<table>
<thead>
<tr>
<th>Instructions for use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation of congenic mouse strains by introducing the virus-resistant genes, Mx1 and Oas1b, of feral mouse-derived inbred strain MSM/Ms into the common strain C57BL/6J</td>
</tr>
<tr>
<td>Title</td>
</tr>
<tr>
<td>Author(s)</td>
</tr>
<tr>
<td>Citation</td>
</tr>
<tr>
<td>Issue Date</td>
</tr>
<tr>
<td>DOI</td>
</tr>
<tr>
<td>Doc URL</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>File Information</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Generation of congenic mouse strains by introducing the virus-resistant genes, \(Mx1 \) and \(Oas1b \), of feral mouse-derived inbred strain MSM/Ms into the common strain C57BL/6J

Kanako Moritoh\(^1\), Hideto Yamauchi\(^1\), Atsushi Asano\(^1\), Kentaro Yoshii\(^2\), Hiroaki Kariwa\(^2\), Ikuo Takashima\(^2\), Norikazu Isoda\(^3\), Yoshihiro Sakoda\(^3\), Hiroshi Kida\(^3\), Nobuya Sasaki\(^1\) and Takashi Agui\(^{1,*}\)

\(^1\)Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
\(^2\)Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
\(^3\)Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan

Received for publication, May 6, 2009; accepted, June 1, 2009

Abstract

\(Mx1 \) (Myxovirus resistance protein) and \(Oas1b \) (Oligoadenylate synthetase-1), induced by type 1 interferon (IFN), play a role in early antiviral innate immunity by inhibiting the replication of viruses. In mice, \(Mx1 \) and \(Oas1b \) confer resistance to the infection of orthomyxoviruses including influenza viruses and flaviviruses including West Nile viruses, respectively. Laboratory mice have been used to study the mechanisms of the pathogenesis of these virus infections; however, it is possible that they are not a suitable model system to study these viruses, since most of the inbred laboratory mouse strains lack both genes. It has been reported that feral mouse-derived inbred strains show resistance to the infection of these viruses due to the presence of intact both genes. In this study, we generated congenic strains in which the \(Mx \) or \(Oas \) locus of the MSM/Ms (MSM) mouse was introduced to the most widely used mouse strain, C57BL/6J (B6). B6.MSM-Mx mice showed resistance to the infection of influenza virus but not of West Nile virus. On the other hand, B6.MSM-Oas mice showed resistance to the infection of West Nile virus but not of influenza virus. Our results indicate that \(Mx1 \) and \(Oas1b \) show highly antiviral specificity in mice possessing the same genetic background. Therefore, these congenic mice are useful for not only infection study but also investigation of host defense mechanism to these viruses.

Key words: congenic mouse, flavivirus, \(Mx1 \), \(Oas1b \), orthomyxovirus,
Congenic mouse strains introduced \textit{Mx1} and \textit{Oas1} genes

\section*{Introduction}

Type 1 interferons (IFNs), IFN \(\alpha/\beta\), are produced and secreted from virus-infected cells and cause the surrounding cells to induce a number of cellular proteins, including the Mx (Myxovirus resistance protein) and Oas (Oligoadenylate synthetase)36. These IFN-inducible proteins play important roles in the host’s innate defense by inhibiting viral replication. Mx proteins can be found in a wide variety of organisms including mammals, birds, fish, and even invertebrate species3,4,24,32,34,38 and belong to the dynamin superfamily of high molecular weight GTPases22,23. In mice, two \textit{Mx} genes, \textit{Mx1} and \textit{Mx2}, have been identified to locate in the \textit{Mx} locus on Chromosome (Chr) 16. \textit{Mx1} has been identified as a gene encoding an anti-viral protein to orthomyxoviruses including influenza viruses28,33. Oas family proteins are also highly conserved among many species18,27,40. In virus-infected cells, Oas proteins are activated by the binding of viral double-stranded RNAs and are known to synthesize 2’-5’ oligoadenylate (2–5A). The 2–5A subsequently binds to and activates latent ribonuclease RNase L, resulting in the degradation of viral RNAs and the enhancement of IFN signaling9,16,28,41. In mice, the \textit{Oas} locus locates on Chr 5 and is composed of the \textit{Oas} gene cluster, consisting of \textit{Oas1a-h}, \textit{Oas2}, and \textit{Oas3}. Among these genes, \textit{Oas1b} has been identified as a flavivirus-resistant gene12,18,20,26,27.

