

Instructions for use

Title Segmentation of Volume Data Based on 3D Lazy Snapping

Author(s) Sun, Chia-Yang; Ku, Cheng-Wei

Citation Proceedings : APSIPA ASC 2009 : Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit
and Conference, 391-397

Issue Date 2009-10-04

Doc URL http://hdl.handle.net/2115/39714

Type proceedings

Note
APSIPA ASC 2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit and
Conference. 4-7 October 2009. Sapporo, Japan. Oral session: Vision-based Information Processing and Applications (6
October 2009).

File Information TA-L1-4.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Segmentation of Volume Data Based on 3D Lazy

Snapping

Chia-Yang Sun
*
 and Cheng-Wei Ku

†

National Center for High-Performance Computing, Hsinchu 30076 Taiwan R.O.C.

Tel: + 886-3-5776085 #248 Fax: +886-3-577-3620

*
E-mail: morrissun@nchc.org.tw

†
E-mail: c00cwk00@nchc.org.tw

Abstract— The image segmentation techniques for medical

image play important roles in computer-aided detection, analysis

and measurement. Due to the computed tomography (CT) and

the magnetic resonance imaging (MRI) technologies, the doctor

can obtain volume images to visualize the structures of internal

organ of human body. In this paper, we present a volume

segmentation method by extending the Lazy Snapping [1] to 3D.

A high-level painting tool is provided for the user to indicate

which part is object and which is background in volume by

marking some lines. The segmentation result can be determined

with little interaction without voxel-precise selection. In order to

improve the performance, we adopt the watershed used in [1] to

pre-process the volume data. And we implement the 3D

watershed to handle the volume data. However, large size of

volume data still needs great computation. It is hard to achieve a

real time response. To improve the efficiency without losing the

accuracy, we introduce a volume of interest (VOI) specified by

the user to restrict the data size for processing. Our system also

implements a user-friendly interface to browse the volume of

interest area in three cutting planes.

I. INTRODUCTION

Image segmentation is the technique to partition the image

into groups. The segmentation result can help us to find the

groups which have some characteristics we are interested, and

such groups are called the foreground or objects of interest.

When the objects in images are located, they can be processed

and analyzed without considering other information in the

background. Currently imaging acquisition devices has

generated higher resolution of volume data. This advance has

encouraged medical researchers and biologists to bring their

data in 3D instead of looking through a 2D microscopy. To

locate the objects in the 3D data or so called volume data, it is

tedious and inefficient to perform 2D segmentation on each

slice. Therefore, different 3D segmentation methods [2] for

volume data have been proposed to handle such problems.

Nowadays, the medical imaging such as computed

tomography (CT) and the magnetic resonance imaging (MRI)

and other image modalities provide a non-invasively mapping

of the anatomy for a subject. Traditionally, physicians can

make diagnosis or learn potential life saving information by

observing huge amount slices. But the volume visualization

technique allows scientists and physicians to virtually interact

with the structure of anatomy. In the volume rendering

paradigm, we can use the transfer function to assign a

specified scalar value to a color and opacity. Because the

complex structure of organs and tissues, it is hard to visualize

the specific object by just making certain tissues transparent.

To solve this issue, 3D segmentation can be conducted to

partition the structures of anatomy and render the separated

objects individually. Applying 3D segmentation techniques in

medical imaging can improve visualization, detection of

disease, analysis and measurement.

Lazy Snapping is developed based on graph cut [3] and

focuses on “image cutout” for a 2D image. Although it is a

semi-automatic segmentation method, an intuitive user

interface is designed to allow non pixel-level selection for the

user. It provides instant visual feedback, making cutout

boundary close to the object contour despite the presence of

ambiguous or low contrast edges. The Lazy Snapping is

utilized to assist in the segmentation of 3D polygon meshes [4]

and separated 3D models from the crime scene environments

obtained with a stereo sensor [5].

In this paper, we propose a 3D segmentation algorithm by

extending the Lazy Snapping to 3D. For 3D Lazy Snapping,

we have to convert the data to a graph and then handle the

segmentation problem by solving the graph cut. In order to

reduce the complexity of graph and improve the efficiency,

we construct the graph by the small regions in the data pre-

processing result instead of single voxels. We implement 3D

watershed which can over-segment the data to small regions

in the pre-processing phase. However, large size of volume

data still needs great computation. To improve the efficiency

without losing the accuracy, we introduce a volume of interest

(VOI) specified by the user to restrict the data size for

processing. In the graph cut phase, the segmentation problem

maps to a graph cut problem and the result is a binary

segmentation. The segmentation result are "object" and

"background" dependent on the choice of seeds assigned by

the user. We also implement an interface which allows the

user to browse, locate VOI and segment the object of interest

in three cutting planes.

