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Abstract—In this work a framework is presented to localize
and classify pedestrian lights using mobile devices. Our method
can be applied as interactive assistance for visually handicapped
people to help them passing a pedestrian crossing. Since the
computation power and the storage resources of mobile devices
are limited the main objective on the localization task is the
efficiency of the used computer vision algorithms. The require-
ment on the traffic light classification is not to miss the crucial
red light (reliability). We have designed a prototype for German
traffic lights and realized it on a Nokia N95. The presented results
demonstrate the efficiency as well as reliability of our method.

I. INTRODUCTION

Our research is motivated by two aspects: (1) the demand
of assistance systems to help amaurotic people participating in
the all day life and (2) the possibilities of mobile vision, which
are offered by modern mobile computing devices equipped
with cameras (e.g. smart phones or PDAs with camera).

In this work we present a framework, which are capable
for mobile vision devices, to localize and classify traffic lights.
These two steps (localization and classification) can be consid-
ered as a filter and refinement operation. The main contribution
of this paper is the localization task. Hereby, candidate regions
(possibly containing traffic lights) are filtered out of a given
input (color) image. These regions have to be refined to the
one crucial traffic light. Thereby, we take care of two main
objectives, namely interactivity and reliability:

• Firstly, the algorithm should perform fast, so that within
a split second, the user gets the information if it is safe
to pass a pedestrian crossing (with traffic lights) or not.

• Secondly, a false positive feedback of a green light should
be avoided in any circumstances.

Mobile phones are becoming ubiquitous [1]. According to
an UN study in 2007 mobile phone use reaches 50% of
the worldwide population. In the Western world there are
even more mobile phones than inhabitants. Almost every
recent mobile device features an on-board camera. Recently,
these devices have attracted notice in the computer vision
community and became an active research field. At the first
‘International Workshop on Mobile Multimedia Processing’
and on ICPR 2008 some interesting works are presented
in the field of mobile vision. Liu et al. [2] presented their
MobileEye software suite of assistance tools for people with
visual disabilities. Wachenfeld et al. [3] used a mobile phone
to interpret 1-D bar codes.

At the ‘International Conference on Computers Helping
People with Special Needs’ there have been published some
works helping people with visual disabilities. Aranda and

Mares [4] presented a system that detects traffic lights. The
mobile system ‘Crosswatch’ [5] helps pedestrians at traffic
intersections with zebra crossings to orientate themselves in
the correct direction. Other approaches help sightless people
in indoor environments (e.g. [6]). Traffic light detection is not
only helpful for pedestrians but also an important task for
driver assistance systems [7].

The segmentation of the crucial pedestrian lights with a
mobile phone is challenging by reason of several aspects:
(a) The image quality and the resolution of the capture

device are relatively low.
(b) Computation power and memory resource are restricted.
(c) Pedestrian lights have different appearances in different

countries and even for different manufactures (see Fig. 1).
(d) The distance to the pedestrian light could vary between

about 4 and 24 meters. Therefore, the scale of the traffic
light could differ (see Fig. 2(a) and (b)).

(e) The image could has been captured with a non-neglected
rotation (see Fig. 2(c)).

(f) There could be many traffic lights in the image but only
one is crucial (see Fig. 2(d)).

(g) Traffic lights can be temporarily occluded by vehicles
(see Fig. 2(e)).

(h) The illumination condition varies between night and
sunny weather. Thus, the captured colors of one traffic
light depends on the capture time (see Fig. 10).

The remainder of this paper is organized as follows. In
the next section, we concretize the external restrictions: (a)
low image quality and (b) reduced computational resources.
Furthermore, we describe the appearance of pedestrian lights
in germany (c). With this knowledge we present (Sec. III)
a localization approach, which is robust against scale (d) and
rotation (e). The selection of the crucial traffic light (f) will be
content of Section IV. In Section V we demonstrate the ability
of our approach. The open problems namely occlusion (g) and
unknown illumination conditions (h) are part of Section VI.
We end up with by discussing the possibilities and restrictions
of our approach in Section VII.

