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Abstract—In data-analysis problems with a large number of
dimension, principal component analysis based on L2-norm (L2-
PCA) is one of the most popular methods, but L2-PCA is
sensitive to outliers. Unlike L2-PCA, PCA-L1 is robust to outliers
because it utilizes the L1-norm, which is less sensitive to outliers.
Furthermore, the bases obtained by PCA-L1 is invariant to
rotations. However, PCA-L1 needs long time to calculate bases,
because PCA-L1 employs an iterative algorithm to obtain each
basis, and requires to calculate an eigenvector of autocorrelation
matrix as an initial vector. The autocorrelation matrix needs
to be recalculated for each basis. In this paper, we propose a
fast method to compute the autocorrelation matrices. In order
to verify the proposed method, we apply L2-PCA, PCA-L1, and
the proposed method to face recognition. Simulation results show
that the proposed method provides same recognition performance
as PCA-L1, and is superior to L2-PCA, while the execution time
is less than PCA-L1.

I. I NTRODUCTION

In data-analysis problems with a large number of dimension,
principal component analysis (PCA) is one of the most popular
methods. PCA is an operation that finds orthonormal bases
to project in a subspace among multivariable data. Various
methods in order to obtain the bases are proposed, and the
most popular method is a PCA based on L2-norm (L2-PCA).
Projection values of data onto the bases derived from L2-PCA
have the greatest number of variance. Although L2-PCA has
been successful for many problems, the influence of outliers on
the principal bases are significant due to the L2-norm criterion.
The influence seems to be reduced by the PCA based on L1-
norm (L1-PCA). Unlike L2-PCA, L1-PCA is robust to outliers
because it utilizes the L1-norm, which is less sensitive to
outliers. However, it is difficult to calculate exact solutions
of L1-PCA. To solve this problem, Kwak proposes a scheme
employing a substitute formula based on L1-norm, designated
as PCA-L1 [1], to obtain principal bases easily. Furthermore,
the bases obtained by PCA-L1 is invariant to rotations. The
detail of PCA-L1 is described in Section II; PCA-L1 employs
an iterative algorithm to compute each basis, and requires
to calculate an eigenvector of autocorrelation matrix as an
initial vector. The autocorrelation matrix is computed by the
projected data onto the orthogonal complement of already
calculated eigenvectors. Thus, autocorrelation matrix needs
to be recalculated for each basis. This paper proposes a fast
method to compute the autocorrelation matrices. In order to
verify the proposed method, we apply L2-PCA, PCA-L1, and

the proposed method to face recognition. The rest of this paper
is organized as follows: In Section II , PCA-L1 algorithm is
formulated. The proposed method is explained in Section II
I. In Section IV, we mention face recognition technique. The
performance of the proposed method is compared with the
conventional methods in Section V and the conclusion in
Section VI.

II. PCA-L1 ALGORITHM

Let X = [x1, . . . , xn] ∈ Rd×n be the given data, wheren
andd denote the number of samples and the dimension of the
original input space, respectively. Without loss of generality,
xi
n
i=1 is assumed to have zero mean.
In L2-PCA, one tries to find anW ∗ which is m(< d)

dimensional linear subspace. TheW ∗ is the solution of the
following dual problem:

W ∗ = argmax
W

‖W TSW ‖2= argmax
W

‖W TX ‖2, (1)

Subject to W TW = Im,

whereW ∈ Rd×m is the projection matrix whose columns
wk

m
k=1 constitute the bases of them-dimensional linear sub-

space (feature space),S = XTX is the autocorrelation matrix
of X, Im is them×m identity matrix, and‖ · ‖2 denotes the
L2-norm of a matrix or a vector. The methods based on the
L2-norm are sensitive to outliers, so we use the methods based
on the L1-norm which is robust to outliers than the L2-norm.

In PCA-L1, one tries to find anW ∗ which is m(< d)
dimensional linear subspace. TheW ∗ is the solution of the
following dual problem:

W ∗ = argmax
W

‖W TX ‖1, (2)

Subject to W TW = Im.

Here, the constraintW TW = Im ensures the orthonormal-
ity of the projection matrix. The solution of (2) is invariant to
rotations because the maximization is done on the subspace
and it is expected to be more robust to outliers than the L2
solution.

As a downside, finding a global solution of (2) form > 1 is
very difficult. To ameliorate this problem, Kwak simplify (2)
into series ofm = 1 problems using a greedy search method.



If we set m = 1, (2) becomes the following optimization
problem:

w∗ = argmax
W

‖ wTX ‖1=
n∑

i=1

∣∣wTxi
∣∣ , (3)

Subject to ‖W ‖2= 1.

In the following, an algorithm to solve (3) is presented.
Algorithm: PCA-L1 (m = 1)

1) Initialization: Pick anyw(t = 0). Set w(0) ←
w(0)/ ‖ w(0) ‖2.

