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Abstract—Image interpolation can be performed by a convo-
lution operation using the neighboring image values. To achieve
accurate image interpolation, some of the conventional methods
use basis function with large support, and therefore their imple-
mentation may have a large computational cost. Interpolation
by the Hermite interpolating polynomials can be performed
using image values and their derivatives. This makes it possible
to realize the high-order interpolation with small support. In
this study, we show that, by introducing the basis function of
derivatives, interpolation methods by the higher-order Hermite
interpolating polynomials can be expressed as a convolution form
similarly to the conventional methods. Thus, the higher-order
interpolation with small support is obtained as well. Moreover,
high accuracy is achieved by using the compact FDs as the
calculation method of derivatives. As a result, the efficiency of
this method is confirmed, by comparing it with the conventional
methods which have the same support.

I. INTRODUCTION

Image interpolation is an important technique to define a
spatially continuous image from a set of discrete values. It
is a fundamental method of many digital image processing
operations, such as translation, scaling and rotation [1]. For
these practical reasons, its accuracy is a significant concern.
Commonly, the interpolated values at arbitrary locations are
estimated by a convolution of the values at the surrounding
points. However, to achieve high accuracy in image inter-
polation, the conventional methods use basis functions with
large support, and therefore their implementation is quite
complicated [1].

Interpolation function using Hermite interpolating polyno-
mials can be expressed by image values and their derivatives.
This makes it possible to realize the interpolation using the
higher-order polynomials with small support. Consequently,
the Hermite interpolation requires less support points than the
conventional methods using only image values. For example,
interpolation by the heptic (7th order) Hermite interpolating
polynomials needs to use just four support points, while the
conventional methods of the same order use eight points. This
motivates the use of the Hermite interpolating polynomials for
the accurate image interpolation.

In this study, we show the interpolation method by the
higher-order (quintic, heptic) Hermite interpolating polyno-

mials, which can be expressed as a convolution form, by
introducing the basis function of derivatives. Moreover, we
propose utilization of the compact finite difference (FD) in
order to improve the calculation methods of the derivatives.

II. CONVENTIONAL INTERPOLAION

We can express an interpolated value F (x) at some (perhaps
non-integer) coordinate x as the convolution form of coeffi-
cients ck and basis function h(x) at integer coordinate k [1]

F (x) =
∞∑

k=−∞
ckh(x − xk). (1)

A. Linear Interpolation

Linear interpolation is widely used in image interpolation
because of its implementation simplicity. However, this tech-
nique attenuates high frequency components of the image. Let
fk be the image values. In linear interpolation, we use fk for
ck. The basis function of linear interpolation is given by Eq.
(2). (See Fig. 1) The derivative of the interpolated function is
not continuous at the integer points

h(x) =

{
−|x| + 1, 0≤|x|<1
0, 1≤|x| . (2)
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Fig. 1. Basis function of linear interpolation.



B. Cubic Convolution

Because cubic convolution performs better than linear in-
terpolation, it is also widely used, despite more complexity.
Its function is defined as piecewise cubic polynomials, which
depend on a parameter a [2]. Its general expression is given
by Eq. (3), and is depicted in Fig. 2

h(x) =

⎧⎪⎨
⎪⎩

(a + 2)|x|3 − (a + 3)|x|2 + 1, 0≤|x|<1
a|x|3 − 5a|x|2 + 8a|x| − 4a, 1≤|x|<2
0, 2≤|x|

.

(3)

In this interpolation, as well as in the linear interpolation,
image values fk are used for ck. Although this method controls
the characteristics of the interpolation by varying a, it has
lower accuracy than the cubic B-spline interpolation method,
described in the following section.