(a) (b) (c) (d) (e) (f)

Fig. 1. Pedestrian lights in different countries: (a) France, (b) Germany, (c)
Turkey, (d) Japan, (e) UK, and (f) USA



(a) (b) (c) (d) (e) (f)
Fig. 2. Challenges: (a) minimal distance, (b) maximal distance, (c) rotation, (d+e) two traffic lights, and (f) occlusion

II. PROBLEM SPECIFICATION

The computer vision methods discussed in this paper depend
on the features of the mobile vision device. The main idea of
the work is to explore good features and to design a framework
for detecting pedestrian lights with a mobile vision device, but
not to design the best algorithm for all configurations.

In Section II-A we define the conditions for our research.
Since we need specific criterion to detect pedestrian lights, we
have to restrict ourselves to specific traffic lights. In Section
II-B we declare the appearance of German pedestrian lights.
For other countries it should be possible to adjust the criterion
and to modify our approach. In Section II-C we present our
ground-truth database with pedestrian lights of Münster.

A. Prototype Environment

To prove that the detection is possible with a mobile device,
a fast and robust system is implemented on a Nokia N95
mobile phone in Symbian C++. It is equipped with a 330
MHz ARM processor, 18 Mb of available RAM and a 5 MP
autofocus camera. To get a fast automated approach we use
the low resolution video stream (320 × 240) to compute the
semantics. The authors are aware, that with a higher resolution
or faster processors the recognition rate could be increased
or the computation time could be decreased, respectively. As
said, the focus of this work is on presenting a framework and
proving the feasibility by a prototype implementation.

B. Appearance of Pedestrian Lights in Münster, Germany

Pedestrian lights could have different appearances in differ-
ent countries or even cities. To prove our concept, we have
trained our image filter on pedestrian lights of our hometown
‘Münster’ in Germany. It should be possible to develop similar
tools for other cities and choose the correct pedestrian light
recognition system according to the GPS signal of the mobile
phone. Thereby, the presented pipeline can be retained and
only some details have to be adjusted.

For the remainder of this paper the following features of a
pedestrian light are assumed to be valid preconditions:

1) Shape: rectangular with aspect ratio of 1/2, 1/3, or 1/4.
2) Color arrangement: at the bottom there is one green

light, at the top/middle there are one or two red lights.
3) Circuitry: either red or green light is switched on.
4) Background: the majority of the traffic light is dark.

5) Design: possible shapes of the green or red lights are
limited (see Fig. 6)

6) Installation: mounted at a vertical pole at a height of
approximately 2.15 meter.

C. Database of Pedestrian Lights

We have built up a database holing 501 images at pedestrian
crossings with traffic lights.1 A ground-truth segmentation is
given, storing all visible pedestrian lights and also the crucial
one. In 309 images the crucial light is red and in 184 images
green. In the remaining 8 images there is no crucial light.
Therefrom 3 images are without any traffic light.

In 165 images more than one traffic light is visible. There-
from 7 situation are ambiguous (the crucial light has another
visible light in the neighborhood) and in 9 cases a dangerous
constellation is present (the crucial light is red, but the next
light in the background is green). Overall, in the ground-truth
424 traffic lights are labeled red and 244 are labeled green.

We have divided our database in two disjoint sets. The first
set (300 images) is used for training. With the remaining 201
images we verify the performance of our approach.

III. LOCALIZATION OF PEDESTRIAN LIGHTS

In this section we present an approach to localize possible
traffic lights in a low resolution image. This approach is robust
against the scale and also against rotation (up to some degree).

As mentioned in the last section, traffic lights have spe-
cific features (i.e. shape, arrangement, circuitry, design, back-
ground, installation). All these features could be used in a
special filter algorithm to find traffic light candidates.

Using a parallel combination scheme one can achieve a
high accurate recognition rate. Since we want to realize an
interactive approach with restricted computational power, we
need a smart combination scheme. Note, that it is much faster
to verify if a feature is valid for a specific candidate than
to inspect all possible image regions according to the special
feature. Therefore, we decided to combine the filter algorithm
in a sequential architecture (see Fig. 3).

