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Abstract— The image segmentation techniques for medical 

image play important roles in computer-aided detection, analysis 

and measurement. Due to the computed tomography (CT) and 

the magnetic resonance imaging (MRI) technologies, the doctor 

can obtain volume images to visualize the structures of internal 

organ of human body. In this paper, we present a volume 

segmentation method by extending the Lazy Snapping [1] to 3D. 

A high-level painting tool is provided for the user to indicate 

which part is object and which is background in volume by 

marking some lines. The segmentation result can be determined 

with little interaction without voxel-precise selection. In order to 

improve the performance, we adopt the watershed used in [1] to 

pre-process the volume data. And we implement the 3D 

watershed to handle the volume data.  However, large size of 

volume data still needs great computation. It is hard to achieve a 

real time response. To improve the efficiency without losing the 

accuracy, we introduce a volume of interest (VOI) specified by 

the user to restrict the data size for processing. Our system also 

implements a user-friendly interface to browse the volume of 

interest area in three cutting planes. 

I. INTRODUCTION 

Image segmentation is the technique to partition the image 

into groups. The segmentation result can help us to find the 

groups which have some characteristics we are interested, and 

such groups are called the foreground or objects of interest. 

When the objects in images are located, they can be processed 

and analyzed without considering other information in the 

background. Currently imaging acquisition devices has 

generated higher resolution of volume data. This advance has 

encouraged medical researchers and biologists to bring their 

data in 3D instead of looking through a 2D microscopy. To 

locate the objects in the 3D data or so called volume data, it is 

tedious and inefficient to perform 2D segmentation on each 

slice. Therefore, different 3D segmentation methods [2] for 

volume data have been proposed to handle such problems. 

Nowadays, the medical imaging such as computed 

tomography (CT) and the magnetic resonance imaging (MRI) 

and other image modalities provide a non-invasively mapping 

of the anatomy for a subject. Traditionally, physicians can 

make diagnosis or learn potential life saving information by 

observing huge amount slices. But the volume visualization 

technique allows scientists and physicians to virtually interact 

with the structure of anatomy.  In the volume rendering 

paradigm, we can use the transfer function to assign a 

specified scalar value to a color and opacity. Because the 

complex structure of organs and tissues, it is hard to visualize 

the specific object by just making certain tissues transparent. 

To solve this issue, 3D segmentation can be conducted to 

partition the structures of anatomy and render the separated 

objects individually. Applying 3D segmentation techniques in 

medical imaging can improve visualization, detection of 

disease, analysis and measurement. 

Lazy Snapping is developed based on graph cut [3] and 

focuses on “image cutout” for a 2D image. Although it is a 

semi-automatic segmentation method, an intuitive user 

interface is designed to allow non pixel-level selection for the 

user. It provides instant visual feedback, making cutout 

boundary close to the object contour despite the presence of 

ambiguous or low contrast edges. The Lazy Snapping is 

utilized to assist in the segmentation of 3D polygon meshes [4] 

and separated 3D models from the crime scene environments 

obtained with a stereo sensor [5].  

In this paper, we propose a 3D segmentation algorithm by 

extending the Lazy Snapping to 3D. For 3D Lazy Snapping, 

we have to convert the data to a graph and then handle the 

segmentation problem by solving the graph cut. In order to 

reduce the complexity of graph and improve the efficiency, 

we construct the graph by the small regions in the data pre-

processing result instead of single voxels. We implement 3D 

watershed which can over-segment the data to small regions 

in the pre-processing phase. However, large size of volume 

data still needs great computation. To improve the efficiency 

without losing the accuracy, we introduce a volume of interest 

(VOI) specified by the user to restrict the data size for 

processing. In the graph cut phase, the segmentation problem 

maps to a graph cut problem and the result is a binary 

segmentation. The segmentation result are "object" and 

"background" dependent on the choice of seeds assigned by 

the user. We also implement an interface which allows the 

user to browse, locate VOI and segment the object of interest 

in three cutting planes. 

The remainder of the paper is organized as following: in 

section II we will implement and evaluate two 3D watershed 

algorithms. Section III focuses on the 3D Lazy Snapping 

algorithm. Section IV provides the experiment results and 

conclusions are presented in Section V. 



II. 3D WATERSHED 

Watershed is an image segmentation algorithm to separate 

the image into small regions and boundaries of regions locate 

on edges of the image well. Although direct application of the 

watershed algorithm often leads to over-segmentation, a large 

number of segmented regions can be used to describe the 

image instead of pixels. In the past few years, two 

conceptually distinct techniques have been developed to 

calculate the watershed. One of them is immersion simulation 

and the other is raining simulation. In subsection A and B, we 

will discuss the 2D immersion method and the 2D raining 

method first and then expand them to 3D respectively. The 

experiment results of 3D immersion and 3D raining 

simulation are shown in subsection C. 