The remainder of the paper is organized as following: in

section II we will implement and evaluate two 3D watershed

algorithms. Section III focuses on the 3D Lazy Snapping

algorithm. Section IV provides the experiment results and

conclusions are presented in Section V.

II. 3D WATERSHED

Watershed is an image segmentation algorithm to separate

the image into small regions and boundaries of regions locate

on edges of the image well. Although direct application of the

watershed algorithm often leads to over-segmentation, a large

number of segmented regions can be used to describe the

image instead of pixels. In the past few years, two

conceptually distinct techniques have been developed to

calculate the watershed. One of them is immersion simulation

and the other is raining simulation. In subsection A and B, we

will discuss the 2D immersion method and the 2D raining

method first and then expand them to 3D respectively. The

experiment results of 3D immersion and 3D raining

simulation are shown in subsection C.

A. Immersion Simulation

For 2D immersion simulation [6], the image is considered

as a geographic surface with the intensity of pixel

representing the elevation. Suppose that a hole is punched in

each local minimum and the topography is immersed from

below by letting water rise through the holes. As the water

continues to rise, it will over flow from one catchment basin

to another. A dam is built to prevent water coming from

different minimum from merging. Until the water rising to the

highest mountain, all potential dams have been built. The

final dams correspond to the watershed lines which are the

desired result and locate well on boundaries of the image. The

segmentation result consists of many small regions and

watershed lines.

For 3D immersion simulation, it is not intuitive to treat 3D

data as a geographic surface. However, we still can perform

immersion simulation by letting water rise from each local

minimal. We have to check 26 neighbors of each pixel to see

if there is water coming from another minimum and going to

merge instead of checking only 8 neighbors in 2D. The

segmentation result consists of many 3D regions which are

formed with voxels and watershed lines. Before the

immersion, 2D immersion algorithm is used to sort the pixels

of input image in the incremental order of their intensity

values and stores the pixels in different arrays according to its

intensity value. To improve the efficiency, these pixels can be

accessed directly through the sorted array without scanning

the whole image to find them over and over again. Although

the sorted array works well in most of 2D image, sorting

voxels of 3D data to sorted arrays takes lots of memory.

B. Raining Simulation

For 2D watershed based on raining simulation, it is

assumed that raindrops fall on the geographic surface of the

image. Each raindrop must flow down to the valley from its

falling point along the steepest descent path. Sun et al. [7]

introduced the connected component to describe the route

which the raindrop passed between the falling point and the

valley. All the connected components lead to the same valley

forming a catchment basin. This algorithm can label all

catchment basins by scanning the whole image four times. It

has better efficiency than immersion simulation. In 2007,

-12-11-10

-13-17-9

-15 -14-16

-21-20-19

-22-26-18

-24 -23-25

-4-3-2

-5C-1

-7 -6-8

Osma-Ruiz et al. [8] proposed an efficient algorithm to

compute the shortest paths of raindrops. And all catchment

basins can be labeled using only two scan of whole image.

This algorithm has been proved to perform better than [7].

We implement a 3D watershed algorithm based on raining

simulation proposed by [8]. For this method, we consider the

26 directions that raindrops may fall in 3D space. The

criterion to assign directions is showed in Fig. 1. In addition,

the constant value -27 indicates that the point has not been

analyzed yet, and -28 means that it is in the process of being

labeled.

C. 3D Watershed Experiment Results

We implement two kinds of 3D watershed algorithm that

mentioned before. Our goal is to find a suitable method to

compute the 3D over-segmentation. The CT data from 5 cases

are processed by 3D watershed algorithms. In addition, the

mean color of each region in the segmentation result is

computed. Table I shows the experiment results. It shows that

the raining algorithm has lower memory usage than

immersion algorithm and has better efficiency in most cases.

We use the 3D raining simulation watershed in our 3D lazy

snapping system as a data pre-processor.

Data

resolution

Immersion simulation Raining simulation

Time

(sec.)

