.10

According to the Abrikosov and Gor’kov (AG) theory,11
the Tc of an isotropic s-wave or Bardeen-Cooper-Schrieffer
(BCS) superconductivity12 is not reduced by nonmag-
netic impurities but is reduced by magnetic impurities.
When scatterings by magnetic impurities are sufficiently
strong, BCS superconductivity disappears. In the case of
anisotropic s-wave superconductivity, the reduction in Tc

by magnetic impurities obeys the AG theory while that by
nonmagnetic impurities is rather moderate and does not
decrease Tc to 0 K in general.13–17 In the case of purely
anisotropic superconductivities such as p-wave and d-wave
superconductivity, the reduction in Tc by nonmagnetic and
magnetic impurities simply obeys the AG theory,18 so that
anisotropic superconductivity disappears when the scatter-
ings by nonmagnetic or magnetic impurities are sufficiently
strong.

Impurity scattering affects other properties of supercon-
ductors such as the density of states.19,20 It is interesting
to determine how impurity scattering affects the density of
states of dx2−y2-wave superconductors. When a strong pair
breaking at T = 0 K, which is indicated by a large residual
resistivity R(0), is considered, it is easy to explain the dis-
appearance of dx2−y2 -wave superconductivity for δ . 0.05.
It is interesting to examine how anisotropic superconduc-
tivity or an anisotropic superconducting gap disappears as
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the strength of the pair breaking is increased.
According to the mean-field theory,21,22 which considers

no pair breaking,

εG(0)/kBTc ' 4, (1.3)

for a dx2−y2 wave, where εG(0) is the superconducting gap
at T = 0 K. On the other hand, the observed ratio is as
large as

εG(0)/kBTc ' 8, (1.4)

for optimally doped superconductors and is larger than 8
for underdoped ones. Pair breaking due to inelastic scat-
terings by superconducting and antiferromagnetic fluctu-
ations reduces Tc. Since inelastic scatterings disappear at
T = 0 K, the amount of reduction in εG(0) induced by them
is small. When inelastic scatterings are strong, therefore,
the ratio can be much larger than 4. It is interesting to
examine how large εG(0)/kBTc can be when both elastic
and inelastic scatterings are strong.

The purpose of this study is to determine effects of elas-
tic and inelastic scatterings on physical properties in an
anisotropic superconducting state, such as the disappear-
ance of an anisotropic superconducting gap, the reduction
in Tc, and the increase in εG(0)/kBTc. This paper is orga-
nized as follows. The formulation is given in §2. Results
are given in §3. The application of what to the cuprate
superconductor is given in §4. The conclusion is given in §
5.

2. Formulation

In this paper, strong electron correlations are not dis-
cussed; it is simply assumed on the basis of previous
papers23,24 that the normal state above Tc is a conven-
tional Fermi liquid, which may exhibit apparently anoma-
lous Fermi-liquid behaviors such as the T -linear resis-
tivity at relatively low temperatures as well as at suffi-
ciently high temperatures.10 Then, we consider a simple
effective Hamiltonian on a quasi-two-dimensional or three-
dimensional lattice:

H = H1 + H2 + H3 + H4. (2.1)

The first term describes noninteracting electrons or it ef-
fectively describes quasi-particles, which are renormalized
by electron correlations:

H1 =
∑
kσ

E(k)a†
kσakσ. (2.2)

The density of states is defined by

ρ0(ε) =
1
N

∑
k

δ [ε + µ − E(k)] = ρ0, (2.3)

where µ is the chemical potential. For simplicity, it is as-
sumed that ρ0(ε) is constant. The second term describes
an attractive interaction between quasi-particles:

H2 = − 1
2N

∑
kpq

∑
σσ′

g(q)a†
k+qσa†

p−qσ′apσ′akσ, (2.4)

where N is the number of unit cells and g(q) is an effective
attractive interaction. It is assumed for simplicity that g(q)
decouples in such a way that

g(k − p) =
+∞∑
l=1

gsc
l ηl(k)ηl(p), (2.5)

where

ηl(k) = cos
[
l tan−1 (kx/ky)

]
, (2.6)

is the form factor of the l th partial wave. Note that

1
N

∑
k

ηl(k) = 0, (2.7)

for any l ≥ 1. In this study, it is assumed that the Fermi
surface is isotropic; the assumption made here is relevant
provided that the Fermi surface is isotropic. The third and
fourth terms respectively describe scatterings by nonmag-
netic and magnetic impurities:

