Direct Synthesis of MgH$_2$ Nanofibers at Different Hydrogen Pressures

Chunyu Zhua, Haruya Hayashia, Itoko Saitab, Tomohiro Akiyamaa *

a Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628, Japan

b Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8565, Japan

Corresponding author: Tel.: +81-11-706-6842; Fax: +81-11-726-0731.

E-mail address: takiyama@eng.hokudai.ac.jp (Tomohiro Akiyama)
ABSTRACT:

This paper describes the direct synthesis of magnesium hydride (MgH$_2$) nanofibers by hydriding chemical vapor deposition (HCVD), in which the effect of hydrogen pressure on the production rate, the composition and the shape of products obtained were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET). The XRD patterns showed that the main product in each case was MgH$_2$; in particular, the products formed at 2, 3 and 4 MPa were highly pure. In contrast, at a hydrogen pressure of 1 MPa, unhydrided Mg was deposited along with MgH$_2$. The SEM images also revealed orientation of the as-deposited products; higher pressures of 3 and 4 MPa caused the formation of straight and curved nanofibers, and lower ones of 1 and 2 MPa, highly curved nanofibers and nanorods with a few straight nanofibers. With pressurizing hydrogen, not only the BET specific surface areas of the products but also the production rate increased. The results also appealed that HCVD could control the shape/size of MgH$_2$ nanofibers by changing the pressure via only a single operation.

Keywords: Hydrogen Storage; Magnesium Hydride; Nanofiber; Hydriding Chemical Vapor Deposition
1. Introduction

Crystal growth of nano materials has received increased attention because of their unique properties. Historically, Dr. Ukichiro Nakaya [1] of Hokkaido University, Sapporo, is world famous because of elucidating the relationship between the shapes of snow crystals and the atmospheric conditions, i.e. the temperature and the supersaturation of the atmosphere. In this respect, the synthesis of magnesium nano materials under different conditions could be of interest in the field of hydrogen storage. Magnesium hydride (MgH$_2$), which contains 7.6 mass% of hydrogen, is a promising candidate for hydrogen storage applications because of its relative abundance, light weight and high hydrogen content [2-4]. However, the high operation temperature of 300 °C in equilibrium pressure of 0.1 MPa, slow hydrogen adsorption kinetics of bulk Mg, and its easy poisoning by air/oxygen have limited its applications [2, 3].

Two promising approaches have been proposed to overcome these drawbacks. In one approach, Mg-rich alloys and compounds are tailored for various applications, and in the other, the particle size of Mg is reduced to the order of a few microns or nanometers. Hydriding Combustion Synthesis (HCS) using exothermic reaction among particles and hydrogen at high hydrogen pressure was first proposed for producing Mg-based hydride; however, the resulting alloys suffered from small hydrogen storage capacity. For example, Mg$_2$NiH$_4$ produced by HCS has been studied extensively because of its excellent hydrogenation kinetics, but thermodynamically it still requires 280 °C for 0.1 MPa H$_2$; furthermore, its low hydrogen absorption capacity of 3.6 mass% has hampered its development and widespread use [5, 6]. Reactive ball milling (mechanical alloying) of
Mg/MgH$_2$ with suitable elements, alloys, or compounds is one of the most important methods used for producing micron-sized Mg-based metal hydride powders with nanometer-sized grains [7-10]. However, this method is only suitable for the laboratory-scale production of such alloys and is energy- & time-consuming in general. With the milling technique, the particle size of Mg hydrides can be reduced to 300 nm [10], while grain sizes can be reduced to 10–50 nm [10, 11].

The mechanism underlying the hydrogenation of Mg has not been fully understood yet, and hydrogen desorption restricts the use of Mg as a practical hydrogen storage material. Basically, hydrogenation of bulk Mg, expressed as a gas–solid reaction: H$_2$(g) + Mg(s) \rightarrow MgH$_2$(s), involves three major steps: hydrogen dissociation, hydrogen diffusion, and MgH$_2$ formation. Each of these steps can influence the other two steps and make the overall hydrogenation process increasingly complex [4]. Further, the hydrogen diffusion in bulk Mg is slow enough to be the rate-determining step in the conventional gas–solid reaction [12].

