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Abstract—Path generation is an optimization problem mainly
performed on grid maps that combines generation of paths
with minimization of their cost. Several methods that belong
to the class of exhaustive searches are available; however, these
methods are only able to obtain a single path as a solution
for each iteration of the search. Conversely, while genetic al-
gorithms involving a type of multipoint search methods have
been proposed as suitable candidates for this problem with the
goal of simultaneously searching for multiple candidate paths,
these methods are limited to particular applications, and there
are limitations on the types of paths that can be represented.
This paper therefore proposes a path generation method that
is applicable to more general-purpose applications compared to
previous methods based on a new design of the genotype used
in the genetic algorithm.

I. INTRODUCTION

The shortest route problem involves searching for the
minimal-cost route joining specified starting and ending points,
and it is mainly solved using exhaustive search methods
such as the depth-first search (DFS)[1], breadth-first search
(BFS)[2], and Dijkstra’s algorithm[3]. The authors have also
proposed a variety of routing methods[5], [6] that use genetic
algorithms[7].

Numerous fields, including the design of new roads and
the creation of shipping lanes, involve processed that, in
addition to being able to simply search for paths on a graph,
should be able to generate paths that minimize the total cost
accumulated, by traversing the segments in a search space on
which some predefined cost distribution has been configured
(e.g., a mesh or grid map; referred to as “path generation” in
this paper), and there is thought to be a strong demand for
search methods having high efficiency.

Besides simply searching for routes on a graph, there is
thought to be a strong demand for generating paths that mini-
mize the total cost accumulated, by traversing the segments in
a search space on which some predefined cost distribution has
been configured. Path generation can be applied to numerous
fields, including the design of new roads and the creation of
shipping lanes.

Although the optimal path can be obtained using exhaustive
search methods when performing path generation on a grid
square map, the search space is significantly larger compared

to routing on a graph, and the need for a large number
of calculation poses a problem. Furthermore, for algorithms
based on exhaustive search methods that only find the optimal
solution, it is difficult to generate multiple candidate paths that
have small costs in a single iteration.

The present research therefore considers an algorithm that
can obtain a set of multiple paths with small costs from
a single iteration search process using a genetic algorithm.
Genetic algorithms have the property of producing many
possible solutions during the course of the search process. The
authors have previously proposed a procedure of searching for
multiple routes in a graph by exploiting this property. The goal
of the present research is to simultaneously generate multiple
candidate paths by utilizing this same property through a
suitable genetic algorithm process.

Although Ref. [8] offers one example of path generation
using a genetic algorithm, it is limited to generating flight
paths for aircraft, and is therefore unable to create paths that
deviate to a large extent from a straight line segment joining
the specified starting and ending points. However, considering
that the goal of this research is to apply path generation to
general-purpose applications, it is necessary to be able to
generate paths that, for example, spiral around the starting
or ending point.

This paper therefore proposes a new method for generating
more general-purpose paths. In the proposed method, paths
that could not be represented by the method in Ref. [8] are
made possible by designing a genotype with a fixed length and
redundancy. Furthermore, deterioration of the search efficiency
due to sudden reductions in the diversity of the population of
chromosomes is prevented by using this genotype to suppress
the generation of lethal chromosomes during crossover. Also,
the effectiveness of the proposed method is checked by some
experiments.

II. GENETIC OPERATORS IN THE PROPOSED METHOD

A. Genotype design

In the proposed method, the genotype is designed such
that it is able to perform general-purpose path generation by
improving on the genotype proposed in Ref. [8].
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Fig. 1. Path model (earlier method).

We begin by explaining the path representation from
Ref. [8]. Figure 1 shows the model of the paths. Let S and G be
the starting and ending points, respectively. The line segment
SG can then be divided into equal parts, and we let each
of the points be Pi(i = 1, . . . , n) and the intervals between
points be si. Further, if we consider Xi (xi, yi) to be the point
at a distance hi from Pi, then the path can be represented
by a polygonal line from S to G via these Xi. Using this
method enables the representation of relatively detailed paths,
within the limitations posed by the available computational
and memory resources, by reducing si. These paths are then
represented by storing the distance hi from Pi to Xi in the ith
locus in a one-dimensional array of loci in the genotype.

However, because the goal of the method in Ref. [8] was
to generate flight paths, it is unable to represent paths that
spiral in to reach the starting or ending point similar to that
shown in Fig. 2. That is, paths where there exists a point Pi,
which corresponds to multiple points when projecting the path
onto SG, cannot be represented by this method. This poses a
problem when performing general-purpose path generation.