Most strains of laboratory mice such as C57BL/6J (B6), BALB/c, and DBA/2, lost the functional \textit{Mx1}, \textit{Mx2}, and \textit{Oas1b} genes during selective breeding2,18,26,33. Therefore, laboratory mice are susceptible to both viruses, whereas feral mouse-derived inbred strains are known to possess intact \textit{Mx1}, \textit{Mx2}, and \textit{Oas1b} genes11,18,26,29,36. Because of its widespread use in medical and basic science, the B6 strain was selected as the reference strain for the mouse genome sequencing. Additionally, B6 mice are also commonly used in the production of both transgenic and knockout mice as well as many mutagenesis projects20.

Susceptibility to viruses has been believed to be associated with a genetic background in humans and other animals. This genetic effect is often complex and difficult to identify, since it is further modified by environmental factors. Laboratory mice such as B6 afford a useful alternative for the study of host defenses against infections, because variations among strains allow the identification of the genes associated with resistance or susceptibility to virus infection. However, as B6 mice lack the important \textit{Mx1} and \textit{Oas1b} genes, they are not, perhaps, the most suitable model system for the study of both orthomyxo- and flaviviruses. Therefore, we established the congenic strains, B6.MSM-\textit{Mx} and B6.MSM-\textit{Oas} that carry the \textit{Mx} and \textit{Oas} locus, respectively, from the Japanese feral mouse-derived inbred strain, MSM/Ms. These congenic mice were found to be more resistant to lethal challenge with the two highly pathogenic viruses than were the original B6 mice. These congenic mice provide a useful model for the study of not only the antiviral function of \textit{Mx1} and \textit{Oas1b}, but also the infectious mechanism of these viruses in humans and other animals.

\section*{Materials and Methods}

\textit{Generation of congenic strains:} The laboratory mouse strain, B6 was purchased from Charles River Japan (Tokyo, Japan) and the feral mouse-derived inbred strain MSM/Ms was provided by Prof. T. Shiroishi, National Institute of Genetics, Japan. \textit{Mx} and \textit{Oas} congenic mice were generated using the speed congenic method17. Animal breeding rooms were maintained at 22 ± 4°C and 50 ± 20% relative humidity with a 12-hr light-dark cycle. Research was conducted according to the Guidelines for the Care and Use of Laboratory Animals of the Graduate School of Veterinary Medicine, Hokkaido University. The experimental protocol was approved by the Institutional Animal Care and Use Committee of the Graduate School of Veterinary Medicine, Hokkaido University.
Genotyping was performed by polymerase chain reaction (PCR) with tail DNA. The forward and reverse primers for the Mx1 gene were designed based on the sequence of the MSM genome corresponding to the deleted-region of the B6 genome; GTGACCTTGGACCTCCTCCT (intron 10) and GCAGAGCTCTCCAGGGCCTTGA (exon 11) as described previously. PCR products were electrophoresed in 1% agarose gels and visualized by ethidium bromide staining. The forward and reverse primers for the Oas1b (accession number: NM_001083925) were, GCTCAAGGGCAGGT CAGAC (nt 15–33 of exon 3) and TCAAAC TTCACCTCCTCAGTC (nt 231–251 of exon 3), respectively. PCR products were digested with 2 U Hinfl for 1 hr, followed by electrophoresis in 8% acrylamide gels and visualization by ethidium bromide staining. Microsatellite markers used for genotyping are listed in Table 1.

Expression of intact Mx1 and Oas1b genes in congenic mice: Eight-week-old female B6, B6.

Table 1. List of microsatellite markers used for the marker-assisted speed congenic methods

