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Fast Method of Principal Component Analysis
Based on L1-Norm Maximization Algorithm
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1-1-1, Komorino, Kurume-shi, Fukuoka 838-8555 Japan
Tel: +81-942-35-9392 Fax: +81-942-35-9398
E-mail: kuroki@kurume-nct.ac.jp

_Abstract—In data-analysis problems with a large number of the proposed method to face recognition. The rest of this paper
dimension, principal component analysis based on L2-norm (L2- js organized as follows: In Section Il , PCA-L1 algorithm is
PCA) is one of the most popular methods, but L2-PCA is ¢qmylated. The proposed method is explained in Section I

sensitive to outliers. Unlike L2-PCA, PCA-L1 is robust to outliers L In Secti N tion f ition techni Th
because it utilizes the L1-norm, which is less sensitive to outliers. ' n section v, we mention face recognition technique. e

Furthermore, the bases obtained by PCA-L1 is invariant to Performance of the proposed method is compared with the
rotations. However, PCA-L1 needs long time to calculate bases, conventional methods in Section V and the conclusion in
because PCA-L1 employs an iterative algorithm to obtain each Section V.

basis, and requires to calculate an eigenvector of autocorrelation

matrix as an initial vector. The autocorrelation matrix needs II. PCA-L1 ALGORITHM
to be recalculated for each basis. In this paper, we propose a
fast method to compute the autocorrelation matrices. In order Let X = [z1,...,7,] € RY*™ be the given data, whene

to verify the proposed method, we apply L2-PCA, PCA-L1, and and denote the number of samples and the dimension of the

the proposed method to face recognition. Simulation results show _ .. . : : : :
that the proposed method provides same recognition performance original input space, respectively. Without loss of generality,

as PCA-L1, and is superior to L2-PCA, while the execution time Zii=1 IS assumed to have zero mean.
is less than PCA-L1. In L2-PCA, one tries to find af¥* which is m(< d)

dimensional linear subspace. TR ™ is the solution of the

I. INTRODUCTION . ;
_ ) i _ following dual problem:
In data-analysis problems with a large number of dimension,

principal component analysis (PCA) is one of the most populaWV * = argmax || W' SW ||y= argmax | W' X |2, (1)
methods. PCA is an operation that finds orthonormal bases w

to project in a subspace among multivariable data. Various Subject to W'W = 1I,,,,
methods in order to obtain the bases are proposed, and the dxm — ,

most popular method is a PCA based on L2-norm (L2-PCA\9'. erew c i is the projection matrix whose columns

Projection values of data onto the bases derived from L2-PCA:k=1 consitute the bases of the-dimensional linear sub

have the greatest number of variance. Although L2-PCA hagace (fea_lture spaces,_: X .TX 'S the autocorrelation matrix
been successful for many problems, the influence of outliers QhX: Im 1S them xm identity matrix, and| - || denotes the

the principal bases are significant due to the L2-norm criterio -norm of a mat_r!x ora veptor. The methods based on the
The influence seems to be reduced by the PCA based on ':g_-norm are sensitive to outliers, so we use the methods based
norm (L1-PCA). Unlike L2-PCA, L1-PCA is robust to outliers®" th€ L1-norm which is robust to outliers than the L2-norm.
because it utilizes the L1-norm, which is less sensitive t_In PCA'LI’. one tries to find aer_ which 'S.m(< d)
outliers. However, it is difficult to calculate exact solution |men_3|onal linear subspace. THE™ is the solution of the

of L1-PCA. To solve this problem, Kwak proposes a sche 8”0\"””9 dual problem:

employing a substitute formula based on L1-norm, designated W* = argmax | WX ||; )
as PCA-L1 [1], to obtain principal bases easily. Furthermore, ’
the bases obtained by PCA-L1 is invariant to rotations. The Subject to WTW = I,,.

detail of PCA-L1 is described in Section Il; PCA-L1 employs

an iterative algorithm to compute each basis, and requiresHere, the constraif¥’” W = I, ensures the orthonormal-

to calculate an eigenvector of autocorrelation matrix as #y of the projection matrix. The solution of (2) is invariant to
initial vector. The autocorrelation matrix is computed by theotations because the maximization is done on the subspace
projected data onto the orthogonal complement of alreadpd it is expected to be more robust to outliers than the L2
calculated eigenvectors. Thus, autocorrelation matrix neesigution.

