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Abstract—We blend two adaptive filtering techniques for fur-
ther efficiency: the set-theoretic adaptive filter (STAF, Yamada
et al. 2002) and the Krylov-proportionate adaptive filter (KPAF,
Yukawa 2009). Although the ideas behind these techniques are
quite different from each other, there is a way to blend them
together by noticing that KPAF can be seen as a sort of
‘variable-metric’ projection algorithm. We propose a blended
algorithm named set-theoretic Krylov-proportionate adaptive filter
(SKAF), which features iterative parallel variable-metric projection
onto well-designed closed convex sets. We present comparisons in
complexity and mean square error (MSE) performance, showing
significant advantages of the proposed algorithm over the existing
algorithms.

I. INTRODUCTION TO SET-THEORETIC AND
KRYLOV-PROPORTIONATE ADAPTIVE FILTERING

We consider the following linear model:

�� �� ��� �
� � ��� � � � (1)

where �� �� ���� ����� � � � � �������
�
� �

� (� : transposi-
tion) is the length-� input vector at time � � �, �� � �

�

the unknown system, and ������� the noise process. An
adaptive filter ������� is controlled by an iterative algorithm
to estimate ��; note that the minimum mean square error
(MMSE) filter coincides with �� under the natural assumption
������� � �, �� � � (see, e.g., [1]).

In this paper, we propose an efficient adaptive algorithm
based on the two different concepts of adaptive filtering: (i)
set-theoretic and (ii) Krylov-proportionate. We briefly summa-
rize their general ideas before going into the detail.

A. General Idea of Set-theoretic Adaptive Filtering
A typical optimization task is to minimize, or maximize,

a given cost function (under possible constraints). In real
engineering problems, however, such a cost function depends
usually on measurable data, which are stuck in uncertainty
due to the presence of noise. In adaptive signal processing,
moreover, the nature of data may change dynamically due to,
e.g., time variation of ��, nonstationarity of �� etc. Therefore,
it makes little sense to define a ‘fixed’ cost function based on
such unassured data and optimize it.

Set-theoretic adaptive filter (STAF) [2], [3] takes a different
approach from the conventional optimization. It is derived
from the adaptive projected subgradient method (APSM)
[4]–[6], which minimizes ‘time-varying’ cost functions in
an asymptotic sense. APSM has extensively been used to

derive efficient algorithms for a wide range of engineering
problems (see, e.g, [7]–[10]). At each time instant, STAF
moves the filter closer to the set of filtering vectors that are
consistent with recently measured data by means of parallel
subgradient projection. Specifically, at time � � �, the set
is characterized as the intersection of the following 	 closed
convex sets: 
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�
� � �

� �
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���
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��� � �
�

,  �
�� �� ��� � � �� � � � � � � 	 � ��, where ����� �� ��

�
�� ��,

� � �
� �� � 	 �	�, and � 
 	.1

B. General Idea of Krylov-proportionate Adaptive Filtering
Krylov-proportionate adaptive filter (KPAF) [1], [11] was

inspired by the successful previous works of the proportionate
adaptive filter (PAF) [12]–[15] and the Krylov-subspace-based
reduced-rank adaptive filters [16]–[21]. While those reduced-
rank filters are suboptimal due to the restriction of their
search to the subspace, KPAF is free from such a restriction
and thus provides optimal steady-state performance. The PAF
paradigm has been shifted from “exploiting the sparsity of
��” to “sparsifying �� as ����”; i.e., most components of
the vector ���� are nearly zero. Here, � � �

��� is the
orthonormalized Krylov-matrix associated with estimates of
� �� �����

�

�
� and � �� �������. The sparsification

allows us to extend the idea of PAF (which exploits the sparsity
to improve the convergence rate) to dispersive systems.