2) Polarity check: For alli ∈ {1, . . . , n}, if wTxi <
0, pi(t) = −1, otherwisepi(t) = 1.

3) Flipping and maximization: Sett← t+1 andw(t) =
n∑

i=1

pi(t− 1)xi. Setw(t)← w(t)/ ‖ w(t) ‖2.

4) Convergence check:
a) if w(t) 6= w(t− 1), go to Step 2.
b) Else if there existsi such thatwTxi = 0, set
w(t)← (w(t) + ∆w) / ‖ w(t) + ∆w ‖2 and
go to Step 2. Here∆w is a small nonzero random
vector.

c) Otherwise, setw∗ = w(t) and stop.

The projection vectorw converges tow∗, which is a local
maximum point of

∑n
i=1

∣∣wTxi
∣∣, and there is a possibility

that it may not be global solution. The first principal base of
L2-PCA is used as an initial vectorw(0) and presents a greedy
search algorithm form > 1. The greedy search algorithm is
as follows:

Greedy search algorithm

1) For all i ∈ {1, . . . , n}, xi ← xi− x̄, wherexi is the

image for study, and̄x =
1
n

n∑

i=1

xi

2) Set a data-setX = (x1 . . .xn).
3) Compute a autocorrelation matrixS = XTX.
4) Processing from 5) to 7) is repeatedm times.
5) The first principal base of L2-PCA is assumed to be

the initial value and a principal basew is calculated
by the PCA-L1 algorithm.

6) SetX ← X − w(wTX). By the processing,X
is projected into orthogonal complementary space of
w.

7) ComputeS = XTX.

We should notice that the solution of the greedy algorithm
is not necessarily the optimal solution of (2). However, it is
expected to provide a set of good projections that maximizes
L1 dispersion.

III. PROPOSED METHOD

The algorithms shown in the previous section requires
much execution time to calculate the new data set and the
autocorrelation matrix, the procedure 6) and 7) in the greedy
search algorithm. Then, this section describes a fast method
of the processing. Now, we would like to focus explanation

for the computation of themth autocorrelation matrix. At this
time, it is assumed that them− 1th data-set:

X =
[
x1 x2 ... xn

]

=




x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

.. .
...

xd1 xd2 · · · xdn


 , (4)

autocorrelation matrix:

S = XTX

=




d∑

k=1

x2
k1

d∑

k=1

xk1xk2 · · ·
d∑

k=1

xk1xkn

d∑

k=1

xk2xk1

d∑

k=1

x2
k2 · · ·

d∑

k=1

xk2xkn

...
...

. ..
...

d∑

k=1

xknxk1

d∑

k=1

xknxk2 · · ·
d∑

k=1

x2
kn




, (5)

and the principal basew are given. To calculate themth
principal base, first, the data-setX is projected into orthogonal
complementary space of the vectorw. The new data-setX ′

is given by

X ′ =
[
x′1 ... x′n

]

=
[
x1 − (wTx1)w ... xn − (wTxn)w

]
(6)

=
[
x1 − α1w ... xn − αnw

]
,

whereαi is a inner product betweenw andxi.
Second, a new autocorrelation matrixS′ is calculated form
X ′. S′ is given by

S′ = X ′TX ′

=




d∑

k=1

x′2k1

d∑

k=1

x′k1x
′
k2 · · ·

d∑

k=1

x′k1x
′
kn

d∑

k=1

x′k2x
′
k1

d∑

k=1

x′2k2 · · ·
d∑

k=1

x′k2x
′
kn

...
...

.. .
...

d∑

k=1

x′knx
′
k1

d∑

k=1

x′knx
′
k2 · · ·

d∑

k=1

x′2kn




.(7)



Based on (7), we can derive

s′ij =
d∑

k=1

x′kix
′
kj (8)

=
d∑

k=1

(xki − αiwk)(xkj − αjwk) (9)

=
d∑

k=1

(xkixkj − αiwkxkj − αjwkxki + αiαjw
2
k) (10)

=
d∑

k=1

(xkixkj − αiαj − αjαi + αiαjw
2
k) (11)

=
d∑

k=1

(xkixkj)− 2αiαj +
d∑

k=1

αiαjw
2
k (12)

= sij + αiαj(
d∑

k=1

w2
k − 2), (13)

wheres′ij is the (i, j) element inS′. Therefore, to calculate
S′, we only have to addαiαj(

∑d
k=1 w

2
k − 2) to sij . By

the proposed method, we expect that the same result as the
conventional method can be obtained in a short time.

IV. FACE RECOGNITION

In the face recognition, face images are divided into two
groups; for study and for test. The images are considered to
be column vectors by raster scan order, and study vectors are
embedded in a data-set matrixX. A low-dimensional linear
subspace ofX is calculated. As for how to calculate the
projected bases, various techniques are proposed. Eigenface is
one of the face recognition techniques, and L2-PCA is used to
reduce dimension [2]. In this study, PCA-L1 is used instead
of L2-PCA. To identify a person, the all study images are
projected into the subspace in advance; then, a test image
is projected into the subspace. The study image having the
smallest distance from the test image in the subspace is
considered to be the most suitable person.