Let us suppose that it is possible to represent a path such
as that shown in Fig. 2 using the genotype from Ref. [8].
The gene length would then vary among chromosomes, and
we expect many lethal chromosomes created by performing
crossover, causing a sudden drop in the diversity of the
population of chromosomes after crossover. The same type of
phenomenon has been demonstrated when genetic algorithms
were applied to routing; in Ref. [4], this problem was avoided
by using fixed-length genotype design. For the above reasons,
the proposed method uses a fixed-length genotype design, as
discussed below.

Figure 3 shows an example of the type of array that can
be provided to represent the path shown in Fig. 2. In each
gene, the distance hi of the path from the line SG is stored
sequentially from the bottommost row at the locus represented
by Pi and a randomly generated value of hi is stored in genes
that do not contribute to representation of the path (represented
by a * in the diagram).

Furthermore, an additional array like the example shown in
Fig. 4 is provided for representing the direction of the path. For
a point on the path represented by a gene in the array in Fig. 3,
this array indicates the neighboring points to which this point
connects to next. More specifically, the gene “1” represents a
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Fig. 2. Path model (proposed method).
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Fig. 3. Genotype related to the positional representation of the path.
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Fig. 4. Genotype related to the directional representation of the path.

connection to the neighboring point on the path associated with
Pi+1 (in the genotype, this is the lowermost gene in the column
on the right where the point has not yet been traversed), “−1”
represents connection to the neighboring point on the path
associated with Pi−1 (in the genotype, this is the lowermost
gene in the column on the left where the point has not yet been
traversed), and “2” represents connection to the neighboring
point on the path associated with Pi (in the genotype, this is
the gene in the row above). The ending point is represented
by “0”. For example, the gene in Fig.4 that corresponds to
the gene for h8 in Fig. 3 is “−1”, which indicates that this
point connects to a point that has not yet been traversed from
among the genes in the column on the left, i.e., h

′

7 (since the
path in Fig. 2 is · · · → h7 → h8 → h

′

7 → . . . , the point h7

has already been traversed).
The genes “1”, “−1”, and “2” are stored randomly in loci

that do not contribute to representing the path (the elements
that are not shaded in Fig. 4). If left in this state, however, it
is possible for the chromosome to include a lethal gene after
crossover, similar to that shown in Fig. 5, where the path does
not connect the starting point S to the ending point G. The
proposed genotype therefore contains “0” in the uppermost
row of the ending point, “1” in the uppermost row of the
genes to the left of the ending point, “−1” in the uppermost
row of the genes to the right of ending point, either “1” or
“2” in the leftmost column, and either “−1” or “2” in the
rightmost column, as shown in Fig. 4. This is able to prevent
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Fig. 5. Example of lethal gene.

lethal genes from being generated during crossover.
The genotype design described above is therefore made up

of genes that contribute to representing the path and genes
that do not, and there may exist different genotypes that
have the same phenotype. The genotype therefore contains
redundancy, because there is a one-to-many relationship be-
tween phenotypes and genotypes. Although non-redundancy
has been recommended (that is, a one-to-one correspondence
between chromosomes and candidate solutions), in the pro-
posed method, the generation of lethal chromosomes that do
not correctly represent a path after crossover is prevented
by using a genotype that introduces redundancy. This phe-
nomenon is caused by the same reason in the case of routing
on a graph, as shown in Ref. [4].

Incidentally, increasing the number of columns in the geno-
type is equivalent to increasing the number of hi, making
possible to represent more detailed paths. Further, increasing
the number of rows in the genotypes is equivalent to increasing
the number of times that the path can pass through Pi when
the path is projected onto the line segment SG, making it
possible to represent paths that have higher degree of freedom.
However, increasing the number of rows and columns is
accompanied by an increase in the computational resources
required for processing, and the configuration therefore needs
to be selected by taking this trade-off into account.

B. Evaluation

The experiments in this paper involve path generation on
a mesh map. Fitness is therefore calculated in the following
manner. First, the polygonal line paths represented by the
chromosomes are projected onto the mesh map (Fig. 6). Let
the cells that the path passed through be gi (i = 0, . . . , N) and
the cost associated with each gi be wi. The evaluation function
is then be expressed by the following equation.

f =
1

N∑
i=0

wi

(1)

C. Generation of the initial population of chromosomes

The phenotypes are first created by randomly generating
polygonal line paths similar to the one shown in Fig. 2. Note
that these are created such that they satisfy the constraints
imposed by the preconfigured number of rows in the genotype
(the number of times the path can traverse the same Pi when
projected onto the SG line segment). Next, the generated paths
are coded into genotypes, and using the method shown in II-A,
genes are then stored in the loci that do not contribute to the
representation of the path.

g0
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S

Fig. 6. Example of the path of a chromosome projected on to a mesh map.