to be recalculated for each basis. This paper proposes a fasis a downside, finding a global solution of (2) for > 1 is
method to compute the autocorrelation matrices. In order very difficult. To ameliorate this problem, Kwak simplify (2)
verify the proposed method, we apply L2-PCA, PCA-L1, anithto series ofm = 1 problems using a greedy search method.
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If we setm = 1, (2) becomes the following optimizationfor the computation of thenth autocorrelation matrix. At this

problem: time, it is assumed that the — 1th data-set:
w* = argmax | w! X ;= Z lw” ;] 3)
%4 i=1 X = [ r1 Ty ... TIp ]
Subject to || W ||2=1. TR T
In the following, an algorithm to solve (3) is presented. I e @
Algorithm: PCA-L1 (n = 1) S C
1) Initialization: Pick anyw(t = 0). Set w(0) « Zdl Td2 0 Tdn
w(0)/ || w(0) ||2- |
2)  Polarity check: For ali € {1,...,n}, if wlz; <
0, pi(t) = —1, otherwisep; (t) = 1. autocorrelation matrix:
3) Flipping and maximization: Sét— ¢+1 andw(¢) =
n
pi(t — Dax;. Setw(t) — w(t)/ || w(t) |2
; ¢-1 s = X'x
4) Convergence check: rod d d 7
a) if w(t) #w(t—1), go to Step 2. inl Zl‘mfﬂkz e Zﬂfmxkn
b) Else if there exists such thatw” z; = 0, set k=1 k=l k=1
w(t) — (w(t) + Aw) / || w(t) + Aw ||, and . ) i
go to Step 2. Heré\w is a small nonzero random _ Z Tk20k1 Z T2 Z Tk2Lkn )
vector. =t =t =t ’
c) Otherwise, setw* = w(t) and stop. : :
d d d
The projection vectorw converges tow™, which is a local 2
maximum point of}_"" | |w”x;|, and there is a possibility _;xknmkl ;xk"xkz kzz:lx’m |

that it may not be global solution. The first principal base of
L2-PCA is used as an initial vectes(0) and presents a greedy

search algorithm forn > 1. The greedy search algorithm is
as follows:
Greedy search algorithm

and the principal basev are given. To calculate theith
principal base, first, the data-s&t is projected into orthogonal
complementary space of the vectar The new data-seX’

1) Foralli € {1,...,n}, ; < x; — , wherez; is the s given by
: 1«
image for study, and: = ~ ;wz
2) Set a data-seX = (x1 ...x,). . X' = [ x, .. }
3 Compute a autocorrelation matri&k = X X. T T
4; Procepssing from 5) to 7) is repeatedtimes. = [o-@iegw . @ (whz)w | 6)
5)  The first principal base of L2-PCA is assumed to be = [mi-—aw .. oz —aw ],
the initial value and a principal base is calculated
by the PCA-L1 algorithm.
6) Set X « X — w(w?X). By the processingX whereq; is a inner product betweew and x;.
is projected into orthogonal complementary space &econd, a new autocorrelation mat$ is calculated form
w. X'. S is given by
7)  ComputeS = X7 X.
We should notice that the solution of the greedy algorithm
is not necessarily the optimal solution of (2). However, itis § = XxX'7TX’
expected to provide a set of good projections that maximizes rod ) d d T
L1 dispersion. ZHJIM 2%1%2 fo?ﬂx;m
k=1 k=1 k=1
IIl. PROPOSED METHOD d d 2 d
ZI;ﬂl‘;ﬁ Zx/kz Zx;czf;m
The algorithms shown in the previous section requires = k=1 k=1 k=1 A7)

much execution time to calculate the new data set and the
autocorrelation matrix, the procedure 6) and 7) in the greedy d P d

: ; . : )
search algorlth_m. Then, this section describes a fast me_thod Zm;cnx;cl Zfﬂknff?@z Zm/kn
of the processing. Now, we would like to focus explanation L1 1 =1
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Based on (7), we can derive And the size of images is 120 120 pixels. Fig. 1 shows a
part of the images.

d
5= Z i (8) Specifications of PC we used is shown as follows:OS:Linux-
| 2.6.18, CPU:Intel Xeon(R) 2.33GHz[Dual CPU], Mem-
d ory:2GB. To calculate eigenvectors and eigenvalues, we em-
:Z(xki — ajwi) (T — ajwy) (9) ployed the GNU Scientific Library (GSL) [4].
k=1 Here,n images for study are selected at random, and the
d rest is assumed to be images for the test. The images for study
:Z(l'kimkj — qwiTry — cywETE + azoywy) (10)  projected into subspace akg = (vi; Vo ... vmg)Y (i =
k=1 1,2,...,n) and the image for test is = (x; xo ... ,,)7.
d The L1-norm distance function is assumed to be an evaluation
=3 (wpiwr; — aij — 00y + agogwy7) (11)  function. The evaluation fop;, denoted byy; is shown as:
k=1
d d m
:Z(xkixkj) — 200, + Zaiajwi (12) gi = Z | 2p — vpi | - (14)
k=1 k=1 k=1
d In the experiment, the bases are calculated by the conventional
=8 + Oéiaj(z wi, — 2), (13) PCA-L1 and the proposed method. We measured a computing
k=1 time and a recognition rate for each method. As a comparison,

where s/ is the (i, j) element inS’. Therefore, to calculate W€ also measure the recognition rate using the bases derived by