To reduce the search region we have implemented a detector
for vertical lines to find the pale, where the traffic light is
mounted (Sec. III-A). Our localization procedure uses a red
and a green color filter within the search region (Sec. III-B).

1Database available under cvpr.uni-muenster.de\research\pedestrianlights
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After a connected component analysis we compute the size
and the circuitry to reduce false positives (Sec. III-C). In
Section III-D we explain the next step: the examination of
the background color. The optional last step is a shape-based
segmentation of the pedestrian light (Sec. III-E).

A. Vertical Line Filter

Given an input image (in which we like to find a pedestrian
light) we want to restrict the search region. Since we assume
that the pedestrian light is mounted on a pale, we have
implemented a Hough-Transformation to detect vertical lines.
As parameter space we use the intersection point of the line
at the bottom image line and the slope of the line. After a
conversion to a gray-scale image and a slight smoothing the
course procedure of the line detection is as follows:

1) Detect vertical edges (e.g. with Canny Operator).
2) Apply Hough-Transformation [8].
3) Find local maxima in accumulator.
4) Detect corresponding line segments in the image.
5) Define regions of interest around the line segments.
The quality of this step is reasonable good, but the compu-

tation time is a drawback. Even after limiting the number of
vertical lines and reducing the number of image operations,
the approach performs in general faster without restricting the
search area. However, we keep this idea as optional first step
in our pipeline, since future mobile computer vision devices
might be equipped with faster processors and more memory.
In this case a restriction of the search area could be beneficial.

B. Red and Green Color Filter

The most significant feature of traffic lights is the bright
color of the lamps. In this step we search for such colors in
the region of interest. Therefore, the color of each pixel is
checked to fulfill some filter rules. We use the RGB color

space, since this is the default color space on mobile vision
devices and a conversion to another color space is very time-
consuming. Figure 4 shows a plot of green (a) and red (b)
traffic light colors, which are extracted from the ground-truth.

In the following we explain how to establish a filter for red
traffic lights in three steps: (1) analyze the color distribution of
ground-truth, (2) design fast and valuable parameterized filter
rules, (3) optimize the parameter.

(1) Analyze the data: One portion of the color samples
in Figure 4(b) is distributed along the gray axis of the RGB-
cube (one cluster near black and one cluster along the axis
itself). Another is located along the red color and the rest of
the samples a introduced by noise. So we estimate a Gaussian
mixture model in 3D with 4 contributions: black cluster, gray
cluster, red cluster, and noise cluster (see Fig. 4(c)). Since the
most significant colors to detect red lights should be the red
color, we only keep the Gaussian distribution of the red cluster.

(2) Design the filter rules: The Gaussian distribution of the
red cluster is defined by its mean color µ = (0.48, 0.06, 0.07)
and the three Eigenvectors v1, v2, and v3 corresponding to the
Eigenvalues λ1 = 0.0590, λ2 = 0.0032, λ3 = 0.0005.

A color c = (r, g, b) is considered as traffic light color if
and only if the following three rules are fulfilled:

Ired(c) := c · v1 ≥ thred,1 (1)
(c− µ) · v2 ≤ thred,2 · Ired(c) (2)
|(c− µ) · v3| ≤ thred,3 (3)

That means the red intensity Ired, which is the distribution
along the dominant axis, should be lower bounded (see (1)).
Furthermore, the distance to the red intensity axis along v2
should be limited toward the gray diagonal (see (2)). The third
rule is motivated by the observation that the distribution along
v3 is very tight. More precisely, the distance of c along this
direction is thresholded (see (3)).



(a) (b) (c) (d)

Fig. 4. Green (a) and red (b) traffic light colors from ground-truth. (c) clustering of the red samples, (d) filter for red colors

The resulting red traffic light region in the RGB-cube is
wedge-shaped with missing apex. In Fig. 4(d) an example is
shown with thresholds th1 = 0.20, th2 = 0.25, and th3 = 0.07.