H3 =
∑

i∈Rn

∑
σ

Via
†
iσaiσ − V

∑
iσ

a†
iσaiσ, (2.8)

and

H4 =
∑
i∈Rs

∑
σσ′

Ji

(
Si · σσσ′

)
a†

iσaiσ′ , (2.9)

where

aiσ =
1√
N

∑
k

eik·Riakσ, (2.10)

Vi, V , and Ji are real, Si is a localized spin at the ith site,
and σ = (σx, σy, σz) is the Pauli matrix. In eqs. (2.8) and
(2.9), the site summations over i ∈ Rn and i ∈ Rs run over
nonmagnetic and magnetic impurity sites, respectively. We
consider an ensemble for sets of impurities. One of the most
crucial assumptions in this study is that there is no correla-
tion among impurities at different sites, the strength of each
single impurity is so weak that |Vi|ρ0 ¿ 1 and |Ji|ρ0 ¿ 1,
and the impurity concentrations of nonmagnetic and mag-
netic impurities per unit cell, which are denoted by nn and
ns, respectively, are so dense that (nn + ns)(`/a)2 À 1
and (nn + ns)(ξ/a)2 À 1 in quasi-two dimensions and
(nn + ns)(`/a)3 À 1 and (nn + ns)(ξ/a)3 À 1 in three di-
mensions, where ` is the mean free path of quasi-particles,
ξ is the superconducting coherent length, and a is the lat-
tice constant. In order to compensate for the energy shift
due to impurities, the constant V is defined by25

V =
〈〈
Vi

〉〉
, (2.11)

where
〈〈
· · ·

〉〉
represents the average over the ensemble.

Then, it follows that25〈〈
(Vi − V )(Vj − V )

〉〉
= nn∆V 2δij , (2.12)

where
√

∆V 2 is the effective strength of nonmagnetic im-
purities. It is also assumed that there is no correla-
tion among localized spins Si at different sites so that〈〈
JiSi

〉〉
T

= 0 and25〈〈
JiJj (Si · Sj)

〉〉
T

= nsJ2S(S + 1)δij , (2.13)
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where
√

J2 is the effective strength of magnetic impurities
and S is the magnitude of their spins. Here,

〈〈
· · ·

〉〉
T

rep-
resents the average over the thermal average as well as the
ensemble average.

Following the AG theory,11 it is straightforward to derive
the gap equation

1
gsc

l

= −kBT
∑

|εn|<θ

1
N

∑
k

η2
l (k)

1
D(iεn,k)

, (2.14)

where θ is the cutoff energy and D(iεn,k) is defined by

D(iεn,k) =
[
iεn + µ − E(k) − Σ(iεn)

]
×

[
iεn − µ + E(k) + Σ(−iεn)

]
− 1

4
ε2G(T )η2

l (k), (2.15)

where εG(T ) is the gap parameter and Σ(iεn) is the self-
energy due to scatterings from impurities. Equation (2.7)
is used in deriving the gap equation (2.14). In the self-
consistent Born approximation, self-energy is given by

Σ(iεn) = g2
imp

1
N

∑
k

G(iεn,k), (2.16)

where

g2
imp = nn∆V 2 + nsS(S + 1)J2, (2.17)

and

G(iεn,k) =
iεn − µ + E(k) + Σ(−iεn)

D(iεn,k)
. (2.18)

In cuprate superconductors, quasi-particles are also scat-
tered by superconducting and antiferromagnetic fluctua-
tions. The effects of inelastic scatterings are phenomeno-
logically considered in this study. Instead of eq. (2.16),

Σ(iεn) = g2
imp

1
N

∑
k

G(iεn,k) + ∆Σ(iεn), (2.19)

where ∆Σ(iεn) is a phenomenological term, is considered.
On the basis of the observation8,9 that resistivity is approx-
imately proportional to T above Tc in cuprate supercon-
ductors and the theoretical study10 showing that antiferro-
magnetic spin fluctuations are responsible for the T -linear
resistivity, it is assumed that

∆Σ(iεn) = −iαkBT
εn

|εn|
. (2.20)