The maximum purity of commercially available MgH$_2$ is 98% (products from Alfa Aesar and Sigma Aldrich). The activation barrier of MgH$_2$ makes it unfit for the practical use as a hydrogen storage material or as a starting material for the synthesis of other hydrogen storage materials. However, MgH$_2$ has been used as the starting chemical with an amide to produce lightweight metal-based hydrogen storage materials [13-15]. MgH$_2$ can also be used in portable fuel cells, wherein it undergoes hydrolysis with pure water to produce 15.2 mass% of hydrogen [16, 17]. Another example of the mobile application for MgH$_2$ is that it is used as a negative electrode in Li-ion batteries; the MgH$_2$ electrode shows advantages of having a high, reversible capacity of 1480 mAhg$^{-1}$ at an average
voltage of 0.5 V versus Li⁺/Li⁰ which is suitable for a negative electrode [18]. However, the currently available MgH₂ products often contain a large amount of unhydried Mg or are poisoned by air/oxygen. Thereby, there is an urgent need to develop a method for synthesizing high-purity MgH₂.

Hydriding Chemical Vapor Deposition (HCVD), which is used to synthesize metal hydrides in the gas phase, is expected to be a solution to the aforementioned problems [19]. The rate-determining step of hydrogen diffusion in bulk Mg is absolutely eliminated when MgH₂ is synthesized under a high-pressure hydrogen atmosphere and vaporized Mg, as expressed by the gas–gas reaction: H₂(g) + Mg(g) → MgH₂(s). High-purity single crystals of MgH₂ in the shape of nanofibers are obtained by this newly introduced HCVD method. The hydrogen sorption rate of the obtained MgH₂ nanofibers is much greater than that of bulk Mg; this is due to the short reaction pathway along the radial direction of the fibers [19, 20].

All of the previous studies were carried out at a fixed hydrogen pressure of 4.0 MPa for analyzing the feasibility of synthesizing MgH₂ and for confirming its microstructure. The two series reactions of Mg(s) → Mg(g) and Mg(g) + H₂(g) → MgH₂(s) are obviously pressure dependent. However, there is no information on pressure dependence although such information is important from the viewpoints of reaction kinetics, crystallography and nanotechnology. Therefore, the purpose of this study is to study the direct synthesis of MgH₂ nanofibers at different hydrogen pressures, in which the effect of hydrogen pressure on HCVDed MgH₂ is mainly investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) measurement.
2. Experimental Section

2.1. Specification of the reactor

Fig. 1 shows the schematic diagram of the reactor furnace used in this study [21]. An Inconel tube with an inside length of 520 mm and inner diameter of 70 mm was used as the reactor. The maximum setting temperature and maximum atmospheric pressure inside the furnace were 600 °C and 6.0 MPa, respectively. The samples were placed at the center of the reactor tube by using a sample frame and a stainless steel sample container. The hydrogen pressure measured by a pressure gauge was fed back to the control system with an accuracy of ±0.015 MPa.

2.2. Preparation and characterization of the samples

The MgH\textsubscript{2} samples were prepared from commercially available Mg (purity 99.9%, particle size < 75 μm) and highly pure H\textsubscript{2} (99.99999%). Ten grams of the Mg raw material was placed in the sample container without any pre-treatment. The container was fixed onto the sample frame by matching the three holes on the bottom of the container to the three thermocouples, as shown in Fig. 1. The samples were vaporized by heating at 600 °C for 20 h and allowed to cool naturally under hydrogen pressures of 1, 2, 3 and 4 MPa. The reactants of H\textsubscript{2} and Mg vapor were deposited on the cooled Inconel flange, whose temperature was measured to be around 400 °C. Before heating, the furnace was
evacuated to 10 Pa using a rotary pump, filled with 0.1 MPa of argon, and re-evacuated. This procedure was repeated twice for the removal of air/oxygen from the system.