<table>
<thead>
<tr>
<th>Microsatellite Markers</th>
<th>Chr</th>
<th>cM</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1Mit316</td>
<td>1</td>
<td>7.9</td>
<td>D4Mit111</td>
<td>4</td>
<td>21.9</td>
<td>D8Mit94</td>
<td>8</td>
<td>13</td>
<td>D12Mit63</td>
<td>12</td>
<td>19</td>
<td>D16Mit71</td>
<td>16</td>
<td>70.7</td>
</tr>
<tr>
<td>D1Mit58</td>
<td>1</td>
<td>8.3</td>
<td>D4Mit80</td>
<td>4</td>
<td>33.7</td>
<td>D8Mit339</td>
<td>8</td>
<td>23</td>
<td>D12Mit114</td>
<td>12</td>
<td>29</td>
<td>D16Mit106</td>
<td>16</td>
<td>71.5</td>
</tr>
<tr>
<td>D1Mit133</td>
<td>1</td>
<td>21</td>
<td>D4Mit166</td>
<td>4</td>
<td>44.5</td>
<td>D8Mit17</td>
<td>8</td>
<td>32</td>
<td>D12Mit229</td>
<td>12</td>
<td>41</td>
<td>D17Mit198</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>D1Mit18</td>
<td>1</td>
<td>29.7</td>
<td>D4Mit52</td>
<td>4</td>
<td>54.9</td>
<td>D8Mit33</td>
<td>8</td>
<td>45</td>
<td>D12Mit277</td>
<td>12</td>
<td>50</td>
<td>D17Mit49</td>
<td>17</td>
<td>23.2</td>
</tr>
<tr>
<td>D1Mit251</td>
<td>1</td>
<td>38.1</td>
<td>D4Mit13</td>
<td>4</td>
<td>71</td>
<td>D8Mit213</td>
<td>8</td>
<td>54</td>
<td>D13Mit116</td>
<td>13</td>
<td>10</td>
<td>D17Mit251</td>
<td>17</td>
<td>31</td>
</tr>
<tr>
<td>D1Mit415</td>
<td>1</td>
<td>52</td>
<td>D4Mit42</td>
<td>4</td>
<td>81</td>
<td>D8Mit200</td>
<td>8</td>
<td>58</td>
<td>D13Mit159</td>
<td>13</td>
<td>47</td>
<td>D17Mit89</td>
<td>17</td>
<td>36</td>
</tr>
<tr>
<td>D1Mit30</td>
<td>1</td>
<td>70</td>
<td>D5Mit180</td>
<td>5</td>
<td>10</td>
<td>D8Mit56</td>
<td>8</td>
<td>73</td>
<td>D13Mit226</td>
<td>13</td>
<td>59</td>
<td>D17Mit93</td>
<td>17</td>
<td>44.5</td>
</tr>
<tr>
<td>D1Mit14</td>
<td>1</td>
<td>81.6</td>
<td>D5Mit176</td>
<td>5</td>
<td>18.2</td>
<td>D9Mit12</td>
<td>9</td>
<td>17</td>
<td>D13Mit260</td>
<td>13</td>
<td>65</td>
<td>D17Mit221</td>
<td>17</td>
<td>56.7</td>
</tr>
<tr>
<td>D1Mit145</td>
<td>1</td>
<td>89</td>
<td>D5Mit109</td>
<td>5</td>
<td>34</td>
<td>D9Mit328</td>
<td>9</td>
<td>23</td>
<td>D13Mit77</td>
<td>13</td>
<td>73</td>
<td>D18Mit132</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>D1Mit403</td>
<td>1</td>
<td>100</td>
<td>D5Mit24</td>
<td>5</td>
<td>60</td>
<td>D9Mit49</td>
<td>9</td>
<td>35</td>
<td>D14Mit49</td>
<td>14</td>
<td>3</td>
<td>D18Mit177</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>D1Mit20</td>
<td>1</td>
<td>106</td>
<td>D5Mit367</td>
<td>5</td>
<td>65</td>
<td>D9Mit133</td>
<td>9</td>
<td>43</td>
<td>D14Mit45</td>
<td>14</td>
<td>12.5</td>
<td>D18Mit51</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>D2Mit312</td>
<td>2</td>
<td>1</td>
<td>D5Mit242</td>
<td>5</td>
<td>66</td>
<td>D9Mit76</td>
<td>9</td>
<td>49</td>
<td>D14Mit268</td>
<td>14</td>
<td>19</td>
<td>D18Mit184</td>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>D2Mit294</td>
<td>2</td>
<td>15</td>
<td>D5Mit168</td>
<td>5</td>
<td>78</td>
<td>D9Mit118</td>
<td>9</td>
<td>71</td>
<td>D14Mit37</td>
<td>14</td>
<td>27.5</td>
<td>D18Mit186</td>
<td>18</td>
<td>45</td>
</tr>
<tr>
<td>D2Mit433</td>
<td>2</td>
<td>31.7</td>
<td>D6Mit166</td>