(3) Optimize parameter: To optimize the parameter we
apply the whole process on the training data with different
parameter settings and take the best (see Sec. V for details).

The process of designing a color filter for green traffic
lights is similar, but instead of using 4 Gaussian Models it
is sufficient to use 3. The green parameter are denoted as
thgreen,1, thgreen,2, thgreen,3.

The responds of the color filters are represented by a binary
image. As a post-procession step, we apply a morphological
closing and compute the neighbored components.

C. Segmentation using Size and Circuitry

During the last step we have identified pixels, which have
the desired color to be part of a traffic light lamp. These pixels
are already grouped to connected components.

We assume that the crucial traffic light is between 4 and 24
meters away. In our setting this range corresponds to a width
of the traffic light between 2.5 and 15 pixel. These parameters
can be utilized to filter out regions which are too small or too
huge, by thresholding the size of the connected components.

Furthermore, we know that exclusively the red or the green
light is switched on. Connected components featuring red
and green pixels as well as vertical neighbored connected
components representing a green and a red signal cannot be
part of a valid traffic light. All such candidates are refused.

As a post-processing step we melt two red connected
components, which are vertically neighbored, since a red light
could consist of two lamps.

D. Background Color Filter

The result of the last step are connected components of
adequate sizes and colors. We know that the green lamp under
a red light is switched off and vice versa. This fact enables
us to implement a background filter, which inspects the image
region under a red light candidate and above a green light.
One can define a search region, where we expect the switched
off light. If there are no dark pixels within this appropriate
search region, it allows us to refuse this candidate.

In our implementation this filter is simply defined as

I(p) ≤ thred, dark or resp. I(p) ≤ thgreen, dark (4)

where I(p) = (R(p) + G(p) + B(p)) /3 is the intensity of
the pixel p. Furthermore, thred, dark and thgreen, dark are darkness
thresholds. The result of this step is a so-called initial bounding
box around all traffic light candidates plus search region.

E. Shape-Based Segmentation

We have already localized possible traffic light candidates,
by their lamp color, their size, arrangement and background
color. In this last step we aim to segment the traffic lights
according to their rectangular shapes. Firstly, we assume that
the rotation angle of the capture is fairly low (about ±10o). A
traffic light region should fulfill the following constraints:

1) Traffic light and background are contained.
2) Aspect ratio is between 1/4 and 1/2.
3) Many pixels (e.g. 80%) are either light or background.
4) Width of the region lies between 2 to 15 pixel.

To ease the computation we consider axis-parallel rectangular
regions only. The task can be modeled by an optimization, like:
Find the region of maximal size, which fulfills all constraints.

Even using a suboptimal but fast optimization strategy, this
last step decreases the performance so that an interactive
application is impossible on our hardware. Furthermore, the
computation of the borders is somehow non-robust. Since the
profit of this segmentation is negligible compared to the com-
putational costs, we abandon the segmentation step. In future
settings the segmentation might be profitable. For instance we
need a segmented region for a model-based verification (see
Sec. IV-A). Therefore, we keep the segmentation as optional
step in our localization pipeline.

IV. CLASSIFICATION OF PEDESTRIAN LIGHTS

The localization procedure (Sec. III) results in a set of traffic
light candidates TLC1, . . . ,TLCk. In this section we discuss
how to refine this candidate set by classification. The features
we could use are the position of the traffic light candidate in
the image and the pixel color within the corresponding image
region. If the segmentation step of the localization pipeline is
left out, we use the initial bounding box as segmentation.

We are faced with two problems: (1) Some of the candidates
might be false positives, i.e. other objects than traffic lights. (2)
Under all traffic lights in the image we have to find the crucial
one for the pedestrian. These problems should be solved during
two different steps: verification and selection (see Fig. 5).
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In Section IV-A we present the idea of a model-based
verification to classify the candidates in correct traffic lights
and false positives. Thereafter, we describe how to select the
traffic light, which is crucial for the pedestrian (Sec. IV-B).