The as-prepared samples were characterized by powder X-ray diffraction (XRD, Rigaku Miniflex, CuKα), scanning electron microscopy (SEM, JEOL, JSM-7400F) and Brunauer-Emmett-Teller (BET, Yuasa Ionics, Autosorb 6AG) nitrogen adsorption—desorption measurements.
3. Results and Discussion

3.1. Effect of hydrogen pressure on the production rate and purity of MgH₂

The products deposited on the cooled substrate were collected using a sheet of paper in a manner described elsewhere [19]. The observed thickness, \(\delta \), of the sheet layers of the products, which were formed at different hydrogen pressures, deposited on the flange (see Fig. 2-(a) and Fig. 3-(a)) is as follows:

1. At 1 MPa (sample A): \(\delta < 0.50 \) mm (could not be collected in the form of a complete sheet);
2. At 2 MPa (sample B): \(\delta < 1.00 \) mm (mostly in the range of 0.50~1.00 mm);
3. At 3 MPa (sample C): \(\delta < 2.00 \) mm (mostly in the range of 1.00~2.00 mm);
4. At 4 MPa (sample D): \(\delta < 4.00 \) mm (mostly in the range of 2.00~3.00 mm);

Consequently, the production rate (amount of products) increased with the hydrogen pressure, as could be demonstrated from the reaction equilibrium of the dissociation of MgH₂. Fig. 4 shows the dissociation pressure of MgH₂ as a function of temperature (calculated using HSC Chemistry, version 5.1)

\[
\text{MgH}_2(s) \leftrightarrow \text{Mg}(s) + \text{H}_2(g) \quad (1)
\]

The pressure quotient, \(J_p \), of this reaction is defined as

\[
J_p = \frac{P_{H_2}}{P^{o}} \quad (2)
\]
where \(P_{H_2} \) is the ambient hydrogen pressure, and \(P^o \) is the equilibrium pressure at a certain temperature. The deposition temperature in our experiment is maintained constant at 400 °C; further, \(P_{H_2(D)} > P_{H_2(C)} > P_{H_2(B)} > P_{H_2(A)} \approx P^o \), and hence, \(J_{P(D)} > J_{P(C)} > J_{P(B)} > J_{P(A)} \approx K^\circ \) (\(K^\circ \) is the equilibrium constant at 400 °C). Therefore, we conclude that at high hydrogen pressures such as 3 and 4 MPa, which are denoted by areas C and D in Fig. 4, there is a large driving force for the formation of a large amount of MgH\(_2\); this is due to being far away from the dissociation area.

Fig. 2-(b) shows the images of the samples prepared for XRD analysis along with the image of the commercially available product (Alfa Aesar) for comparison. These images reveal that the products synthesized at hydrogen pressures of more than 2 MPa are snow-white in color, indicating the high purity of MgH\(_2\) produced in these cases (as confirmed by the XRD analysis in the following part). However, the product obtained at a hydrogen pressure of 1 MPa is gray in color, similar to the Alfa Aesar product.

Fig. 5 shows the XRD patterns of the products prepared at different hydrogen pressures, as well as those of the Alfa Aesar product. From this figure, apparently, all the peaks corresponding to the products synthesized at pressures of 2, 3 and 4 MPa can be indexed to a single phase of the tetragonal rutile-type structure of \(\beta\)-MgH\(_2\). However, the sample prepared at a hydrogen pressure of 1 MPa contains metallic Mg as impurity owing to the dissociation of MgH\(_2\) near the equilibrium area (see area A in Fig. 4). Peaks corresponding to MgO appear in the XRD patterns of the product obtained at 1 MPa; MgO is regarded to be formed at the exposure of this product to air. In contrast, the Alfa
Aesar product contains a large amount of unhydrided Mg and detectable amounts of Mg(OH)$_2$ as impurity.

Very interestingly, we observed a silver-gray material deposited along with the snow-white product on the flange at 1 MPa in our experiments. We separated this material and analyzed it by XRD; the results reveal that it is pure Mg (Fig. 6). The XRD patterns also reveal that the as-deposited Mg has a hexagonal close-packed crystal structure with a distinct (002) preferred orientation. The lattice constants determined from the XRD patterns are $a \approx 0.3228$ nm and $c \approx 0.5240$ nm; these values are slightly larger than the standard values obtained for the Mg raw material having $a_0 = 0.3223$ nm and $c_0 = 0.5232$ nm.

The abovementioned silver-gray material was used for SEM observations (Fig. 7). The SEM images reveal that Mg has dendritic or hexagonal plate shapes, similar to the vapor-deposited Mg formed in the Pidgeon process [22]. The formation mechanism of Mg crystals will be discussed later.