In [22], it has been shown that PAF can be interpreted as an
iterative orthogonal projection method onto the hyperplanes
�� ��

�
� � �

� � ����� � 	
�

, � � �, with time-varying
metrics. Analogously, KPAF can be seen as a sort of variable-
metric projection method; the metric is defined with the inverse
of a certain positive definite matrix �� � �

��� . For � � ��

(�� � �: training period), � and � are estimated and � is
not yet available. Therefore, we let �� �� � for � � ��. At
� � ��, the matrix � is constructed; in fact, not the whole
matrix � but only its sub-matrix with the first � columns,
say �� � �

��� , needs to be computed in practice [1] (see
Table I; ���

�
denotes the Euclidean norm). For � 
 ��, ��

is constructed as �� �� ����
� , where �� is a diagonal

positive-definite matrix whose diagonal entries are determined
based on the sparsity (see Table II). We emphasize that,
although �

��

�
-metric is employed virtually, only the sub-

matrix �� is used in actual computation.

1The index set �� is more general in [2].



TABLE I
CONSTRUCTION OF �� AT � � �� .

Requirements: ���� � �, � �� ����, Æ � ��� ��

Training for �� and �� (for � � ��):
Initialization: ��� � �

� , ��� � �
�

for � � � � �� � ������ �� ��� � ��������� �� ��� � ����
end
Construction of �� (at � � ��):��: use ����

with the symmetric and Toeplitz structure of �
�� �� ����

, �� �� ��� �����
for 	 � � � ����

if � � ����

�� �� ������
�� �� ��� ����� �� ����

�
������ �����

if ����� � Æ
� �� 	� � (redefine)
�� ��� ���

else
	� �� ��� �����
� � �� 	� ��� 	�


end
end

end

TABLE II
CONSTRUCTION OF�� [11] FOR � � �� .

Requirements: 
 � �, Æ� � �, � �� �
�����
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Construction of ��:
�
��� �� 	���

�
� ���
�
� � � � � ���

�

� �� ��

� 
� � �
�

��
	���

�

��

�
��
��

�
� �

���
������
�
��� ���

� ���
	�

�

� �� ��� � ����
	�

�

��� � � ��� �� � � � �� � ��

����
�

�� 
����Æ�� � ���
	�

�

�� � � � � � ���
	�

�

�� � ���
	���

�

��

�
	�

�

�� ��������
�

� � ���
	�

�

��� � � ��� � � � �� � ��

�� �� � ����
	���

�

�
��

��
�
	�

�

�
	�

�

�� �
	�

�

��� � �� � � ��� � � � ���

Æ� �� �
	���

�

��� � �

�� �� ������
	�

�

� �
	�

�

� � � � � �
	�

�

� Æ�� � � � Æ�� �� 	
���

�

II. PROPOSED SET-THEORETIC KRYLOV-PROPORTIONATE
ADAPTIVE FILTERING

The projection-based interpretation of KPAF guides us to
unifying STAF and KPAF in a natural way. In this section, we
present the set-theoretic Krylov-proportionate adaptive filter
(SKAF), which is a special example of the adaptive paral-
lel variable-metric projection algorithm [22] with a specific
design of closed convex sets and metric. With the ���

�
-

metric employed, the inner product is defined as ��� ��
�
��

�

��

�
�
�
��

�
�, ��� � � �

� , and its induced norm as ���
�
��

�

���
�����

�
��
�

, �� � �
� . Moreover, we denote by �

����
�

�

� ���

the metric projection of an � � �� onto a given closed convex
set � w.r.t. the ���� -metric; � ����

�
�

� ��� is characterized as����� ����
�

�

� ���� �

����
�
��
�

� ������ �� � ��
�
��
�

.

A. Set Design
Using the ���� -metric, the stochastic property set ����� for

� � � can be expressed as follows:

�
���
� ��� ��

�
� � �� � ��������������

�

� �����
� � �

�
�

� � � �� 		� �� 
 
 
 � � � ��� 	 � � (2)

where � � 	 controls the set-membership probability that
�� � �

���
� ��� [2]. The set �

���
� ��� is sandwiched between

two hyperplanes whose normal vectors are both ������;
such a set (which is apparently closed and convex) is called
hyperslab. The design of � is related to the probabilistic
theory and here we simply give the resultant examples [2]:
�� �� ��



��
��, �� �� 
��, or �� �� 	, where 
�� �� �	����.