This is assumed not only above Tc but also below Tc, for
simplicity.26

Assuming that the Fermi surface is isotropic, the gap
equation (2.14) becomes simple so that

1
λsc

=
∫ ∞

−∞
dE

∫ 2π

0

dφ

2π

∫ θ

−θ

dεf(ε)
1
π

Im
cos2(φ)

D(ε + i0, E, φ)
,

(2.21)
where f(ε) = 1/[exp(ε/kBT ) + 1], φ = l tan−1 (kx/ky),

λsc =
1
2
ρ0g

sc
l (2.22)

is a dimensionless coupling constant, and

D(ε + i0, E, φ) =
[
ε + µ − E − Σ(ε + i0)

]
×

[
ε − µ + E + Σ(−ε − i0)

]
− 1

4
ε2G(T ) cos2 φ. (2.23)

Note that, provided that l ≥ 1, the gap equation does not
depend on l because the Fermi surface is isotropic. When
the gap equation is solved, the density of states is given by

ρ(ε) = − 1
πN

∑
k

Im [G(ε + i0,k)] . (2.24)

When εG(T ) = 0 or T ≥ Tc, it is easy to solve eq. (2.19).
It follows that

Σ(ε + i0) = −i(γ0 + αkBT ), (2.25)

with

γ0 = πρ0g
2
imp. (2.26)

There are four parameters in the theoretical framework of
this paper: γ0 is the strength of impurity scatterings, α
is the strength of inelastic scatterings, λsc is the strength
of the attractive interaction, and θ is the cutoff energy.
When θ is considered as the unit of energy, the number of
parameters is reduced to three: γ0, α, and λsc.

3. Results

According to eq. (2.21), Tc for α = 0 and γ0 = 0 or Tc in
the presence of no pair breaking, which is denoted by Tc0,
is given by

kBTc0

θ
=

2
π

eγE e−1/λsc = 1.1338 · · · × e−1/λsc , (3.1)

where γE = 0.57721 · · · is the Euler constant. This is sim-
ply the BCS theory. Since Tc0 can also be used as a pa-
rameter instead of λsc, the three parameters are γ0, α, and
either λsc or Tc0.

When α = 0 and γ0 6= 0, Tc is given by

ln
Tc0

Tc
= ψ

(
γ0

2πkBTc
+

1
2

)
− ψ

(
1
2

)
, (3.2)

where ψ(z) is the di-gamma function. This is simply the
AG theory. According to eq. (3.2), Tc = 0 K for γ0 ≥ γAG,
where γAG is defined by

γAG

kBTc0
=

π

2
e−γE = 0.88193 · · · . (3.3)

Figure 1 shows Tc/Tc0 as a function of γ0/kBTc0 for var-
ious α values including α = 0. When α is nonzero, Tc is
suppressed from Tc0, which is for α = 0 and is given by
eq. (3.2). Since αkBT vanishes as T → 0 K, the critical
γ0 at which Tc becomes zero is independent of α and is
given by eq. (3.3) for any α. Note that Tc decreases almost
linearly with γ0 when α & 1.
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FIG. 1: Tc/Tc0 vs γ0/kBTc0 for α = 0, 0.1, 0.3, 0.7, 1.5, 3.1, and
6.3.
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FIG. 2: Tc(0, γ0)/Tc(α, γ0) vs α for γ0/γAG = 0, 0.15, 0.3, 0.45,
0.6, 0.75, and 0.9.

Figure 2 shows Tc(α = 0, γ0)/Tc(α, γ0) as a function of
α for various γ0 values. There is a quantitative difference
between the case of γ0 ¿ γAG and the case of γ0 ' γAG.
When γ0/γAG . 0.3,

Tc(α = 0, γ0)
Tc(α, γ0)

' 1 + α. (3.4)

When γ0/γAG < 1 and γ0/γAG ' 1,

Tc(α = 0, γ0)
Tc(α, γ0)

' 1 + 2α. (3.5)

Figure 3 shows εG(0)/kBTc as a function of γ0/γAG for
various λsc values and α = 0. It should be mentioned
that εG(0)/kBTc depends on not only γ0 but also λsc. The
dependence of εG(0)/kBTc on λsc is quite weak for a small
λsc such as λsc . 0.3; εG(0)/kBTc ' 4.3 in the limit of
λsc → 0. The weak dependence is a strong-coupling effect,
which is partly due to the anisotropy of the gap. When
γ0/γAG . 0.5,

εG(0)
kBTc

' 4 + 2
γ0

γAG
. (3.6)
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FIG. 3: εG(0)/kBTc vs γ0/γAG for λsc = 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, and 0.8. In this figure, α = 0 is assumed.