C. Cubic B-spline

The basis function of the cubic B-Spline interpolation is
expressed as

h(x) =

⎧⎪⎪⎨
⎪⎪⎩

|x|3
2 − |x|2 + 2

3 , 0≤|x|<1

− |x|3
6 + |x|2 − 2|x| + 4

3 , 1≤|x|<2
0, 2≤|x|

. (4)

Its form is shown in Fig. 3. In this method, we don’t utilize fk

for ck, i.e., fk �= ck. That is, we need the following procedure:

i) The determination of coefficients ck from image values
fk;

ii) The determination of required value F (x) from the
convolution of ck and its basis function.

a = -0.5
a = -1.0
a = -2.0
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Fig. 2. Basis function of cubic convolution.
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Fig. 3. Basis function of cubic B-spline.

In the cubic B-spline interpolation, the coefficients ck are
determined by using recursive filter [3], [4]. However, for
higher-order splines with large support, the filter must be used
several times, which may have a larger computational cost.

III. INTERPOLATION BY HERMITE INTERPOLATING

POLYNOMIALS

In this section, we describe the proposed interpolation by
the Hermite interpolating polynomials.

A. Basis Function

In interpolation using the Hermite interpolating polynomi-
als, the interpolated value F (x) can be expressed as a unique
form of convolution of image values fk and derivatives f ′

k:

F (x) =
∞∑

k=−∞
f(xk)h(x − xk) +

∞∑
k=−∞

f ′(xk)hd(x − xk).

(5)

Its overall benefit is to allow us to use the higher-order
basis functions which require small support and also have high
accuracy. For example, the basis functions h(x) and hd(x) for
the cubic, the quintic and the heptic Hermite interpolation are
given by Eqs. (6) to (11), respectively, and are depicted in
Figs. 4 to 6

h(x) =

{
2|x|3 − 3|x|2 + 1, 0≤|x|<1
0, 1≤|x| , (6)

hd(x) =

⎧⎨
⎩

x3 − 2x2 + x, 0≤x<1
x3 + 2x2 + x, −1<x<0
0, 1≤|x|

. (7)

h(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 3
4 |x|5 + 7

4 |x|4 + 3
4 |x|3 − 11

4 |x|2 + 1,
0≤|x|<1

(|x|−1)2

12 (−|x|3 + 7|x|2 − 16|x| + 12),
1≤|x|<2

0, 2≤|x|

, (8)

hd(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−x5

2 + 3
2x4 − x3

2 − 3
2x2 + x,

0≤x<1

−x5

2 − 3
2x4 − x3

2 + 3
2x2 + x,

−1<x<0
0, 1≤|x|

.(9)

h(x)
hd(x)
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Fig. 4. Basis function of cubic Hermite.



h(x) =

⎧⎪⎨
⎪⎩

|x|7
4 − 3

4 |x|6 − |x|5
2 + 5

2 |x|4 + |x|3
4 − 11

4 |x|2 + 1 0≤|x|<1
(|x| − 1)2( 11

108 |x|5 − 107
108 |x|4 + 377

108 |x|3 − 61
12 |x|2 + 2|x| + 1) 1≤|x|<2

0 2≤|x|
, (10)

hd(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x7

4 − x6 + x5

2 + 2x4 − 7
4x3 − x2 + x 0≤x<1

(x−1)2

36 (x5 − 10x4 + 37x3 − 60x2 + 36x) 1≤x<2
x7

4 + x6 + x5

2 − 2x4 − 7
4x3 + x2 + x −1<x<0

(x+1)2

36 (x5 + 10x4 + 37x3 + 60x2 + 36x) −2<x≤−1
0 2≤|x|

. (11)

h(x)
hd(x)
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Fig. 5. Basis function of quintic Hermite.
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Fig. 6. Basis function of heptic Hermite.