3.2. Structural analysis and growth mechanism of MgH$_2$ nanofibers

Fig. 8 shows the SEM images of the as-deposited products. The samples were collected from the same position on the flange and stored in an argon atmosphere until investigation. The results of the SEM analysis are summarized as follows:

1. At 4 MPa (sample D): Straight, needle-like, rod-like, and curved nanofibers are formed. These fibers have diameters of 100–1000 nm, with most of them in the range of 300–500 nm. Fibers with diameters less than 500 nm can grow to a length of several tens
of microns. However, fibers with diameters greater than 800 nm tend to be curved but short.

(2). At 3 MPa (sample C): Straight, needle-like, rod-like, curved and somewhat root-like nanofibers are formed. These fibers also have diameters in the range of 100~1000 nm; and most of them are thinner than 500 nm. Fibers with diameters of less than 500 nm can grow to a length of several tens of microns. Fibers that are thicker than 800 nm tend to be curved but short; some with diameters greater than 1000 nm have a root-like appearance.

(3). At 2 MPa (sample B): Curved nanofibers, nanorods, and root-like MgH$_2$ with a few straight nanofibers are formed. Though these fibers have diameters in the range of 100~1000 nm, they are not as long as those formed at 3 and 4 MPa. Furthermore, the root-like and curved nanofibers are thicker than 2000 nm, and some of them tend to become agglomerates.

(4). At 1 MPa (sample A): Highly curved and root-like nanofibers grow from agglomerates of MgH$_2$ with a few straight nanofibers. The fibers are very short and are as thin as those obtained in the previous three cases.

In summary, at higher hydrogen pressures of 3 and 4 MPa, the products grow in a more uniform manner (fiber-like, straight or curved; longer and thinner). In contrast, at lower hydrogen pressures of 1 and 2 MPa, the products grow much thicker and are disorderly, and even become agglomerates under 1 MPa. The typical morphology of the aforementioned products is proposed in Fig. 9 as well as the relationship between the production rate and hydrogen pressure. The Brunauer-Emmett-Teller (BET) nitrogen
adsorption-desorption analysis shows that the specific surface areas of the samples A, B, C and D are $\approx 6.2, 8.9, 11.5$ and $14.1 \text{ m}^2/\text{g}$, respectively (as shown in Fig. 3-(b)).

Transmission electron microscopy (TEM) measurements reveal that the abovementioned nanofibers are single crystals of MgH$_2$ in our previous study [19]. The results of this study show that the purity and morphology of nanofiber-like MgH$_2$ is quite dependent on hydrogen pressure. However the growth mechanism is still unclear.

One-dimensional nanostructures, such as semiconductor nanowires [23, 24] and metallic nanowires [25, 26], have aroused tremendous interest because of their novel properties and potential applications in areas such as electronic devices, optical devices, magnetic devices and nanosensors [27]. Several mechanisms including vapor-liquid-solid (VLS) [23, 28], vapor-solid-solid (VSS) [24, 29] and vapor-solid (VS) [25, 26] have been proposed to explain the growth of nanowires. In VLS and VSS growth, a vapor-phase precursor is catalytically decomposed at a metal nano-particle surface, forming a supersaturated eutectic liquid; the solid crystalline nanowires grow by precipitation from a liquid catalyst in VLS and from a solid catalyst in VSS. Since no catalysts are used in the process of synthesizing MgH$_2$, the VS mechanism can be used to explain the growth mechanism of MgH$_2$ nanofibers. For the VS mechanism, the degree of supersaturation at a particular experimental condition benefits the growth of nanowires [25, 26]. Namely, when the degree of supersaturation is maintained below some critical value, nanowires could be fabricated, and above the value bulk crystal or powder is formed. The supersaturation factor was controlled by adjusting the experimental conditions such as temperature and pressure in order to manipulate the lateral dimension of the nanowires.
Mg nanowires and various Mg structures (spheres, flakes, rods and sea-urchinlike) have been successfully prepared by Li et al [30, 31] by using a vapor-transport approach under Ar gas flow. Different shapes of Mg were achieved by changing the evaporation temperature of Mg and Ar flow rate; and they found the as-prepared Mg micro/nanosturtrures is strongly influenced by the degree of supersaturation of Mg in the chamber. Zlotea et al [32-34] have synthesized similar single crystals of nanowhiskers (or nanowires, nanofibers) of MgH$_2$ in the range of nanometers and micrometers by hydrogen-induced disproportionation of bulk Mg$_{24}$Y$_5$ [33], Mg$_5$Ga$_2$ and Mg$_6$Pd [34]. The VLS model has been proposed to explain the growth mechanism of the MgH$_2$ nanowhiskers.