The projection onto �
���
� ��� w.r.t. the ���� -metric is given as

follows:

�
����

�
�

�
���

�
���

��� � �� 
���
� ������

�����������
(3)

where note that ����������� � ������������
�

and


���
� ��

��� ��������
� if ������� �


�

������� 


� if ������� � ��

	 if �
� � ������� � 

��
(4)

B. Set-theoretic Krylov-proportionate Adaptive Filtering
Let ����

� � 	, � � �, 	 � �, be the weight to �
���
� ���,

respectively, satisfying
�

��� �
���
� � �, �	 � �. Employing

the sets �
���
� ��� and the ���� -metric in the adaptive parallel

variable-metric projection algorithm [22], the set-theoretic
Krylov-proportionate adaptive filter (SKAF) algorithm is given
as follows (�� �� �):2

���� �� �� 
 ����

�	
���

�
���
� �

����
�

�

�
���

�
���

����� ��



(5)
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(6)

where �� � �	� � is the step size and �� is the extrapolation
coefficient defined as

�� ��
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�

if �� ��
�
���

�
���
� ���

� otherwise.

Remark 1 (Inherent parallelism): As inherited from STAF,
SKAF is suitable for parallel implementation due to its in-
herently parallel structure [2], [3], [23]–[26]. Namely, the

2If �� �� �, we can construct �� by using the initial residual ���
� ���

in place of ���
. In this case, the initial error vector �� � �� is sparsified

by �� -transformation.



projections in (5) are independent from each other, meaning
that they can naturally be computed in parallel by means of
� concurrent processors (In addition, it has a fault tolerance
nature [3]).

C. Metric Design

We show that (i) the ���� -metric is effective in SKAF and
(ii) the low-complexity recursive formula for ����� can be
extended. Let us define ����� �� �

��
���� ���, � � �� .

Then, if we adopt the Euclidean metric (i.e., ���� � �)
and neglect the effects of � (or simply let � � �) in

(6),
�

��� �
���
�

�
���
� ������

�����������
�
�

��� �
���
�

������������
���������

is

an approximation of the normalized version of the gradient
� ������ � ����� � �����������. The same applies to the
domain transformed by �� . To be precise, left-multiply both
sides of (6) by �� , define ��� �� ���

���
� 	 ��

���
� 	 � � � 	 �����

� �� ��
���� and ��� �� ����, and let �� �� � . Then, the
transform-domain algorithm approximates the normalized gra-
dient of the function ������� �� �

� ��
� ���� � ��� ��, �� � �

� ,
from � sample data, where �� �� ���� and �� �� ���.
Therefore, we can exploit the approach in [11] which is based
on constrained optimization on �� regarding the (determinis-
tic) gradient method for �������, as it is simpler and more
tractable than the adaptive algorithm. The objective of the
optimization is to minimize —under several constraints related
to computational requirements etc.— the number of iterations
required to reduce the system mismatch ��� � ����� �������
to a target value (corresponding to 
 in Table II). Referring
to the obtained results in Table II, we can see that ����� ��
��
� �� � �� , � � �, needs to be computed at each iteration.

Left-multiplying both sides of (6) by ��
� yields the following

recursion:

������� � ����� � ����

��
���

�
���
�

�
���
�

��
���
���

�����������

�
	 � � �

(7)
Here, ��

���
��� �� ���� �������, where ���� ��

diag������ 	 �
���
� 	 � � � 	 ����� � and ������� �� ��

� ����.
Fortunately, the recursion in (7) does not cause any
severe computational burden. Indeed, in computing (6),
������ is efficiently computed as follows:

������ � ���
��
���
��� � Æ� �������� 	 Æ����� (8)

Therefore, after computing (6), all the quantities �� � �,
�
���
� � �, ��

���
��� � �

� , and ����������� � � are available
and can be used to compute (7).