<td>6</td>
<td>0.6</td>
<td>D10Mit248</td>
<td>10</td>
<td>7</td>
<td>D14Mit115</td>
<td>14</td>
<td>40</td>
<td>D18Mit106</td>
<td>18</td>
<td>50</td>
</tr>
<tr>
<td>D2Mit37</td>
<td>2</td>
<td>45</td>
<td>D6Mit74</td>
<td>6</td>
<td>20.5</td>
<td>D10Mit124</td>
<td>10</td>
<td>15</td>
<td>D14Mit196</td>
<td>14</td>
<td>47</td>
<td>D18Mit4</td>
<td>18</td>
<td>57</td>
</tr>
<tr>
<td>D2Mit101</td>
<td>2</td>
<td>52.5</td>
<td>D6Mit188</td>
<td>6</td>
<td>32.5</td>
<td>D10Mit3</td>
<td>10</td>
<td>21</td>
<td>D15Mit10</td>
<td>15</td>
<td>9.9</td>
<td>D19Mit69</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>D2Mit255</td>
<td>2</td>
<td>68</td>
<td>D6Mit104</td>
<td>6</td>
<td>45.5</td>
<td>D10Mit221</td>
<td>10</td>
<td>31</td>
<td>D15Mit111</td>
<td>15</td>
<td>17.8</td>
<td>D19Mit80</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>D2Mit343</td>
<td>2</td>
<td>84.2</td>
<td>D6Mit194</td>
<td>6</td>
<td>61.5</td>
<td>D10Mit69</td>
<td>10</td>
<td>52</td>
<td>D15Mit156</td>
<td>15</td>
<td>39.1</td>
<td>D19Mit13</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>D2Mit229</td>
<td>2</td>
<td>99</td>
<td>D7Mit76</td>
<td>7</td>
<td>3.4</td>
<td>D10Mit180</td>
<td>10</td>
<td>64</td>
<td>D15Mit71</td>
<td>15</td>
<td>46.7</td>
<td>D19Mit10</td>
<td>19</td>
<td>47</td>
</tr>
<tr>
<td>D3Mit164</td>
<td>3</td>
<td>2.4</td>
<td>D7Mit117</td>
<td>7</td>
<td>11</td>
<td>D11Mit62</td>
<td>11</td>
<td>1.5</td>
<td>D15Mit79</td>
<td>15</td>
<td>66.2</td>
<td>D19Mit84</td>
<td>19</td>
<td>53</td>
</tr>
<tr>
<td>D3Mit305</td>
<td>3</td>
<td>11.2</td>
<td>D7Mit26</td>
<td>7</td>
<td>23</td>
<td>D11Mit53</td>
<td>11</td>
<td>16</td>
<td>D16Mit165</td>
<td>16</td>
<td>10.3</td>
<td>DXMit166</td>
<td>X 15.5</td>
<td></td>
</tr>
<tr>
<td>D3Mit333</td>
<td>3</td>
<td>22</td>
<td>D7Mit84</td>
<td>7</td>
<td>28.4</td>
<td>D11Mit4</td>
<td>11</td>
<td>37</td>
<td>D16Mit212</td>
<td>16</td>
<td>27.3</td>
<td>DXMit25</td>
<td>X 27.8</td>
<td></td>
</tr>
<tr>
<td>D3Mit241</td>
<td>3</td>
<td>33</td>
<td>D7Mit173</td>
<td>7</td>
<td>43</td>
<td>D11Mit35</td>
<td>11</td>
<td>4##</td>
<td>D16Mit147</td>
<td>16</td>
<td>28.2</td>
<td>DXMit16</td>
<td>X 37</td>
<td></td>
</tr>
<tr>
<td>D3Mit12</td>
<td>3</td>
<td>49.2</td>
<td>D7Mit321</td>
<td>7</td>
<td>48.5</td>
<td>D11Nds7</td>
<td>11</td>
<td>62</td>
<td>D16Mit42</td>
<td>16</td>
<td>33</td>
<td>DXMit19</td>
<td>X 43.2</td>
<td></td>
</tr>
<tr>
<td>D3Mit14</td>
<td>3</td>
<td>64.1</td>
<td>D7Mit222</td>
<td>7</td>
<td>52.6</td>
<td>D11Mit61</td>
<td>11</td>
<td>70</td>
<td>D16Mit140</td>
<td>16</td>
<td>42.8</td>
<td>DXMit130</td>
<td>X 55</td>
<td></td>
</tr>
<tr>
<td>D3Mit129</td>
<td>3</td>
<td>84.9</td>
<td>D7Mit66</td>
<td>7</td>
<td>57.5</td>
<td>D11Mit48</td>
<td>11</td>
<td>77</td>
<td>D16Mit70</td>
<td>16</td>
<td>57</td>
<td>DXMit10</td>
<td>X 63.2</td>
<td></td>
</tr>
<tr>
<td>D4Mit149</td>
<td>4</td>
<td>0</td>
<td>D7Mit105</td>
<td>7</td>
<td>63.5</td>
<td>D12Mit270</td>
<td>12</td>
<td>13</td>
<td>D16Mit20</td>
<td>16</td>
<td>69.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mx1 and Oas1 genes