The reactions that occurred in the deposition area in our reactor are thought to include the following three:

$$
\text{Mg(g)} + \text{H}_2(\text{g}) \leftrightarrow \text{MgH}_2(\text{s}) \tag{3}
$$

$$
\text{Mg(g)} \leftrightarrow \text{Mg(s)} \tag{4}
$$

$$
\text{Mg(s)} + \text{H}_2(\text{g}) \leftrightarrow \text{MgH}_2(\text{s}) \tag{5}
$$

Reaction (3) expresses the direct formation of MgH$_2$ fibers from sublimated Mg vapor and hydrogen gas; reaction (4) is the solidification of Mg vapor; and reaction (5) is the hydriding of solidified Mg. It is obvious that the fabrication of MgH$_2$ nanofibers is dependent both on H$_2$ pressure and on the Mg vapor supplied. In this case, when the
hydrogen atmospheric pressure is lowered, the solidification of Mg will be enhanced; and if enough Mg vapor is supplied, at a proper deposition temperature (the deposition temperature affects the supersaturation degree of Mg and then controls the shape of the Mg deposited like in the Pidgeon process) the Mg grows into a dendritic crystal (as shown in Fig 7). The results of this study show that high a H\textsubscript{2} pressure will benefit producing uniform and thin MgH\textsubscript{2} nanoﬁbers; however, the growth of the MgH\textsubscript{2} crystal must be also dependent on the Mg vapor supplied, deposition temperature (which controls the shape of the solidiﬁed Mg and dissociation of MgH\textsubscript{2}); more complex study is needed in the near future to demonstrate such a hypothesis.

MgH\textsubscript{2} was first produced in 1912 via the pyrolysis of ethyl magnesium iodide in vacuum at 175 °C; however, the direct synthesis of this compound from elements of Mg and H\textsubscript{2} was carried out as late as 1951 [35]. This direct synthesis was carried out under a hydrogen pressure of 20 MPa at 500 °C using MgI\textsubscript{2} as the catalyst; however, even under such harsh reaction conditions, the yield of the product was as low as 68%. Dymova et al. could obtain MgH\textsubscript{2} with 97~98% purity by using iodine (0.5~1%) as the catalyst and by carrying out mechanical grinding in a ball mill at 380~450 °C and 10~20 MPa according to [36]. The results of our study show that our newly developed HCVD method is more suitable for the production of high-purity MgH\textsubscript{2} at a relatively low pressure via a simple operation.
4. Conclusions

The feasibility of Hydriding Chemical Vapor Deposition (HCVD) of high-purity MgH₂ nanofibers at different pressures was studied. The products were obtained directly from magnesium vapor and hydrogen and were analyzed by XRD, BET and SEM. Hydrogen pressure was a key factor to affect the amount/shape of the pure MgH₂ product. The following conclusions were obtained.

(1) The deposition amount of high-purity MgH₂ increased with increasing pressure in the order of 2, 3 and 4 MPa at a constant temperature of 400 °C. In contrast, a mixture of MgH₂ and unhydrided Mg was obtained at 1 MPa.

(2) Low hydrogen pressures of 1 and 2 MPa formed curved root-like nanofibers or nanorods with a few straight nanofibers, as confirmed by SEM observations. However, the micro-morphology of the as-deposited MgH₂ at high hydrogen pressures of 3 and 4 MPa revealed nanofibers with uniform shapes. These nanofibers had diameters in the range of 100 to 1000 nm and lengths of the order of several tens of microns, and according to the BET measurement specific surface areas increase with increasing the hydrogen pressure.

In conclusion, pressurizing hydrogen in HCVD offers many benefits for minimizing the operation time, improving the purity of the product, and controlling the shape of the MgH₂ nanofibers.
REFERENCES

[31] Li WY, Li CS, Zhou CY, Ma H, Chen J. Metallic magnesium nano/mesoscale structures: Their shape-controlled preparation and Mg/air battery applications. Angew Chem Int Ed 2006;45:6009.