A. Immersion Simulation 

For 2D immersion simulation [6], the image is considered 

as a geographic surface with the intensity of pixel 

representing the elevation. Suppose that a hole is punched in 

each local minimum and the topography is immersed from 

below by letting water rise through the holes. As the water 

continues to rise, it will over flow from one catchment basin 

to another. A dam is built to prevent water coming from 

different minimum from merging. Until the water rising to the 

highest mountain, all potential dams have been built. The 

final dams correspond to the watershed lines which are the 

desired result and locate well on boundaries of the image. The 

segmentation result consists of many small regions and 

watershed lines. 

For 3D immersion simulation, it is not intuitive to treat 3D 

data as a geographic surface. However, we still can perform 

immersion simulation by letting water rise from each local 

minimal. We have to check 26 neighbors of each pixel to see 

if there is water coming from another minimum and going to 

merge instead of checking only 8 neighbors in 2D. The 

segmentation result consists of many 3D regions which are 

formed with voxels and watershed lines. Before the 

immersion, 2D immersion algorithm is used to sort the pixels 

of input image in the incremental order of their intensity 

values and stores the pixels in different arrays according to its 

intensity value. To improve the efficiency, these pixels can be 

accessed directly through the sorted array without scanning 

the whole image to find them over and over again. Although 

the sorted array works well in most of 2D image, sorting 

voxels of 3D data to sorted arrays takes lots of memory. 

B. Raining Simulation 

For 2D watershed based on raining simulation, it is 

assumed that raindrops fall on the geographic surface of the 

image. Each raindrop must flow down to the valley from its 

falling point along the steepest descent path. Sun et al. [7] 

introduced the connected component to describe the route 

which the raindrop passed between the falling point and the 

valley. All the connected components lead to the same valley 

forming a catchment basin. This algorithm can label all 

catchment basins by scanning the whole image four times. It 

has better efficiency than immersion simulation.  In 2007,  
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Osma-Ruiz et al. [8] proposed an efficient algorithm to 

compute the shortest paths of raindrops. And all catchment 

basins can be labeled using only two scan of whole image. 

This algorithm has been proved to perform better than [7]. 

We implement a 3D watershed algorithm based on raining 

simulation proposed by [8]. For this method, we consider the 

26 directions that raindrops may fall in 3D space. The 

criterion to assign directions is showed in Fig. 1. In addition, 

the constant value -27 indicates that the point has not been 

analyzed yet, and -28 means that it is in the process of being 

labeled.  

C. 3D Watershed Experiment Results 

We implement two kinds of 3D watershed algorithm that 

mentioned before. Our goal is to find a suitable method to 

compute the 3D over-segmentation. The CT data from 5 cases 

are processed by 3D watershed algorithms. In addition, the 

mean color of each region in the segmentation result is 

computed. Table I shows the experiment results. It shows that 

the raining algorithm has lower memory usage than 

immersion algorithm and has better efficiency in most cases. 

We use the 3D raining simulation watershed in our 3D lazy 

snapping system as a data pre-processor.  

 

 

 

 

 

Data 

resolution 

Immersion simulation Raining simulation 

Time 

(sec.) 

Max memory 

usage (MB) 

Time 

(sec.) 

Max memory 

usage (MB) 

512×512×32 8.187 188.125 6.266 87.574 

512×512×102 21.204 562.812 21.562 361.730 

512×512×132 39.610 751.035 34.000 348.824 

512×512×139 30.407 764.304 29.797 495.523 

512×512×162 42.344 981.859 44.797 540.171 

Fig. 1   The 26 possible directions that the raindrop in voxel C may 

fall. Label voxel C with the number of falling direction. 

TABLE   I 
3D  WATERSHED  EXPERIMENT  RESULTS 

․All measurements are performed on a PC with Core 2 Extreme  

3.0GHz CPU and 8GB memory. 



 

 

 

III. 3D LAZY SNAPPING ALGORITHM 

In this section, we will describe the detail about the user-

interface of our system, the graph construction using the result 

from 3D watershed segmentation, the weights of edges and 

min-cut result. 

A. UI Design 

We implement a viewer to display volume data and it 

allows the user to browse the data in one of cutting planes, for 

anatomy i.e. coronal plane, sagittal plane and axial plane. In 

order to improve efficiency, we then perform the pre-

processing by using 3D watershed segmentation on VOI 

determined by the user instead of whole data. The user can 

select a spatial region as a VOI that encompasses the object of 

interest, as the red rectangle shown in Fig. 2. The width and 

length of VOI corresponded to the dimensions of rectangle 

while height of VOI is the slices number in another dimension 

perpendicular to the rectangle. If the VOI didn’t be assigned 

before pre-processing, the whole data is equal to VOI.  