Max memory

usage (MB)

Time

(sec.)

Max memory

usage (MB)

512×512×32 8.187 188.125 6.266 87.574

512×512×102 21.204 562.812 21.562 361.730

512×512×132 39.610 751.035 34.000 348.824

512×512×139 30.407 764.304 29.797 495.523

512×512×162 42.344 981.859 44.797 540.171

Fig. 1 The 26 possible directions that the raindrop in voxel C may

fall. Label voxel C with the number of falling direction.

TABLE I
3D WATERSHED EXPERIMENT RESULTS

․All measurements are performed on a PC with Core 2 Extreme

3.0GHz CPU and 8GB memory.

III. 3D LAZY SNAPPING ALGORITHM

In this section, we will describe the detail about the user-

interface of our system, the graph construction using the result

from 3D watershed segmentation, the weights of edges and

min-cut result.

A. UI Design

We implement a viewer to display volume data and it

allows the user to browse the data in one of cutting planes, for

anatomy i.e. coronal plane, sagittal plane and axial plane. In

order to improve efficiency, we then perform the pre-

processing by using 3D watershed segmentation on VOI

determined by the user instead of whole data. The user can

select a spatial region as a VOI that encompasses the object of

interest, as the red rectangle shown in Fig. 2. The width and

length of VOI corresponded to the dimensions of rectangle

while height of VOI is the slices number in another dimension

perpendicular to the rectangle. If the VOI didn’t be assigned

before pre-processing, the whole data is equal to VOI.

After pre-processing, the user can indicate the 3D object to

be segmented simply by marking sample object and

background elements in the scene. The high level painting-

type UI is provided to mark object and background by

drawing lines, and it does not require very precise user input.

The user can switch the slices in three cutting planes to find

the object and mark corresponding seeds on object and

background respectively. The segmentation process is

triggered once when the user push the “Preview” button. The

user can then either augment the set of object or background

seeds, allowing the system to re-compute the segmentation.

B. Graph Construction

Input VOI data is expressed as the graph ,g , where

 is the set of nodes and is the set of all edges connecting

pairs of adjacent nodes. The nodes are regions in the over-

S Source terminal

Sink terminal

Voxel

Node

Terminal node

T

Source terminal

Sink terminal

Cut

t

t

s
O

B

O Object seed

B Background seed

S

T

segmentation result and the edges are adjacency relationships

between neighboring regions. Each region represents a node p

and there is an edge connecting to each node that corresponds

to an adjacent region. A source terminal node S and a sink

terminal node T are created that are not belonging to any

regions. For each non terminal node, two edges were created

from this node to source terminal node and sink terminal node

respectively. Fig. 3(a) illustrates this graph.

The volume segmentation problem can be converted to a

binary labeling problem. The goal of segmentation is to assign

a unique label ix
 for each node i , i.e.

 (object) 1 , d)(backgroun 0 ix
. The labeling problem can be

solved by using graph cut on g .

C. Weights of Edges

An edge connecting a pair of neighboring nodes p and q

will be denoted by {p,q}. The weight of edge represents the

similarity of these connecting nodes. The higher weight

number indicates greater similarity of the two connected

nodes. The edge weight is defined in table II. A penalty term

 ji xxE , is assigned due to the gradient along the

segmentation boundary. Because of
ji xx , only the adjacent

nodes along the segmentation boundary have to be considered

with this term. The more similar the colors of the two nodes

are, the larger the weight is, and thus the segmentation

boundary is less likely on the object boundary.

Fig. 3 A 3D Segmentation example for a 3 nodes image and

each node has 4 voxels. The weight of each edge is reflected

by the edge’s thickness.

Fig. 2 3D Lazy Snapping UI. The red rectangle is the selection of
VOI. The yellow line is drawn to indicate the object, and the blue

line to indicate the background.

(a) Graph (b) Min cut

D. Min-cut/Max-flow

To get the graph cut, we use the min-cut/max-flow

algorithm which ref to [9]. A min cut is a partition of node set

which has two subsets such that the terminal nodes become

separated. For volume segmentation problem, the min cut is

the segmentation boundary while all nodes connecting to

source terminal node are object nodes, and all nodes

connecting to sink terminal node are background nodes. Fig.

3(b) shows the min cut result.