[34] Zlotea C, Andersson Y. Microstructural modifications induced by hydrogen absorption in Mg$_5$Ga$_2$ and Mg$_6$Pd. Acta Mater 2006;54:5559.

Figure captions

Fig. 1 – Schematic diagram of the reactor used for HCVD [21].

Fig. 2 – (a): Images of the as-deposited products formed on the Inconel flange at different H₂ pressures of 1 MPa (A), 2 MPa (B), 3 MPa (C) and 4 MPa (D) (the two holes on the flange are left for holder). (b): As-deposited samples prepared for XRD analysis (A–D); commercially available MgH₂ (R) from Alfa Aesar is shown for comparison.

Fig. 3 – (a): Layer thickness distribution of the as-deposited products on the flange synthesized at hydrogen pressures of 1, 2, 3 and 4 MPa. (b): Specific surface areas of the as-deposited products synthesized at hydrogen pressures of 1, 2, 3 and 4 MPa.

Fig. 4 – Dissociation pressure of MgH₂ vs. temperature (calculated using HSC Chemistry, version 5.1).

Fig. 5 – XRD patterns of the as-deposited products synthesized under H₂ pressures of 1 MPa (A), 2 MPa (B), 3 MPa (C) and 4 MPa (D). XRD patterns of commercially available MgH₂ (R) from Alfa Aesar are shown for comparison. MgH₂ (▼), Mg (□), MgO (●), Mg(OH)₂ (○).
Fig. 6 – XRD patterns of the silver-gray material separated from the as-deposited product obtained under a H$_2$ pressure of 1 MPa (A); XRD patterns of raw material (Mg) are shown for comparison.

Fig. 7 – SEM images of the silver-gray material separated from the as-deposited product obtained at a H$_2$ pressure of 1 MPa. The above material was evaluated to be pure Mg by XRD as shown in Figure 6, the three right images are the higher magnification ones of the left three.

Fig. 8 – SEM images of the as-deposited MgH$_2$ products prepared at different H$_2$ pressures of 1 MPa (A), 2 MPa (B), 3 MPa (C) and 4 MPa (D). Insets show the higher magnification ones.

Fig. 9 – Typical morphology of the as-deposited products synthesized at different H$_2$ pressures, as well as the relationship between the production rate and H$_2$ pressure. Note that with increasing hydrogen pressure, the nanofibers change to a more straight, thin shape with a larger production rate. The one end of the 1MPa product (see arrow) was pure magnesium, magnesium hydride, due to the higher temperature in the chamber away from the substrate.
Fig. 2

(a) A B C D

(b) R A B C D

2 cm

1 cm
Fig. 3

(a) Hydrogen Pressure [MPa] vs. Product layer thickness [mm]

(b) Hydrogen Pressure [MPa] vs. Specific surface area [m²/g]
Fig. 4

![Graph showing the relationship between temperature and hydrogen pressure, with labeled points A, B, C, and D.]
Fig. 5

Intensity [a.u.]

2θ [degree CuKα]
Fig. 6

The X-ray diffraction pattern shows the peaks corresponding to the Miller indices (100), (101), (002), (102), (110), (103), (200), (112), (201), (004), and (202) for the raw material (Mg). The intensity is measured in arbitrary units (a.u.).
Fig. 7
<table>
<thead>
<tr>
<th>P_{H_2}</th>
<th>Morphology(^1)</th>
<th>Shape</th>
<th>Diameter</th>
<th>Production Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MPa</td>
<td>(\text{MgH}_2\uparrow\text{Mg})</td>
<td>Curved</td>
<td>Thick</td>
<td>Small</td>
</tr>
<tr>
<td>2 MPa</td>
<td>(\text{MgH}_2)</td>
<td>Curved</td>
<td>Thick</td>
<td>Small</td>
</tr>
<tr>
<td>3 MPa</td>
<td>(\text{MgH}_2)</td>
<td>Straight</td>
<td>Thin</td>
<td>Large</td>
</tr>
<tr>
<td>4 MPa</td>
<td>(\text{MgH}_2)</td>
<td>Straight</td>
<td>Thin</td>
<td>Large</td>
</tr>
</tbody>
</table>

\(^1\); Growth direction is →