A. Model-based Verification

We have assumed that the design of the traffic lights is
restricted. In Fig. 6 all possible designs for a pedestrian sign
in Münster are presented. The obvious way to verify, if a traffic
light candidate shows a correct traffic light can be realized by
a template matching approach. We suggest the following steps:

1) Normalization of the image region width.
2) Transformation to a gray-scale image.
3) Matching of the design templates in the modified region.
We are planning to investigate the usefulness of such an ap-

proach. According to computational restrictions the problems
are (1) the low resolution and (2) that the traffic light borders
are not detected. In this situation a template matching seems
not to be promising. However, if the computational power of
smart phones increases, it could be profitable to reduce the
false-positive error by a model-based verification approach.

B. Selection of the Crucial Light

By reason of the perspective, the important traffic light
should be the biggest and highest of all traffic lights in the
image. These two simple criterion are used to select the crucial
traffic light. More precisely, we report a traffic light candidate
TLCi as crucial if all of the following constraints are true:

• TLCi is the broadest traffic light
• TLCi is the highest traffic light
• No other traffic light has a similar height than TLCi

The color of such a traffic light TLCi is obvious since the
region contains exactly one type of traffic light color, either red
or green. There could be different failures. The catastrophic
error is, that a green light is reported during a red phase.
Reporting no traffic light or a false red report are errors which
abridge the convenience but not affect the user’s security.

V. EXPERIMENTS AND RESULTS

Our algorithm depends only on 8 main parameter, 4 in each
case (red or green light, resp.). These two parameter groups are
optimized separately. In our experiments we subsample each
parameter space and test 10.000 parameter settings. With our
ground-truth, we measure the quality of the setting by counting

Fig. 6. Templates for the graphic design of our pedestrian lights

the number of correctly detected traffic lights (TP ), falsely
detected traffic lights (FP ) and missed traffic lights (FN ).

In the following we optimize the parameter groups for red
(Sec. V-A) and subsequently for green (Sec. V-B) traffic lights.
Using the optimized parameter we present the performance of
the classification step in Section V-C. Thereafter, we validate
the results on our validation set (Sec. V-D) and discuss some
selected results (Sec. V-E). Finally, a brief investigation of the
rotational robustness (Sec. V-F) is presented.

A. Optimize Parameter for Red Traffic Lights

The missing of a red sign could cause serious problems. So
our optimization criterion is to maximize the precision with a
bounded miss rate. Fig. 7 (a) shows the performance of the
investigated red parameter settings. We claim a recall

R = TP/(TP + FN) (5)

of at least 75% and choose the setting with the best precision

P = TP/(TP + FP ). (6)

The result of our optimization are the parameter thred,1 = 0.3,
thred,2 = 0.15, thred,3 = 0.028, thred, dark = 0.19, With a recall
of 76.0% a precision of 89.5% is achieved. This optimized
performance is visualized as a black asterisk in the Fig. 7 (a).

B. Optimize Parameter for Green Traffic Lights

The optimization of the green parameter set depends on a
bounded precision. The precision equals 100% if and only
if we have detected no false green light. We allow at most
1.5% FP (i.e. P ≥ 98.5%) and choose the parameter vector
yielding the best recall. Fig. 7 (b) shows the performance of the
investigated green parameter settings. The best thresholds of
the green filter are: thgreen,1 = 0.2, thgreen,2 = 0.15, thgreen,3 =
0.05, thgreen,dark = 0.19. With these parameter we achieve a
recall of about 85.0% (see black asterisk in Fig. 7 (b)).

C. Performance of Classification

The optimization depends on all visible traffic lights in the
scene. The performance for detecting the crucial traffic light is
presented in Fig. 8 using ROC-curves. Here, the true positive
rate is plotted against the number of false positives. Further-
more, the standard deviation is visualized by the vertical lines.
Our optimized parameter (the black asterisk) lead to a stable
recognition of the crucial traffic light. As desired the number
of false positives are very small in the case of green light
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Fig. 7. Recall and Precision for (a) red and (b) green traffic lights

detection. We report in 2 cases a wrong crucial green light
(precision of 98.1%) and keep a recall (i.e. true positive rate)
of 86.3%. The performance of the red traffic light detection is
similar: we classify in 4 cases false red traffic lights (precision
of 97.4%) and achieve a recall of 86.3%.