IV. RESULTS

In this section, we will discuss two successful cases

processed by 3D Lazy Snapping. The first case, we used 3D

Lazy Snapping to assist the diagnosis and the detection for

lung cancer. In the other case, 3D Lazy Snapping was served

as a training tool and it created a 3D mouse model for

educational purpose by visualizing mouse organs from the

segmentation result.

A. Lung Cancer Segmentation

There are two challenges for lung cancer segmentation.

First, the lung cancer cells stick on the normal cells. Second,

the boundaries between lung cancer cells and normal cells are

not obvious.

We recognized the lung cancer cells by the diagnosis of

experienced doctors. And then our system was used to assist

the user in segmenting the lung cancer cells. We loaded

thorax CT scan data as input to our system and located the

VOI on the lung cancer cells, as shown in Fig. 4. The CT data

are DICOM format with resolution 512×512 and 112 slices

total. Due to the VOI selection, we can get a quick response

and save the memory usage. We marked object and

background seeds by drawing lines on slices 45 and 48, as

shown in Fig. 5. The segmentation result in slice 45~48 can

be seen in Fig. 6. We augmented object and background seeds

to refine the segmentation result until all the lung cancer cells

had been segmented, as shown in Fig. 7.

Fig. 8 shows more examples produced by 3D Lazy

Snapping.

(a) Slice 45

(b) Slice 48

Fig. 5 Mark the object and background seeds in different slices.

(a) Slice 45

(b) Slice 46

(c) Slice 47

(d) Slice 48

Fig. 6 Lung cancer segmentation result in slice 45~48.

Fig. 4 3D Lazy Snapping UI with CT data loaded.

TABLE II

WEIGHTS OF EDGES FOR GRAPH.

Where O and B denote the subsets of nodes marked as “object” and

“background” seeds. N denotes a neighboring system.

 F

n
n

F

i KiCd min and B

m
m

B

i KiCd min ,where F

nK and B

mK are

mean colors of the foreground and background clusters.

1)()(

1
,

2

jCiC

xxxxE jiji

, where iC represents the color

value of node i. [1]

EDGE WEIGHT FOR

{p, S}

∞ Op

0 Bp

B

i

F

i

F

i

dd

d

 BOpp ,

{p, T}

0 Op

∞ Bp

B

i

F

i

B

i

dd

d

 BOpp ,

{p, q} ji xxE , Nqp },{

(a) Mark the object and background

seeds in slice 48

(b) The re-computed result in slice

48

Fig. 7 Augment the object and background seeds to re-compute the result.

(a) Slice 31

(d) Slice 83

(b) Slice 31

(e) Slice 83

(c) Slice 28

(f) Slice 80

Fig. 8 More experiments: The left column shows the lung cancer
segmentation experiment (a,b,c) of one case, and the right column shows

the other case(d,e,f). The top row shows the VOI and the marking lines.
The second row and the third row show the segmentation results in

different slices of these two cases.

B. Mouse Organs Segmentation

The laboratory mouse is mostly provided to researchers for

study of its DNA and disease diagnosis. In order to reduce the

sacrifice of laboratory mouse, the 3D mouse model has been

constructed as a training tool by visualizing the organs of

mouse. Our system was used to segment the mouse organs

and then each organ could be visualized individually. To get

volume data, the mouse was frozen to the ice and it was finely

sectioned by cryostat-microtome at 10 um for microscopy.

Each microscopic image can clearly reflect the structure and

true color of all mouse organs. After we required a set of

image, we registered the image set first to align every image

position and then resized it. The data size is 750×400 with X

and Y dimension and 501 slices with Z dimension. We

demonstrated the kidney segmentation by locating VOI on

one of the kidney and marking the object and background

seeds on XY plane, as shown in Fig. 9, 10. The kidney

segmentation result is shown in Fig. 11. Another example we

demonstrated was the central nervous system segmentation. In

order to get a better view of whole central nervous system, we

switched the cutting plane to XZ plane and located the VOI,

as shown in Fig. 12. Our system allowed the segmentation to

be performed in any cutting plane. The central nervous system

segmentation result is shown in Fig. 13.

(a) Slice 253

(b) Slice 264

Fig. 10 Locate the VOI and mark object seeds and background seeds.

Fig. 9 3D Lazy Snapping UI with the mouse data loaded.

(a)Slice 253 (b)Slice 264 (c)Slice 291

Fig. 11 Kidney segmentation result.