B. Calculation of Derivatives

In interpolation by the Hermite interpolating polynomials,
it is important how to calculate the value of derivatives
f ′

k, because derivatives sufficiently influence the accuracy of
interpolation. The approximation of the first derivatives by
FDs is derived from Taylor series. The second and fourth-
order central FDs at a point i are given by Eqs. (12) and (13),
respectively

f ′
i =

1
2
(fi+1 − fi−1), (12)

f ′
i =

−fi+2 + 8fi+1 − 8fi−1 + fi−2

12
, (13)

where fi and f ′
i are the values and their derivatives at i,

respectively.
On the other hand, the compact FDs at a point i are obtained

by relation equations of values (e.g. fi−2, fi−1, fi+1, fi+2)
and their derivatives (e.g. f ′

i−2, f ′
i−1, f ′

i+1, f ′
i+2). For example,

relation equations for fourth and sixth-order compact FDs are
given by Eqs. (14) and (15), respectively

1
4
f ′

i+1 + f ′
i +

1
4
f ′

i−1 =
3
4
(fi+1 − fi−1), (14)

1
3
f ′

i+1 + f ′
i +

1
3
f ′

i−1 =
fi+2 + 28fi+1 − 28fi−1 − fi−2

36
.

(15)

Compared with the central FDs approximation of the same
order, the compact FDs provide higher accuracy [5], [6].
These two compact FDs can be calculated in the same way
as determining the cubic B-spline coefficients ck. Thus, by
using these two compact FDs, we can obtain higher-order
expression of the Hermite interpolation which has almost as
large computational cost as the cubic B-spline has.

IV. EXPERIMENTS

To evaluate the interpolation results, the following strategy
was adopted; we apply a succession to the image by rotation
done r times at degree θ, where r = 36 and θ = 2π/36 = 10◦.
Thus, we compare the initial image with the final one, and
show the SNR values. Here, to avoid the boundary effects, we
made a comparison only on the central portion of the final
image.

Figure 7 (a) and (b) show 256 × 256 pixels test images.
Figure 8 (a) and (b) show the central portion of these images.
Then, Fig. 9 shows the results of rotation experiment when
using each interpolation method. Linear interpolation (Fig.9
(a)) performs worst, as compared with other methods. The
reason for this is the dissipation of high frequency components,
which causes blurring in the image. Cubic convolution with the
parameter a = -0.5 (Fig.9 (b)) and the Hermite interpolation
using central FDs (Fig.9 (d)) provide poor visual performance;
a part of the stripe pattern of the clothes seems to be blurred.
On the other hand, cubic B-spline (Fig.9 (c)) and the Hermite
interpolation using compact FDs (Fig.9 (e) and (f)) result in
less blurring. However, a careful comparison shows that the
stripe pattern is more clear in the heptic Hermite interpolation
using sixth-order compact FD than that in the cubic B-
spline. Here, we must notice that both cubic B-spline and
heptic Hermie interpolation have the same support, and require
almost the same computational cost due to determing the
coefficients ck or derivatives f ′

i .



(a) (b)

Fig. 7. Test image. (a)Barbara. (b)Lena.

(a) (b)

Fig. 8. Central portion of test image. (a)Barbara. (b)Lena.

Table I presents the numerical results of these experiments,
along with some additional methods. In particular, we also
provide the results for the standard Lena test image of Fig. 8.
The SNR for evaluation is defined as

SNR = 10 log10

N∑
k=1

f(xk)2

N∑
k=1

(f(xk) − g(xk))2
, (16)

where f(xk) is the original data, and g(xk) is the result of
the rotation.

These results illustrate the efficiency of the image interpo-
lation by the Hermite interpolating polynomial, as compared
with other methods which have the same support.

V. CONCLUSIONS

In this study, we have expressed the interpolation by the
higher-order (quintic, heptic) Hermite interpolating polynomi-
als as a convolution form, by introducing the basis function
of derivatives. Thus, the higher-order expressions with small
support are obtained as well. Moreover, high accuracy has
been achieved by using the compact FDs as the calculation
method of the derivatives. The performance of the proposed
method has been verified by comparison with some of the
conventional methods for the same support. The comparison
shows that the proposed method provides higher accuracy than
the conventional methods.
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