When γ0/γAG ' 1, the ratio is as large as

εG(0)
kBTc

' 8. (3.7)

When α = 0, the ratio εG(0)/kBTc is smaller than about 8
even in the limit of γ0 → γAG.

In general, the following relation holds:

εG(0)
kBTc

=
εG(0)

kBTc(α = 0, γ0)
Tc(α = 0, γ0)

Tc(α, γ0)
. (3.8)

When α 6= 0 and γ0/γAG . 0.3, it follows that

εG(0)
kBTc

'
(

4 + 2
γ0

γAG

)
(1 + α). (3.9)

When α 6= 0 and γ0/γAG ' 1, it follows that

εG(0)
kBTc

' 8(1 + 2α). (3.10)

When α À 1, the ratio εG(0)/kBTc can be much larger
than 8.

Figure 4 shows εG(T ) as a function of T for various
α and γ0 values. When T = 0 K, εG(0) does not de-
pend on α because αkBT = 0. When γ0 is nonzero,
not only Tc but also εG(0) decreases; εG(0)/kBTc remains
nonzero and finite even in the limit of γ0 → γAG, as
is shown in Fig. 3 and eq. (3.10). The amount of de-
crease in εG(T ) with increasing T is larger for a larger
α. In particular, [dεG(T )/dT ]T=0K = 0 for α . 0.3, but
[dεG(T )/dT ]T=0K < 0 apparently for α & 0.3-0.7.

Figure 5(a) shows the density of states ρ(ε) or gap spec-
trum at T = 0 K. A sharp coherence peak can only be
seen for a sufficiently small γ0 such as γ0/γAG ¿ 1. The
low-energy part of the density of states is expanded as

ρ(ε) = ρ(0) + ρ(1)

∣∣∣∣ ε

kBTc

∣∣∣∣ +
1
2
ρ(2)

∣∣∣∣ ε

kBTc

∣∣∣∣2 + · · · , (3.11)

where ρ(1)/ρ0 ≥ 0. When γ0/γAG . 0.3, the gap spec-
trum has a convex-cup V shape, which is characterized by
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FIG. 5: (a) Density of states ρ(ε) for γ0/γAG = 0, 0.15, 0.3, 0.45, 0.6, 0.75, and 0.9 and (b) ρ(ε = 0) at T = 0 K as a function of
γ0/γAG. In the model of this paper, ρ(ε) is an even function of ε.

ρ(2)/ρ0 > 0. In this case, ρ(0) is negligible or at least almost
negligible, as shown in Fig. 5(b). When γ0/γAG ' 0.3, the
gap spectrum has a straight-line V shape, which is charac-
terized by ρ(2)/ρ0 ' 0; ρ(0) is also almost negligible. When
γ0/γAG & 0.4-0.5, the gap spectrum of ρ(ε) has a concave-

cap V shape, which is characterized by ρ(2)/ρ0 < 0. In this
case, ρ(0) is nonzero or the gap is a pseudo-gap. When
γ0/γAG & 0.6, in particular, ρ(0) is significantly nonzero.
A qualitatively similar result was obtained by Ueda and
Rice for a p-wave superconductor with line zeros27,28. Ac-
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cording to ref. 27, there is no critical γ0/γAG for the onset of
nonzero ρ(0), i.e., ρ(0) is nonzero when γ0/γAG is nonzero.
It is probable that, even in the model in this paper, ρ(0)
is nonzero when γ0/γAG is nonzero, which is not inconsis-
tent with Fig. 5(b). According to Fig. 5, however, there is
practically a critical γ0/γAG for the onset of a practically
nonzero ρ(0) and the qualitative change in the spectrum
shape of ρ(ε); when γ0/γAG . 0.3, ρ(0) is nonzero but al-
most negligible and ρ(ε) has a convex-cup V shape, while,
when γ0/γAG & 0.3, ρ(0) is significantly nonzero and ρ(ε)
has a concave-cap V shape.