S’, we only have to addﬁziaj(Zizlwi ~2) to s;;. By L2-PCA. If  andw; that minimizes (14) are the same persons,

the proposed method, we expect that the same result as rﬁ,[éogniﬁon is assumed to be a success. The recognition rate
conventional method can be obtained in a short time. a Is defined by

IV. FACE RECOGNITION a= b x 100, (15)
C

In the face recognition, face images are divided into two .
groups; for study and for test. The images are considered{fgereb andc mean a number of success recognition and a
be column vectors by raster scan order, and study vectors BHnPer of test images, respectively.
embedded in a data-set matX. A low-dimensional linear _ !N the experiment, parameters are changed as follows.
subspace ofX is calculated. As for how to calculate theExperiment 1 : The number of extracted features is fixed to
projected bases, various techniques are proposed. Eigenfactjsand the number of the images for study is varied from 30
one of the face recognition techniques, and L2-PCA is usedtfbloq- i o
reduce dimension [2]. In this study, PCA-L1 is used instedekPeriment 2 : The number of the images for study is fixed
of L2-PCA. To identify a person, the all study images arl® 60 pieces, and the number of extracted features is varied
projected into the subspace in advance; then, a test imdgén 10 to 50. _ _
is projected into the subspace. The study image having théeach experiment is exected 10 times, and we compare the
smallest distance from the test image in the subspace@¥erages. The results of computing time are shown in Table |

the proposed method is faster than the conventional method. It
V. EXPERIMENTAL RESULTS seems that the proposed method is more effective as both the

A Yale Face Database [3] is used for the experiment. Tieimber of study images and the number of features increase.
database consists of 65 gray-scale images of 10 individualgble Il and Table IV signify the results of recognition rate.
Because the recognition rate of PCA-L1 tends to rise more
than PCA-L2, it seems that PCA-L1 is useful as the base
reduction method of Eigenface.

VI. CONCLUSION

In this paper, we proposed the fast method of the PCA-L1
algorithm. The effect of the proposed method was verified by
applying PCA-L1 to the dimension reduction of Eigenface in
the facial recognition. In the PCA-L1 algorithm, it is necessary
to solve the eigenvalue problems of the number of extracted
bases, and it takes many time to calculate the autocorrela-
tion matrix. In the proposed method, the procedure of the
autocorrelation matrix calculation and the data-set generation
is shorten. The proposed method keeps recognition rate, in

Fig. 1. A part of images used to experiment
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TABLE | TABLE Il

COMPUTING TIME OF THEEXPERIMENT 1 RECOGNITION RATE OF THEEXPERIMENT 1
The number of Average of computing time [s] rate [%] 2 The number of Average of recognition rate [%]
the images for study proposed method PCA-L1 the images for study] proposed method PCA-L1 | L2-PCA
30 4.44 11.67 0 61.91 30 64.44 64.44 63.61
40 5.62 18.88 0 70.23 40 73.34 73.34 71.69
50 7.40 29.09 0 74.57 50 76.48 76.48 75.90
60 9.10 40.16 0 77.34 60 75.51 75.51 75.42
70 11.60 55.26 0 79.00 70 79.52 79.52 78.66
80 13.39 66.96 0 80.01 80 79.91 79.91 79.21
90 16.16 91.99 0 82.43 90 81.45 81.45 80.02
100 21.06 101.23 0 79.20 100 84.11 84.11 83.29
a0 is increase, andl is decrease.
TABLE IV
TABLE Il RECOGNITION RATE OF THEEXPERIMENT 2
COMPUTING TIME OF THE EXPERIMENT 2 The number of Average of recognition rate [%)]
The number of Average of computing time [s] rate 19612 the extracted features proposed method PCA-L1 | L2-PCA
the extracted features proposed method PCA-L1 ate [%] 10 64.34 64.34 62.90
10 5.78 20.04 0 71.18 20 75.69 75.69 74.20
20 9.25 40.69 0 77.28 30 84.00 84.00 84.20
30 12.68 58.99 0 78.51 40 82.32 82.32 82.34
40 16.67 77.34 0 78.45 50 86.83 86.83 86.88
50 21.09 103.21 0 79.56
a0 is increase, andl is decrease.
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