After infection, mice were followed up for 4 weeks.

Results

Generation of Mx1 and Oas1b congenic mice

Congenic strains were generated using a marker-assisted speed congenic strategy as reported previously\(^{17}\). To generate congenic mice in which the Mx or Oas locus from MSM mice was introduced into the genetic background of B6 mice, the B6 and MSM alleles of Mx1 and Oas1b were determined to select candidate mice. In the Mx1 locus of B6 mice, a large deletion from exon 9 to 11 was reported previously\(^{2,33}\). Therefore, primers were designed for amplifying the region from intron 10 to exon 11 to distinguish the B6 allele from the MSM allele as reported previously\(^2\). As shown in Fig. 1A, these primers can detect MSM allele. On the other hand, since a single nucleotide polymorphism has been found in the Hinfl site of the Oas1b gene in the MSM allele (Fig. 1B), genotyping was performed by digestion of the PCR products of the Oas1b gene with Hinfl (Fig. 1C). The ‘best’ male mice, those carrying the most homozygous B6 alleles in 134 microsatellite markers with heterozygosity in the Mx1 or Oas1b gene, were selected for breeding next generation. Backcrossing was performed six and seven times for exchanging to the B6 genetic background in the B6.MSM-Mx and B6.MSM-Oas mice, respectively. Finally, heterozygous sibling pairs were mated and homozygous mice were selected. To estimate the length of the chromosomal regions derived from MSM mice, the genotype and position of microsatellite markers surrounding the Mx or Oas locus were confirmed (Fig. 2). As shown in Fig. 2A, the genotypes of D16Mit71 and D16Mit106 in the B6.MSM-Mx mice were homozygous MSM (M/M), whereas that of D16Mit20 was homozygous B6 (B/B), suggesting that the region between D16Mit71 and D16Mit106 was derived from MSM and recombination occurred at two points between D16Mit20.
Fig. 1. Detection of the B6 and MSM alleles of the \textit{Mx1} and \textit{Oas1b} genes. (A) The results of PCR amplification of the Mx1 gene. The alleles of MSM but not of B6 mice show the PCR product. (B) Schematic diagram of the \textit{Oas1b} gene in B6 and MSM mice. The arrows show PCR primers used for \textit{Oas1b} genotyping. The lower diagram shows the expected results of \textit{Hin}fI digestion after PCR amplification. \textit{H}; \textit{Hin}fI site. (C) The result of genotyping of the \textit{Oas1b} gene. The 28-bp and 142-bp bands are derived from the MSM allele.

Fig. 2. Schematic diagrams of the genomic structure surrounding \textit{Mx1} and \textit{Oas1b} genes in the B6.MSM-Mx (A) and B6.MSM-Oas (B) congenic strains, respectively. Black and gray bars represent the MSM-derived and B6-derived genomes, respectively. Dotted bars represent recombined regions between the MSM and B6 genomes. The numbers to the left of the bars represent physical locations based on the NCBI Map Viewer (http://www.ncbi.nlm.nih.gov/mapview).
Congenic mouse strains introduced *Mx1* and *Oas1* genes

and *D16Mit71*, and between *D16Mit106* and telo-
mere. On the other hand, the genotypes of
D5Mit24, *D5Mit367*, and *D5Mit242* in B6.
MSM-*Oas* mice were M/M, whereas those of
D5Mit109 and *D5Mit168* were B/B (Fig. 2B),
suggesting that the region between *D5Mit24* and
D5Mit242 was derived from MSM mice and
recombination occurred at two points between
D5Mit109 and *D5Mit24*, and between *D5Mit242*
and *D5Mit168*.