After pre-processing, the user can indicate the 3D object to 

be segmented simply by marking sample object and 

background elements in the scene. The high level painting-

type UI is provided to mark object and background by 

drawing lines, and it does not require very precise user input. 

The user can switch the slices in three cutting planes to find 

the object and mark corresponding seeds on object and 

background respectively. The segmentation process is 

triggered once when the user push the “Preview” button. The 

user can then either augment the set of object or background 

seeds, allowing the system to re-compute the segmentation. 

B. Graph Construction 

Input VOI data is expressed as the graph  ,g , where 

  is the set of nodes and   is the set of all edges connecting 

pairs of adjacent nodes. The nodes are regions in the over- 
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segmentation result and the edges are adjacency relationships 

between neighboring regions. Each region represents a node p 

and there is an edge connecting to each node that corresponds 

to an adjacent region. A source terminal node S and a sink 

terminal node T are created that are not belonging to any 

regions. For each non terminal node, two edges were created 

from this node to source terminal node and sink terminal node 

respectively. Fig. 3(a) illustrates this graph. 

The volume segmentation problem can be converted to a 

binary labeling problem. The goal of segmentation is to assign 

a unique label ix
 for each node i , i.e.  

  (object) 1 , d)(backgroun 0 ix
. The labeling problem can be 

solved by using graph cut on g . 

C. Weights of Edges 

An edge connecting a pair of neighboring nodes p and q 

will be denoted by {p,q}. The weight of edge represents the 

similarity of these connecting nodes. The higher weight 

number indicates greater similarity of the two connected 

nodes. The edge weight is defined in table II. A penalty term 

 ji xxE ,  is assigned due to the gradient along the 

segmentation boundary. Because of 
ji xx  , only the adjacent 

nodes along the segmentation boundary have to be considered 

with this term. The more similar the colors of the two nodes 

are, the larger the weight is, and thus the segmentation 

boundary is less likely on the object boundary.  

Fig. 3   A 3D Segmentation example for a 3 nodes image and 

each node has 4 voxels. The weight of each edge is reflected 

by the edge’s thickness. 

Fig. 2   3D Lazy Snapping UI. The red rectangle is the selection of 
VOI. The yellow line is drawn to indicate the object, and the blue 

line to indicate the background. 

(a) Graph (b) Min cut 



D. Min-cut/Max-flow 

To get the graph cut, we use the min-cut/max-flow 

algorithm which ref to [9]. A min cut is a partition of node set 

which has two subsets such that the terminal nodes become 

separated. For volume segmentation problem, the min cut is 

the segmentation boundary while all nodes connecting to 

source terminal node are object nodes, and all nodes 

connecting to sink terminal node are background nodes. Fig. 

3(b) shows the min cut result. 

IV. RESULTS 

In this section, we will discuss two successful cases 

processed by 3D Lazy Snapping. The first case, we used 3D 

Lazy Snapping to assist the diagnosis and the detection for 

lung cancer. In the other case, 3D Lazy Snapping was served 

as a training tool and it created a 3D mouse model for 

educational purpose by visualizing mouse organs from the 

segmentation result. 

A. Lung Cancer Segmentation 

There are two challenges for lung cancer segmentation. 

First, the lung cancer cells stick on the normal cells. Second, 

the boundaries between lung cancer cells and normal cells are 

not obvious.  

We recognized the lung cancer cells by the diagnosis of 

experienced doctors. And then our system was used to assist 

the user in segmenting the lung cancer cells. We loaded 

thorax CT scan data as input to our system and located the 

VOI on the lung cancer cells, as shown in Fig. 4. The CT data 

are DICOM format with resolution 512×512 and 112 slices 

total. Due to the VOI selection, we can get a quick response 

and save the memory usage. We marked object and 

background seeds by drawing lines on slices 45 and 48, as 

shown in Fig. 5. The segmentation result in slice 45~48 can 

be seen in Fig. 6. We augmented object and background seeds 

to refine the segmentation result until all the lung cancer cells 

had been segmented, as shown in Fig. 7. 

Fig. 8 shows more examples produced by 3D Lazy 

Snapping. 

 

 
 

 

 
(a) Slice 45 

 
(b) Slice 48 

Fig. 5   Mark the object and background seeds in different slices. 

 

 
(a) Slice 45 

 
(b) Slice 46 

 
(c) Slice 47 

 
(d) Slice 48 

Fig. 6   Lung cancer segmentation result in slice 45~48. 