Figure 6 shows the density of states ρ(ε) at T > 0 K for
α = 1 and four values of γ0/γAG, namely, 0, 0.3, 0.5, and
0.7, for which a convex-cup V shape appears, a straight-
line V shape appears, a concave-cap V shape appears, and
not only a concave-cap V shape appears but also ρ(0) is
large, respectively, at T = 0 K. When T > 0 K, ρ(0) is
nonzero and ρ(ε) has a convex-cup shape near the chemical
potential.

4. Application to Cuprate Superconductors

The specific heat coefficient is given by

γC =
2
3
π2k2

Bρ∗(0), (4.1)

where ρ∗(0) is the density of states of quasi-particles at the
chemical potential. The observed γC is as large as

γC ' (10-15) mJ/mol · K2, (4.2)

for δ ' δopt.29,30 Then, it follows that

ρ∗(0) ' 3 × 10−3 states/meV, (4.3)

in optimally doped cuprate oxides; γC and ρ∗(0) are smaller
than those in eqs. (4.2) and (4.3), respectively, in under-
doped cuprate oxides.

In the two-dimensional free-electron model, the two-
dimensional resistivity R¤ is given by

R¤ =
m∗

n¤e2τtr
, (4.4)

where m∗ is the effective mass, n¤ is the two-dimensional
electron density, and τtr is the relaxation time relevant to
conductivity. The density of states for quasi-particles is
given by

ρ∗(ε) =
a2m∗

2π~
. (4.5)

It follows from eqs. (4.4) and (4.5) that

R¤ =
4π~
e2

1
n

ρ∗(0)
~

2τtr
, (4.6)

where n = n¤a2 is the two-dimensional electron density
per unit cell. Three-dimensional resistivity is given by

R =
4π~c

e2

1
n

ρ∗(0)
~

2τtr
, (4.7)

where c is the lattice constant perpendicular to CuO2

planes or the average distance between nearest-neighbor
CuO2 planes. When c = 4Å is assumed,

4π~
e2

= 51.6 kΩ, (4.8)

so that

4π~c

e2
= 2.1 × 103 µΩcm. (4.9)

If scatterings are homogeneous and isotropic, the relaxation
time appearing in the conductivity is simply given by the
relaxation time or lifetime of quasi-particles such that

~
2τtr

= −ImΣ(+i0;T )

= γ0 + αkBT, (4.10)

above Tc. When forward scatterings are strong, ~/2τtr <
−ImΣ(+i0;T ) in general. When eq. (4.10) is assumed,

R(T ) ' 4π~c

e2
ρ∗(0) (γ0 + αkBT ) , (4.11)

where n ' 1 is assumed.
In optimally doped cuprates, the ratio εG(0)/kBTc is as

large as 8. It is substantially larger than its mean-field
value of about 4,21,22 or those shown in Fig. 3 of this paper.
Since the residual resistivity is rather small in optimally
doped cuprates, elastic scatterings are supposed to be weak
or γ0 ' 0, which is consistent with the observed high Tc.
When inelastic scatterings are effective or α 6= 0, it follows
according to eq. (3.10) that

εG(0)
kBTc

' 4(1 + α). (4.12)

The observed large ratio can be explained if α ' 1. Ac-
cording to eqs. (1.2), (4.3), and (4.11), on the other hand,
it follows that α ' 1. The large T -linear coefficient of resis-
tivity, which is as large as r1 ' 1 µΩcm/K, as is given by
eq. (1.2), and the large ratio εG(0)/kBTc ' 8 are consistent
with each other.

The resistivity extrapolated to T → 0 K or residual re-
sistivity is given by

R(0) ' 4π~c

e2
ρ∗(0)γ0, (4.13)

for n ' 1. Experimentally, Tc decreases almost linearly in
the residual resistivity R(0) in underdoped cuprates,31,32
which is inconsistent with the AG theory or the curve for
α = 0 in Fig. 1 in this paper. According to the analy-
sis given in this paper, when α & 1, Tc decreases almost
linearly with the residual resistivity. This is also consis-
tent with the fact that inelastic scatterings by supercon-
ducting and antiferromagnetic fluctuations are crucial in
underdoped cuprate superconductors.