D. Reproduction

Reproduction employs a roulette wheel selection which
is conducted by spinning a biased roulette wheel sized in
proportion to the fitness of each chromosome, and an elitist
replacement whereby the best fitness chromosome is copied
into the next generation[7].

E. Crossover

One-point crossover is used for the crossover. In the pro-
posed method, a crossover point is selected randomly for two
parent chromosomes that have been selected by reproduction,
and all of the genes to the right of the crossover point are
swapped between the two chromosomes. In the event that
chromosomes, after crossover, form a chromosome that does
not represent a path, the crossover point is reselected and
crossover is performed again. A rare situation may arise where
the chromosomes after crossover are lethal chromosomes
for every crossover point, and in this case crossover is not
performed.

F. Mutation

For loci that are selected according to the mutation proba-
bility, the value of the two genes (the positional and directional
representations) are changed randomly if these genes do not
contribute to the representation of the path. If the genes do
contribute to the representation of the path, the path from the
position represented by those genes to the end point is changed
randomly.

III. EXPERIMENTAL RESULTS

This section describes experiments performed by applying
a mesh-shaped cost map in order to verify the effectiveness of
path generation using the proposed method. A 256×256 mesh
map was prepared with costs in the range of 0 to 255 assigned
to each of the cells (in Fig.7, dark cells indicate regions of
higher cost). In the experiments, the line between the starting
point S and ending point G was divided into 15 equal segments
of length si and Pi was placed along SG and the straight line
that extends SG.

The number of columns in the genotype (gene length) was
set equal to the number of Pi, and the number of rows was
set to 3. The genetic parameters were set as follows: the
population size was set to 1000, the crossover rate was set to



(a) first generation (b) final generation
Fig. 7. Example of chromosome (weighted cost map)

(a) first generation (b) final generation
Fig. 8. Example of choromosome (unweighted cost map)

1.0, the mutation probability was set to 0.01, and the number
of generation was set to 1000.

We now present the results of applying the proposed method
using the above settings. Figure 7(a) shows an example path
from the initial population of chromosomes. From the figure,
it is clear that this method is able to represent paths that
rotate around the starting point, which was not possible in the
previous method. The best chromosome after 1000 generations
is shown in Fig. 7(b). It is clear that compared to the initial
generation, a path with a shorter length and which avoid high
cost regions was obtained.

Figure 8 shows a path in the initial generation and a path
resulting from path generation for the case where a cost map
was applied with the same cost everywhere, respectively. By
comparing the two figures, it is clear that the population has
evolved, and that the path represented by the chromosome is
close to the optimal solution (which is the straight line segment
SG in this experiment). Figure 9, which shows the path length
of the best chromosome and the average path length of all
chromosomes at each generation in a given execution of
the algorithm, demonstrates that as the generations passed,
chromosomes with shorter path length were generated by
crossover, and that was a trend for the average path length
of the population to decrease due to increase in the number
of these chromosomes by reproduction.

IV. CONCLUSION

A path generation method using a genetic algorithm was
proposed in this paper.

The ordinary methods based on exhaustive search have a
tendency to require a heavy calculation cost when applying
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them to large maps. On the other hand, the proposed method
can reduce the calculation cost because it does not depend on
the map size. Moreover, genetic algorithms generate multiple
possible solutions in a search process, though the exhaustive
search methods search for the optimum only. Hence, in the
future, the proposed method will be able to obtain a set of
multiple paths with small costs in a single iteration search
process similarly to [4] and [8].

The previous GA method[8] was unable to create paths
that deviate to a large extent from a straight line segment
joining the specified starting point and ending point, because
a one-dimensional array is used for its genotype. However,
the new genotype of the proposed method represented the
paths using two-dimensional fixed-length arrays that combined
an array representing the positions of the path with an array
representing the path’s direction of advance. Furthermore, by
designing genetic operators suitable for this genotype, this
method could represent complicated paths that could not be
handled by the previous method, thus making it possible to use
a genetic algorithm for a more general-purpose path generation
application.

Moreover, in the future, candidate paths beside the optimum
path will be obtained by utilizing the property of genetic algo-
rithms which generate many possible solutions. For example,
using the fitness values with giving weight to each selected
region on the map is one of the ideas for this kind of searching.
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