V. EXPERIMENTAL RESULTS

A Yale Face Database [3] is used for the experiment. The
database consists of 65 gray-scale images of 10 individuals.

Fig. 1. A part of images used to experiment

And the size of images is 170× 120 pixels. Fig. 1 shows a
part of the images.

Specifications of PC we used is shown as follows:OS:Linux-
2.6.18, CPU:Intel Xeon(R) 2.33GHz[Dual CPU], Mem-
ory:2GB. To calculate eigenvectors and eigenvalues, we em-
ployed the GNU Scientific Library (GSL) [4].

Here,n images for study are selected at random, and the
rest is assumed to be images for the test. The images for study
projected into subspace arevi = (v1i v2i ... vmi)T (i =
1, 2, ..., n) and the image for test isx = (x1 x2 ... xm)T .
The L1-norm distance function is assumed to be an evaluation
function. The evaluation forvi, denoted bygi is shown as:

gi =
m∑

k=1

| xk − vki | . (14)

In the experiment, the bases are calculated by the conventional
PCA-L1 and the proposed method. We measured a computing
time and a recognition rate for each method. As a comparison,
we also measure the recognition rate using the bases derived by
L2-PCA. If x andvi that minimizes (14) are the same persons,
recognition is assumed to be a success. The recognition rate
a is defined by

a =
b

c
× 100, (15)

where b and c mean a number of success recognition and a
number of test images, respectively.

In the experiment, parameters are changed as follows.
Experiment 1 : The number of extracted features is fixed to
20, and the number of the images for study is varied from 30
to 100.
Experiment 2 : The number of the images for study is fixed
to 60 pieces, and the number of extracted features is varied
form 10 to 50.

Each experiment is exected 10 times, and we compare the
averages. The results of computing time are shown in Table I
and Table II. From Table I and Table II, the computing time of
the proposed method is faster than the conventional method. It
seems that the proposed method is more effective as both the
number of study images and the number of features increase.
Table III and Table IV signify the results of recognition rate.
Because the recognition rate of PCA-L1 tends to rise more
than PCA-L2, it seems that PCA-L1 is useful as the base
reduction method of Eigenface.

VI. CONCLUSION

In this paper, we proposed the fast method of the PCA-L1
algorithm. The effect of the proposed method was verified by
applying PCA-L1 to the dimension reduction of Eigenface in
the facial recognition. In the PCA-L1 algorithm, it is necessary
to solve the eigenvalue problems of the number of extracted
bases, and it takes many time to calculate the autocorrela-
tion matrix. In the proposed method, the procedure of the
autocorrelation matrix calculation and the data-set generation
is shorten. The proposed method keeps recognition rate, in



TABLE I
COMPUTING TIME OF THE EXPERIMENT 1

The number of Average of computing time [s]
rate [%] a

the images for study proposed method PCA-L1
30 4.44 11.67 ▽ 61.91
40 5.62 18.88 ▽ 70.23
50 7.40 29.09 ▽ 74.57
60 9.10 40.16 ▽ 77.34
70 11.60 55.26 ▽ 79.00
80 13.39 66.96 ▽ 80.01
90 16.16 91.99 ▽ 82.43
100 21.06 101.23 ▽ 79.20

a△ is increase, and▽ is decrease.

TABLE II
COMPUTING TIME OF THE EXPERIMENT 2

The number of Average of computing time [s]
rate [%] a

the extracted features proposed method PCA-L1
10 5.78 20.04 ▽ 71.18
20 9.25 40.69 ▽ 77.28
30 12.68 58.99 ▽ 78.51
40 16.67 77.34 ▽ 78.45
50 21.09 103.21 ▽ 79.56

a△ is increase, and▽ is decrease.

addition, PCA-L1 achieves higher recognition performance
than L2-PCA.

In future works, we would like to apply the proposed
method to color image procession.

TABLE III
RECOGNITION RATE OF THEEXPERIMENT 1

The number of Average of recognition rate [%]
the images for study proposed method PCA-L1 L2-PCA

30 64.44 64.44 63.61
40 73.34 73.34 71.69
50 76.48 76.48 75.90
60 75.51 75.51 75.42
70 79.52 79.52 78.66
80 79.91 79.91 79.21
90 81.45 81.45 80.02
100 84.11 84.11 83.29

TABLE IV
RECOGNITION RATE OF THEEXPERIMENT 2

The number of Average of recognition rate [%]
the extracted features proposed method PCA-L1 L2-PCA

10 64.34 64.34 62.90
20 75.69 75.69 74.20
30 84.00 84.00 84.20
40 82.32 82.32 82.34
50 86.83 86.83 86.88
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