D. Validating the Results

As mentioned we have a validation set of 201 images, which
are not used during the parameter optimization. We fixed the
parameter and applied the approach on this validation set. For
red traffic lights we yield a precision of 96.5% and a recall of
83.3%. The precision for green traffic lights is 98.3% and the
recall is 90.8%. We report 5 wrong crucial traffic lights and
falsely report no traffic light in 28 of the verification images.
This corresponds to an overall miss rate of 16.4%.

E. Example Results of our Approach

Fig. 9 depicts some results produced with our approach.
Thereby, we put a white frame around all traffic light candi-
dates and an additional blue frame around the reported crucial
one. In the first row (a-d) perfect recognitions are presented,
even in dark illumination conditions (a), bright traffic light
color (b), objects in the front (c) or rainy weather (d).

Sometimes noisy objects are detected as traffic light candi-
dates (Fig. 9(e-h)). Objects on small vehicles normally cause
no problem (e), since they are almost not green and much
below the traffic light. Some objects on trees (f) or buildings
(g) could be identified as traffic light candidates, too. This
situation is much more difficult, since the objects may be
placed above the traffic light. A template matching could
decrease such false positives. Currently, template matching
is not integrated in our system. Another situation in which
an additional template matching step could be helpful are
transversely mounted street traffic lights (see Fig. 9(h)).

However, there are some limitation, which we present in the
third row of Fig. 9(i-l). If traffic lamps are capture with low
saturation (see (i) and (j)) the traffic light could be missed.
Sometimes big vehicles occlude the traffic light (k), or the
scene is contradictory (l).

Some problems (e.g. (h) and (l)) are introduced by a
poor perspective angle and can be corrected by changing the
viewpoint. This is shown in the last row of Fig. 9. In the next
Section we discuss an extension on the video stream, which
reduce the effect of poor perspective.
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Fig. 8. ROC-curve for detecting the crucial (a) red and (b) green traffic light

F. Investigating the Rotational Robustness

Currently, we are investigating the rotational robustness of
our approach. First experiments show that a rotational angle
of ±10o only slightly affects the performance of our approach.
For these tests we have rotate the images in both directions
and report the angular range in which the result keeps stable.
Including all images in this test scenario, we can identify 328
(i.e. 73.1%) of the red and 206 (i.e. 84.4%) of the green traffic
lights with an optimal rotation. If the images are rotated by
maximal ±10o, we recognize 254 red and 180 green traffic
lights. This means, the localization keeps stable for 77.4% red
and 87.4% green lights in comparison to the optimal rotation.

VI. EXTENSIONS

The major drawback of our approach is the high miss rate
of 16.4%. This is influenced by temporary occlusions and
inappropriate illumination conditions. The reason of the last
may be versatile, but the effect is that the captured colors are
falsified by an over- or an underexpose of the lights.

In the following we discuss how to deal with these chal-
lenges. The problem of occlusion can be solved by video
processing (Sec. VI-A). It increases the recognition rate and
makes the approach more robust against slight illumination
changes. In Section VI-B we discuss the effect of unknown
illumination and present an idea of resolving the problem.

A. Video Processing

Yet, we have only presented techniques on images. In the
following we present two techniques which utilize the video
stream to reduce the high miss rate. The first technique is to
repeat the procedure in case of no response. Secondly, tracking
of the crucial object could be a useful method to recognize and
correct a false response.

1) Repeat the Procedure: Missing the traffic light in an
image could have different reasons. In all situations it might
be helpful, to try it again with a later image.

Reason 1, “traffic light is occluded by big vehicles”: Since
in the situation of no detected traffic light our approach would
never give the command to pass the crossing this constellation
is handled correct.