III. COMPARISONS TO CONVENTIONAL ALGORITHMS
— COMPLEXITY AND MSE-PERFORMANCE

We compare the proposed algorithm with NLMS, KPAF
[11], STAF, and RLS algorithms in computational complexity
and mean square error (MSE) performance in Sections III-A
and III-B, respectively. All the results are discussed in Section
III-C.
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Fig. 1. Complexity of the proposed algorithm, NLMS, KPAF, STAF, and RLS
for ���� iterations.
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Fig. 2. Proposed algorithm versus NLMS, KPAF, STAF, and RLS under SNR
10 dB. For the proposed algorithm, (A) �� � ���� and (B) �� � ���.

A. Computational Complexity

Referring to (3) and (4), one can see that � ����
�

�

�
���

�
���

���� � ��

in the case of ���������� 	 

�, implying that in such a case

no computation is required to obtain the projection. Therefore,
the computational complexity of the proposed algorithm de-
pends on the frequency at which each projection is computed.
In fact, the frequency is a function of time. At the initial phase
of adaptation, the error is large in general, indicating that the
frequency tends to be high. In contrast, at the steady state, the
error is small, thus the frequency tends to be low; the same
applies to STAF.

We compute average frequencies for the proposed and STAF
algorithms by simulations under several different conditions,
and according to the frequencies we plot the complexity (the
total number of multiplications required for 
��� iterations) in
Fig. 1 as a function of the filter length � . For comparisons,
we also plot the complexity of NLMS, KPAF, and RLS.



B. MSE Performance
We compare the MSE performance of the proposed, NLMS,

KPAF, STAF, and RLS algorithms by simulations. We use the
white input signals ������� and randomly generated unknown
systems �� � �� for � � �� under the signal to noise ratio
(SNR) 10 dB, where SNR �� �� �	


��

�
�
�
��
�

�
��

�
��
�

��
with �� �� ��

�
��.

For the RLS algorithm, the initial estimate of the autocor-
relation matrix is set to �����

� �� ����� and the forgetting
factor is set to ���� �� ����� . For all the other algorithms,
we set the step size 	� �� ���� to attain good steady-state
performance. To compete with RLS, we also use 	� � ���
for the proposed algorithm. For the metric design of KPAF
and the proposed algorithm, we set 
��� �� �, Æ �� ����,
�� �� ���, ��� �� �, ��� �� �, � �� Æ	 �� ����, and
 �� ���
; the average value of 
 was 4.0. For STAF and the
proposed algorithm, we set � �� � and � �� ��.

C. Discussion
From Figs. 1 and 2, it is seen that “Proposed (A)” improves

the MSE performance compared to STAF and KPAF with a
fairly small increase of computational complexity; “Proposed
(A)”, STAF, KPAF, and NLMS attain approximately the same
steady-state performance. Moreover, “Proposed (B)” achieves
the MSE performance comparable to RLS with much lower
complexity. When compared to “Proposed (A)”, STAF, KPAF,
and NLMS, “Proposed (B)” exhibits slightly inferior steady-
state performance. The achieved fast convergence is due to the
use of parallel projection and the effective (variable) metric
design, and the low complexity is due mainly to a low rate
of computing the projections. It should be mentioned that, if
� parallel processors are engaged for the proposed and STAF
algorithms, the computational complexity for each processor
is even lower (see Remark 1). Finally, although we focus on
the case of �� �� ��� in the present numerical studies, the
use of larger �� will make ���

� sparser, thus is expected to
yield higher gain.

IV. CONCLUSION

This paper has presented an efficient algorithm named set-
theoretic Krylov-proportionate adaptive filter (SKAF). The
proposed algorithm is based on (i) the use of variable metric
reflecting the sparsity realized by the orthogonal transforma-
tion related to the Krylov subspace and (ii) the simultaneous
use of multiple closed convex sets containing the optimal filter
with high reliability. A low-complexity recursive formula for
the metric design has been derived. Significant advantages
of the proposed algorithm over the existing algorithms have
been demonstrated through the comparisons in complexity and
MSE-performance. A convergence analysis of the proposed
algorithm will be presented elsewhere.
Acknowledgment: This work was partially supported by
SCAT grant-in-aid.
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