(a) Mark object seeds and background seeds in XZ plane.

(b) Segmentation result

Fig. 13 Central nervous system segmentation.

Fig. 14 shows more examples produced by 3D Lazy

Snapping. Various kinds of mouse organs can be partitioned

and treated as individual objects.

(a) Slice 284

(d) Slice 264

(b) Slice 284

(e) Slice 264

(c) Slice 252

(f) Slice 255

Fig. 14 More experiments: The left column shows the segmentation of
stomach (a,b,c), and the right column shows the segmentation of lungs

(d,e,f). The top row shows the VOI and the marking lines. The second row

and the third row show the segmentation results in different slices of these

two cases.

V. CONCLUSIONS

In this paper, we propose a 3D Lazy Snapping volume

segmentation system. The 2D Lazy Snapping has been

developed by integrating a pre-computed over-segmentation

and graph cut algorithm to achieve an instant response for

image segmentation. For 3D Lazy Snapping, we implement

3D watershed to over-segment the volume data and perform

the graph cut on the graph which is constructed using the

result from 3D over-segmentation. To save the processing

time and let the user get a quick response, we process VOI

that encompasses the object of interest instead of the whole

volume data. An easy-to-use UI has also been developed

which allows the user to browse the slices of volume data in

three cutting planes and to select a spatial region as a VOI.

The high-level painting tool allows the user to specify the

object by marking some lines on it and the lines do not need

to be on the boundary of object precisely. To evaluate the

usability of our system, we perform 3D Lazy Snapping to

lung cancer and mouse organs segmentation. Both cases can

prove that our system works well and the user can get the

result with little interaction in a short time.

Fig. 12 Locate the VOI in XZ plane.

We are trying to improve the system performance by

applying parallel computing in data pre-processing phase and

graph cut segmentation phase. Boundary editing function in

[1], is a useful tool for helping the user get precise

segmentation result. The boundary editing tool should also be

expanded to 3D.

ACKNOWLEDGMENT

We thank Chang Gung Memorial Hospital and National

Laboratory Animal Center for data supporting and consulting.

We also thank Charlie H. Chang and Dr. Ching-Yao Lin for

suggestions.

REFERENCES

[1] Y. Li, J. Sun, C. K. Tang, and H. Y. Shum, “Lazy Snapping,"

ACM Transactions on Graphics, vol. 23, pp. 303-308, August

2004.

[2] S. Lakare, “3D segmentation techniques for medical volumes,”

Technical report, State University of New York at Stony Brook,

2000.

[3] Y. Boykov and M. P. Jolly, “Interactive graph cuts for optimal

boundary & region segmentation of objects in N-D images,” In

Proceedings of Internation Conference on Computer Vision,

Vancouver, Canada, July 2001.

[4] S. Wilson, S. Gill, A. Topol, A. Hogue, and M. Jenkin, “Lazy

snapping of 3D datasets,” In Grace Hopper Conference,

Orlando, Florida, USA, October 2007.

[5] M. Kwietnewski, S. Wilson, A. Topol, S. Gill, J. Gryz, M.

Jenkin, P. Jasiobedski, and H-K Ng, “MED: A multimedia

database system for 3D crime scene representation and

analysis,” In IEEE 24th International Conference on Data

Engineering, Cancún, México, April 2008.

[6] L. Vincent and P. Soille, “Watersheds in digital spaces: An

efficient algorithm based on immersion simulations,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol.

13, No. 6, pp. 583-598, June 1991.

[7] H. Sun, J. Yang, and M. Ren, “A fast watershed algorithm based

on chain code and its application in image segmentation,”

Pattern Recognition Letters, vol. 26, pp. 1266-1274, July 2005.

[8] V. Osma-Ruiz, J. I. Godino-Llorente, N. Saenz-Lechon, and P.

Gomez-Vilda, “An improved watershed algorithm based on

efficient computation of shortest paths,” Pattern Recognition,

vol. 40, pp. 1078-1090, March 2007.

[9] Y. Boykov and V. Kolmogorov, “An experimental comparison

of min-cut/max-flow algorithms for energy minimization in

vision,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 26, No. 9, pp. 1124-1137, September 2004.

	pg391: 391
	pg392: 392
	pg393: 393
	pg394: 394
	pg395: 395
	pg396: 396
	pg397: 397