Reason 2, “traffic light colors falsified by wrong exposure”:
By moving the camera and repeating the localization and
classification the traffic light might be found.

Reason 3, “scene is contradictory”: In this situation two
traffic lights are located close to each other (see Fig. 2 (e)).



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 9. Results of our approach. (a-d) perfect results, (e-h) noisy objects, (i-l) no traffic light reported, (m-p) change of perspective
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Fig. 10. Difficult illumination: (a) dusk, (b) frontlighting, and (c) night

By changing the perspective the green light for the street lane
getting out of sight, so that a decision is possible.

2) Tracking: Another powerful tool is the tracking of the
crucial traffic light. By tracking the main object some misclas-
sification could be corrected. This helps to avoid the detection
of traffic light similar objects on moving objects (e.g. lights of
a car, truck painting). By tracking the cataclysmal object over
time the catastrophic error of falsely reporting a green sign,
can be decreased.

In our implementation we have realized both, repeating the
procedure in case of no response and tracking. Currently, we
are working on computing the benchmark of these extensions.
First tests demonstrate, that the video processing techniques
increase the user’s convenience. Under appropriate illumina-
tion conditions the system reports the correct traffic light in
almost all situations so that the miss classification rate in a
real world application is much lower than 16.4% (on images).
Thereby, a delay of at most 2 seconds is acceptable.

B. Illumination Robustness

Fig. 10 depicts situations, where the illumination condition
is enduring inappropriate (dusk, frontlighting, night). Other
examples are heavy snow, fog, or rain. The problem in all such
situations is that the colors are falsified and some features are
not captured in the image anymore. For instance the contrast
of the traffic light frame and pale against the background
are much lower than in normal conditions. Furthermore, in
dark scenes bright lamps could cause a halo or other artificial
objects. To reach illumination robustness, one has to account
on such phenomenons.

Our current prototype cannot handle such situations of poor
visibility in a stable manner. However, the example in Fig. 9
(a) demonstrates that it is possible to detect the crucial light
even under challenging conditions. Therefore, it should be
possible to achieve a good recognition rate under unknown
illumination conditions by the following extension:

1) Classify the illumination conditions. (e.g. in normal
light, night, dusk, frontlighting, snow, fog, rain).

2) Select an adequate traffic light recognizer depending on
illumination.

3) Recognize traffic light with the selected method.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented a framework for detecting
traffic lights on a mobile vision device. Thereby, we have
accomplished several challenges: low image quality, poor res-
olution, restricted computation power and memory resource,
scalability, rotational robustness, many traffic lights and last
but do not least temporarily occlusion. We have presented dif-
ferent features for detecting pedestrian lights and demonstrate
the way they could been used in a prototype implementation.

This prototype runs on a Nokia N95 smart phone and are
designed to detect German standard pedestrian lights. The
results are very promising in normal illumination condition.
The highest influence for failures is the falsification of colors
in the case of poor visibility. We have increased robustness
by the use of two video stream procession techniques, but in
extreme situations our approach fails, yet.

With our work we have shown, that smart phones can be
used as powerful tools for visually handicapped people. For
a pre-commercial development some further work has to be
done. Most essential is to avoid false green light reports. For
this, template matching should be applied on the magnified
region, which is reported as crucial light.

Furthermore, the robustness of our approach has to be inves-
tigated more precisely. The experiments should be extended
to the application of our tool in a real world scenario. The
open problem is that it is not possible to apply our approach
on a mobile phone and simultaneously record this process (for
evaluation of the result). Note, that the tool runs on our setting
in an interactive mode. The crucial light is initially found in
much less than a second and tracking is possible with 5 to 10
frames per second.

More work has to be spent on extending the approach to
other devices, cities and states. Hereby, complexer environ-
ments (more people, more commercial lights, bad weather)
should be taken into account. Additional filter rules should be
developed in the case of difficult illumination conditions.

Beside these open works, we have proved that our image
analysis pipeline is suitable for localizing pedestrian traffic
lights. Our prototype on a mobile vision device is capable to
localize and track traffic lights in an interactive mode.
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