Next we confirmed by RT-PCR that *Mx* or
Oas1b mRNA was transcribed from both MSM
alleles in congenic mice. After induction of IFN
using poly (I:C) injection, expression of the *Mx1*
gene in the spleens of B6, B6-MSM-Mx, MSM, and
B6 mice was analyzed. Intact *Mx1* could be
distinguished from the mutant type due to the
large deletion in the *Mx1* gene of the B6 mouse
(Fig. 3A). In addition, no *Mx2* gene expression
was detected in the spleens of B6, B6-MSM-Mx and
MSM mice (Fig. 3A). On the other hand, since
Oas1b genes expressed from the B6 and MSM
mice could not be distinguished by the length of
RT-PCR products (Fig. 3B), we determined the
origin of the *Oas1b* gene by DNA sequencing. A
nonsense mutation was observed in the B6 *Oas1b*
cDNA, whereas the sequence of the *Oas1b* cDNA
in the B6-MSM-*Oas* mice was identical to that of
MSM mice (data not shown). Interestingly, both
genes are basally expressed in B6 background
and are more induced by dsRNA stimulation than
those of original MSM mice (Fig. 3). This result is
in agreement with previous report showing that
MSM strain is hyporesponsive to poly (I:C) due to
a mutation in toll-like receptor 3 activated by
dsRNA\(^\text{35}\). Thus, we have confirmed that these
congenic strains are able to express the intact
Mx1 and *Oas1b* genes by the stimulation of
dsRNA.

Experimental infection of congenic strain with orthomyxovirus and flavivirus

We performed viral injection to confirm
whether these congenic mice were resistant to the
infection of orthomyxovirus and flavivirus. A
highly pathogenic avian influenza virus and West
Nile virus were selected as the representative
orthomyxo- and flaviviruses, respectively. When

![Fig. 3](image)

Fig. 3. Expression of intact *Mx1* and *Oas1b* genes in congenic mice. (A) Expression of *Mx1* and *Mx2* genes in the
spleen tissues of B6, MSM, and B6-MSM-Mx mice in response to poly (I)/(C). (B) Expression of *Oas1b* gene in the
spleen tissues of B6, MSM, and B6-MSM-*Oas* mice in response to poly (I)/(C).
infected with a 10^2LD_{50} dose of influenza A virus, all B6 and B6.MSM-Oas mice died within 14 days after infection, whereas 5 of 7 (71%) B6.MSM-Mx mice survived. When B6.MSM-Mx mice were infected with 2 higher doses, 10^3LD_{50} and 10^4LD_{50}, 6 of 7 (86%) and 7 of 7 (100%) B6.MSM-Mx mice survived, respectively (Fig. 4A). On the other hand, all B6.MSM-Oas mice infected with 1 and 10 PFUs of West Nile virus survived, whereas most of B6 and B6.MSM-Mx mice died within 14 days after infection. The survival rate in each experiment was as follows; B6 mice infected with 1 PFU, B6 with 10 PFU, B6.MSM-Mx with 1 PFU, and B6.MSM-Mx with 10 PFU were 20% (3 out of 15), 7% (1 out of 14), 10% (1 out of 10), and 30% (3 out of 10), respectively (Fig. 4B). These results indicate that Mx1 and Oas1b have specific anti-virus activity against influenza- and West Nile viruses, respectively, in mice with the same B6 genetic background.