When δ ' 0.05, where Tc is negligible, the residual re-
sistivity is as large as R(0) ' 103 µΩcm. This leads to the
argument that the critical pair breaking for δ ' 0.05 must
be as large as γAG ' 102 meV so that Tc0 ' 103 K for
δ ' 0.05. However, this seems to be unreasonable since Tc0
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FIG. 6: Temperature dependence of density of states for α = 1: (a) γ0/γAG = 0, (b) 0.3, (c) 0.5, and (d) 0.7. In all the figures,
results for T/Tc = 0, 0.25, 0.5 and 0.75 are shown.

seems to be too high. One of the possible explanations is
that the crucial assumption on the impurity strength and
distribution, which is discussed in §2, is not valid for un-
derdoped cuprate oxide superconductors. Inhomogeneous
disorder is presumably responsible for this discrepancy such
that superconductivity is possible in a region where γ0 is
small and that it disappears in other regions where γ0 is
large. It will be interesting to theoretically examine how
large the final resistivity of such an inhomogeneously dis-
ordered system is.

When γ0/γAG & 0.4-0.5, ρ(0) is nonzero and the low-
energy part is of convex-cup V shape, as shown in Fig. 5(a).
The nonzero ρ(0) means that the specific heat has a T -
linear term in the limit of T → 0 K such that

C = γCT + O(T 2), (4.14)

where γC is nonzero. On the other hand, the T -linear spe-
cific heat coefficient γC is also nonzero in an inhomogeneous
superconducting state, in which some regions are super-
conducting and other regions are normal. Since the pair
breaking may be weak in superconducting regions, the gap
structure in the inhomogeneous superconducting state is
not necessarily of concave-cap V shape even if the observed
γC is nonzero. Whether the gap spectrum is of concave-cap

or convex-cup V shape can be used as a criterion for de-
termining the origin of the nonzero γC: inhomogeneity or
nonzero ρ(0). It will be interesting to search for a gap
spectrum of concave-cap V shape in an anisotropic super-
conductor with a nonzero T -linear specific heat coefficient.

In addition to disorders that inevitably exist in cuprate
oxide, nonmagnetic and magnetic impurities such as Zn and
Ni are often introduced into cuprate oxide. The scattering
by a single impurity of Ni or Zn is as strong as the unitarity-
limit scattering. The treatment discussed in this paper
cannot apply in such a case. Hotta33 and Sun and Maki34
considered such a case in T -matrix approximation under an
assumption that resonance occurs in the scattering process
at the chemical potential. In their treatments, no concave-
cap V shape appears because the resonance is crucial to
obtain a nonzero and large ρ(0). It will be interesting to
study how a crossover occurs between a convex-cup V shape
under the resonance condition, i.e., when a single impurity
is as strong as a unitarity-limit scatterer and the impurity
concentration is low, and a concave-cap V shape under an
off-resonance condition, i.e., when a single impurity is weak
and the impurity concentration is high.
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5. Conclusion

We study the effects of elastic and inelastic scatterings
on d-wave superconductivity in optimally doped and un-
derdoped cuprate oxides. Since the observed resistivity in-
creases almost linearly as a function of temperature, it is
reasonable to assume the existence of a T -linear term in
the lifetime width of quasi-particles such as ~/2τ ' kBT .
Then, the Abrikosov-Gor’kov theory is modified in such a
way that the superconducting critical temperature Tc de-
creases almost linearly as a function of impurity concen-
tration. The deviation from the Abrikosov-Gor’kov theory
is not evidence of the fact that high-Tc superconductivity
is realized by an exotic mechanism. If elastic scatterings
by impurities are ignored, the ratio εG(0)/kBTc is about 8,
which is twice as large as its value of about 4 predicted by
the mean-field theory. If elastic scatterings are considered,

the ratio can be much larger than 8. When elastic scat-
terings by impurities are sufficiently strong, the density of
states ρ(ε) not only is significantly nonzero at the chemical
potential such as ρ(0) > 0 but also has a concave-cap V
shape in the low-energy part at least at the zero tempera-
ture. If the T -linear specific heat coefficient is significantly
nonzero in an underdoped cuprate-oxide superconductor,
it will be interesting to search for the density of states ρ(ε)
of the superconductor for such a concave-cap V shape.

Acknowledgements

The authors are grateful to M. Ido, M. Oda, and N.
Momono for helpful discussions on various properties of
cuprate oxide superconductors.