Fig. 4   3D Lazy Snapping UI with CT data loaded. 

TABLE   II 

WEIGHTS  OF  EDGES  FOR  GRAPH. 

Where O and B denote the subsets of nodes marked as “object” and 

“background” seeds. N denotes a neighboring system. 
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value of node i. [1] 
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(a) Mark the object and background 

seeds in slice 48 

 
(b) The re-computed result in slice 

48 

Fig. 7   Augment the object and background seeds to re-compute the result. 
 

 
(a) Slice 31 

 
(d) Slice 83 

 
(b) Slice 31 

 
(e) Slice 83 

 
(c) Slice 28 

 
(f) Slice 80 

Fig. 8 More experiments: The left column shows the lung cancer 
segmentation experiment (a,b,c) of one case, and the right column shows 

the other case(d,e,f). The top row shows the VOI and the marking lines. 
The second row and the third row show the segmentation results in 

different slices of these two cases. 

B. Mouse Organs Segmentation  

The laboratory mouse is mostly provided to researchers for 

study of its DNA and disease diagnosis. In order to reduce the 

sacrifice of laboratory mouse, the 3D mouse model has been 

constructed as a training tool by visualizing the organs of 

mouse. Our system was used to segment the mouse organs 

and then each organ could be visualized individually. To get 

volume data, the mouse was frozen to the ice and it was finely 

sectioned by cryostat-microtome at 10 um for microscopy. 

Each microscopic image can clearly reflect the structure and 

true color of all mouse organs. After we required a set of 

image, we registered the image set first to align every image 

position and then resized it. The data size is 750×400 with X 

and Y dimension and 501 slices with Z dimension. We 

demonstrated the kidney segmentation by locating VOI on 

one of the kidney and marking the object and background 

seeds on XY plane, as shown in Fig. 9, 10. The kidney 

segmentation result is shown in Fig. 11. Another example we 

demonstrated was the central nervous system segmentation. In 

order to get a better view of whole central nervous system, we 

switched the cutting plane to XZ plane and located the VOI, 

as shown in Fig. 12. Our system allowed the segmentation to 

be performed in any cutting plane. The central nervous system 

segmentation result is shown in Fig. 13. 

 

 
 

 

 
(a) Slice 253 

 
(b) Slice 264 

Fig. 10   Locate the VOI and mark object seeds and background seeds. 

 

Fig. 9   3D Lazy Snapping UI with the mouse data loaded. 



   
(a)Slice 253 (b)Slice 264 (c)Slice 291 

Fig. 11   Kidney segmentation result. 

 

 
 

 

 
(a) Mark object seeds and background seeds in XZ plane. 

 
(b) Segmentation result 

Fig. 13   Central nervous system segmentation. 

 

Fig. 14 shows more examples produced by 3D Lazy 

Snapping. Various kinds of mouse organs can be partitioned 

and treated as individual objects. 

 

 

 

 

 

 
(a) Slice 284 

 
(d) Slice 264 

 
(b) Slice 284 

 
(e) Slice 264 

 
(c) Slice 252 

 
(f) Slice 255 

Fig. 14 More experiments: The left column shows the segmentation of 
stomach (a,b,c), and the right column shows the segmentation of lungs 

(d,e,f). The top row shows the VOI and the marking lines. The second row 

and the third row show the segmentation results in different slices of these 

two cases. 

V. CONCLUSIONS 

In this paper, we propose a 3D Lazy Snapping volume 

segmentation system. The 2D Lazy Snapping has been 

developed by integrating a pre-computed over-segmentation 

and graph cut algorithm to achieve an instant response for 

image segmentation. For 3D Lazy Snapping, we implement 

3D watershed to over-segment the volume data and perform 

the graph cut on the graph which is constructed using the 

result from 3D over-segmentation. To save the processing 

time and let the user get a quick response, we process VOI 

that encompasses the object of interest instead of the whole 

volume data. An easy-to-use UI has also been developed 

which allows the user to browse the slices of volume data in 

three cutting planes and to select a spatial region as a VOI. 

The high-level painting tool allows the user to specify the 

object by marking some lines on it and the lines do not need 

to be on the boundary of object precisely. To evaluate the 

usability of our system, we perform 3D Lazy Snapping to 

lung cancer and mouse organs segmentation. Both cases can 

prove that our system works well and the user can get the 

result with little interaction in a short time. 

Fig. 12   Locate the VOI in XZ plane. 



We are trying to improve the system performance by 

applying parallel computing in data pre-processing phase and 

graph cut segmentation phase. Boundary editing function in 

[1], is a useful tool for helping the user get precise 

segmentation result. The boundary editing tool should also be 

expanded to 3D. 
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