Discussion

Orthomyxovirus and flavivirus are considered to be important viruses from both the medical and sanitary position. Influenza A, B, and C viruses, classified as orthomyxoviruses, cause the epidemic respiratory disease known as 'flu' in humans that spreads worldwide. Last century, pandemic influenza emerged several times. Further, a new emerging pandemic influenza virus is much concerned. On the other hand, 20–30 members of the flavivirus family are known to be involved in human diseases. Some of these viruses cause severe diseases such as fatal encephalitis and haemorrhagic fevers in humans. Last century, yellow fever virus, Dengue virus, Japanese encephalitis virus, tick-borne encephalitis virus, and West Nile virus caused large outbreaks worldwide. Taken together, infectious diseases associated with orthomyxoviruses and flaviviruses are the subject of much important study. In mice, both Mx1 and Mx2 proteins have been identified, and Mx1 localizes in the nucleus and inhibits virus polymerase activity. Therefore, mice carrying intact Mx1 show resistance to orthomyxoviruses such as influenza virus. B6.MSM-Mx and B6 mice showed notably different survival rates after a challenge with a highly pathogenic avian influenza virus. Although it remains to be determined whether Mx in all vertebrates possesses anti-viral
activity against orthomyxoviruses, anti-viral activity of the Mx protein has been shown in rodents, human, and other animals, suggesting that laboratory mice lacking these genes may not reflect the normal infectious conditions in humans and animals. In addition, these data indicate that studies performed using mice lacking Mx would lead to incorrect evaluations of viral virulence, effects of vaccine, drug and therapy and so on. MSM mice do not express Mx2, and B6.MSM-Mx mice do not recover Mx2 expression, suggesting that the absence of Mx2 expression in MSM mice is not due to the MSM genetic background but due to the presence of a putative cis-acting element in the Mx locus. Mouse Mx2 protein localizes in the cytoplasm in the same manner as the Mx proteins in humans and some animals. Mouse Mx2 can inhibit the replication of negative-stranded RNA viruses that replicate in the cytoplasm such as vesicular stomatitis virus and hanta virus, but not those that replicate in the nucleus such as influenza virus. On the other hand, Mx proteins in humans and some animals localize in cytoplasm and can inhibit influenza virus replication. The reason for the differential anti-viral activity between mouse Mx2 and Mx proteins of other species is unknown.

Oas genes are induced by type 1 IFN, and synthesize 2-5 A, and consequently RNA degradation, by activating latent RNase L. In mice, a gene cluster has been identified on Chr 5 that is comprised of ten Oas family genes. Although mouse Oas1b is one of these genes, Oas1b protein is not regarded as a typical Oas protein, because it lacks enzymatic activity. Although mice carrying intact Oas1b show resistant in flavivirus infection, the mechanism by which Oas1b confers resistance to the infection of flaviruses on mice remains unclear. In recent reports, the Oas1b gene of wild-derived mice was shown to confer differential resistance to the infection of flaviruses due to the polymorphisms. In our study, B6.MSM-Mx but not B6.MSM-Oas mice showed resistance to the infection of influenza virus. On the other hand, B6.MSM-Oas but not B6.MSM-Mx mice showed resistance to the infection of West Nile virus, suggesting that the Oas1b protein of MSM mice possesses anti-West Nile virus characteristics but murine Mx1 protein does not. In addition, these results indicate that Mx1 and Oas1b specifically inhibit influenza virus and West Nile virus replications, respectively.

As there is only limited information on the mechanisms of the pathogenesis of virus infection and the role of host innate immune response in humans, animal models are necessary to identify relationship between virus and host defense in infectious diseases. Mice are frequently used as an animal model to study the viral virulence and vaccine efficacy before using other larger animals. However, standard laboratory mice do not possess certain key components of the innate immune system that mediates protection against the infection of these viruses. It has been reported that the proinflammatory cytokines, such as interleukin 1, interleukin 6, and macrophage inflammatory protein-1, are significantly increased in highly pathogenic influenza-infected mice; however, the course of the disease and the extent of virus replication and spread in these knockout mice were not different from those observed in wild-type mice. On the other hand, IFN α/β receptor-deficient mice are highly susceptible to pathogenic influenza virus. These results suggest a role for IFN signaling, including Mx1, which is essential for protection of the host in the early stages of infection in mice. Thus, the congenic mice generated in this study are useful for the further investigation of orthomyxovirus and flavivirus infectious diseases, particularly, the precise mechanism and timing of the interplay between components of pro- and anti-inflammatory signaling pathways, and may allow the eventual identification of an effective target on these viruses.
Acknowledgements

We thank Professor T. Shiroishi, National Institute of Genetics, Japan, for providing MSM/Ms mice. We wish to thank our lab members for their helpful discussions. K. M. is a research assistant of the Global Center Of Excellence (GCOE) program. This work was supported in part by the GCOE Program, ‘Establishment of International Collaboration Centers for Zoonosis Control’ from Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

17) Markel, P., Shu, P., Ebeling, C., Carlson, G. A.,