1 J. G. Bednortz and K. A. Müller: Z. Phys. B 64 (1986) 189.
2 D. J. Van Harlingen: Rev. Mod. Phys. 67 (1995) 515.
3 J. Orenstein and A. J. Mills: Science 288 (2000) 468.
4 S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J.

M. Tranquada, A. Kapitulnik, and C. Howald: Rev. Mod.
Phys. 75 (2003) 1201.

5 P. A. Lee, N. Nagaosa, and X-G. Wen: Rev. Mod. Phys. 78
(2006) 17.

6 O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C.
Renner: Rev. Mod. Phys. 79 (2007) 353.

7 K. B. Lyons, P. A. Fleury, L. F. Schneemeyer, and J. V.
Waszczak: Phys. Rev. Lett. 60 (1988) 732.

8 H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava, J. J.
Krajewski, and W. F. Peck, Jr.: Phys. Rev. Lett. 69 (1992)
2975.

9 B. Batlogg, H. Y. Hwang, H. Takagi, H. L. Kao, J. Kwo, and
R. J. Cava: J. Low Temp. Phys. 95 (1994) 23.

10 T. Moriya, Y. Takahashi, and K. Ueda: J. Phys. Soc. Jpn.
59 (1990) 2905.

11 A. A. Abrikosov and L. P. Gor’kov: Sov. Phys. JETP 12
(1961) 1243.

12 J. Bardeen, L. Cooper, and J. R. Schrieffer: Phys. Rev. 108
(1957) 1175.

13 T. Tsuneto: Prog. Theor. Phys. 28 (1962) 857.
14 V. L. Pokrovskii and M. S. Ryvkin: Sov. Phys. JETP 16

(1963) 67.
15 D. Markowitz and L. P. Kadanoff: Phys. Rev. 131 (1963)

563.
16 S. Nakajima: Prog. Theor. Phys. 32 (1964) 871.
17 M. D. Whitmore and J. P. Carbotte: Phys. Rev. B 23 (1981)

5782.
18 F. J. Ohkawa and H. Fukuyama: J. Phys. Soc. Jpn. 53 (1984)

4344.
19 S. Skalski, O. Betbeder-Matibet, and P. R. Weiss: Phys. Rev.

136 (1964) A1500.
20 L. S. Borkowski and P. J. Hirschfeld: Phys. Rev. B 49 (1994)

15404.
21 F. J. Ohkawa: J. Phys. Soc. Jpn. 56 (1987) 2267.
22 K. Maki and H. Won: Phys. Rev. Lett. 72 (1994) 1758.
23 F. J. Ohkawa and T. Toyama: cond-mat, arXiv:0901.1410.
24 F. J. Ohkawa: J. Phys. Soc. Jpn. 78 (2009) 084712.
25 At these averages, Vi = 0 and Ji = 0 are assumed for nonim-

purity sites, whereas Vi 6= 0 or Ji 6= 0 is assumed for impurity
sites.

26 When a superconducting gap opens, antiferromagnetic and
superconducting fluctuations are suppressed so that the life-
time width due to inelastic scatterings is reduced below Tc.
The assumption simply means that the reduction in the life-
time width below Tc is negligible.

27 K. Ueda and T. M. Rice: Theory of Heavy Fermions and
Valence Fluctuations ed. T Kasuya and T. Saso, Springer
Series in Solid-State Sciences (Springer-Verlag, Berlin, 1985)
62, p. 267.

28 M. Sigrist and K. Ueda: Rev. Mod. Phys. 63 (1991) 239.
29 J. W. Loram, K. A. Mirza, J. R. Cooper, and W. Y. Liang:

Phys. Rev. Lett. 71 (1993) 1740.
30 N. Momono and M. Ido: Physica C 264 (1996) 311.
31 Y. Fukuzumi, K. Mizuhashi, K. Takenaka, and S. Uchida:

Phys. Rev. Lett. 76 (1996) 684.
32 F. Rullier-Albenque, H. Alloul, and R. Tourbot: Phys. Rev.

Lett 91 (2003) 047001.
33 T. Hotta: J. Phys. Soc. Jpn. 62 (1993) 274.
34 Y. Sun and K. Maki: Phys. Rev. B 51 (1995) 6059.


