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A Robust Function Estimation
in Reproducing Kernel Hilbert Space

Based on Finite Dimensional Reformulations
Shinji Shimamura and Isao Yamada

Tokyo Institute of Technology, Tokyo, Japan
E-mails:{shimamura, isao}@comm.ss.titech.ac.jp

Abstract—The function estimation in RKHS (Reproducing
Kernel Hilbert Space) from finite noisy samples is a typical ill-
conditioned inverse problem, which has been discussed mainly
based on infinite dimensional operator theoretic analysis.In this
paper, we present equivalent finite dimensional reformulations
of the problem. Thanks to our reformulations, we can apply
robust estimation techniques, e.g. the reduced-rank techniques
and L-curve method for suitable Tikhonov type regularization,
developed originally for finite dimensional ill-conditioned inverse
problems. Numerical examples show that the proposed estima-
tions using finite dimensional techniques achieve quite robust
performances in this seemingly infinite dimensional application.

I. I NTRODUCTION

The problem of estimating an unknown function with use
of only finite noisy samples has been a central issue in applied
mathematical sciences and technologies, e.g. best approxima-
tion theory, machine learning, pattern recognition, signal and
image processing and communication systems. Many practical
extensions of the so-calledShannon’s sampling theorem have
been discussed on the stage of the RKHS (Reproducing Kernel
Hilbert Space)[1] defined as the vector space of all band-
limited functions. This setting is mathematically convenient
because the information on the function value at any specified
sampling point can be incorporated simply as a linear equality
constraint in the space. Among many such studies, a milestone
is found in the theory ofoptimal reconstruction operator [2],
where the general solution for a certain operator optimization
problem is completely solved in more general scenarios. If
we restrict the discussion in [2] to a simpler scenario, the
theory tells us valuable information for our problem. For
example, an elegant operator theoretic analysis in [2] shows
that the optimal reconstruction operators offer not only the
best approximationf∗ of f among all possible approximations
through all linear operators in noise free situation but also
offers thebest linear unbiased estimate (BLUE) of f∗ even
if the samples are influenced by noise (See also [3]). On the
other hand, the problem of estimating an unknown function
from finite noisy samples is obviously a typical constrained
linear inverse problems for which the BLUE often becomes
sensitive against noise due to certain ill-conditioned natures
of the problems. So far theoptimal reconstruction operator
and its several extensions have been discussed through infinite
dimensional operator theoretic analysis. Although some vari-
ations, e.g. [3], of the optimal reconstruction operator employ

essentially certain Tikhonov type regularizations (See also [4]
in a different scenario), but not necessarily designed based on
existing techniques developed recently for finite dimensional
inverse problems, e.g., reduced rank techniques [5], [6], [7]
and L-curve method [8] which has been used extensively as
an effective tuning of Tikhonov type regularization parameter.

In this paper, we first remark that the optimal reconstruction
operator can be expressed equivalently in terms of finite
dimensional matrix, from which we present an equivalent
finite dimensional matrix expression of the squared bias and
the variance achieved by any optimal reconstruction operator.
These reformulations tell us that if the samples are taken
so as for the kernels specified at corresponding samples to
be linearly independent, theoptimal reconstruction operator
produces the unique unbiased estimator and does not have any
chance to suppress further its variance caused essentiallyby
noise even in worst case scenario such that the Gram matrix
is ill-conditioned. Unfortunately, such ways of sampling have
often been found in the most practical scenario where finite
samples are taken equidistantly but their interval is smaller
than Nyquist rate for the band-limited type RKHS.

Fortunately, thanks to our finite dimensional reformulations
of the original inverse problem, even if the Gram matrix is ill-
conditioned, we can apply many robust estimation techniques
developed originally for finite dimensional ill-conditioned in-
verse problems. We propose to apply a pair of promising
techniques of which the effectiveness has been confirmed in
extensive applications. One is a reduced-rank estimation [5],
[6], [7] and the other is a well-knownL-curve method [8]
for suitable Tikhonov type regularization. Numerical examples
show that the proposed estimations using finite dimensional
techniques achieve quite robust performances in this seemingly
infinite dimensional application.

II. PRELIMINARIES

A. Reproducing Kernel Hilbert Space

Let HK be a real Hilbert space of a class of real valued
functions defined onD ⊂ R

n. If there is a functionK :
D ×D → R such that

1) ∀x̂ ∈ D, K(·, x̂) ∈ HK

2) ∀x̂ ∈ D, ∀f ∈ HK , f(x̂) = 〈f(·), K(·, x̂)〉
HK

where 〈·, ·〉
HK

stands for the inner product of theHK , the
Hilbert spaceHK is called a Reproducing Kernel Hilbert



Space (RKHS) with its Reproducing Kernel K (See [1] for
mathematical properties of the RKHS).

Example 1: (Band-limited type reproducing kernel [9])
The closed subspace

HKΩ :=
{
f ∈ L2(−∞,∞) |

∫ ∞

−∞

f(t)e−jωtdt = 0, ∀ω 6∈ [−Ω, Ω]

}

of the Hilbert spaceL2(−∞,∞) is an RKHS with its repro-
ducing kernel

KΩ(x, x̂) =
sin Ω(x − x̂)

π(x − x̂)
, (x, x̂ ∈ R). (1)

Any function f ∈ HKΩ is said to be band-limited with
bandwidthΩ because its Fourier transform off is vanished
outside the interval[−Ω, Ω]. The RKHSHKΩ has been the
main stage of the Shannon’s sampling theorem and its many
extensions. A simplest as well as most typical set of samples
is equidistant point sampling at higher than Nyquist rate, i.e.,

xk = x1 + (k − 1)δ (k ∈ N),

where0 < δ < π/Ω. In this case, the corresponding Gram
matrix GΩ :=

[
KΩ(xi,xj)

]
∈ R

ℓ×ℓ is positive definite but
becomes very ill-conditioned for largeℓ because its singular
valuesσ1 > σ2 > · · · > σℓ(> 0) follow C(ℓ) = σ1

σℓ
⋍

ρ
ℓ1/4

e
γℓ
2 , whereρ andγ do not change significantly.

B. An Optimal Reconstruction Operator as a Function Esti-
mation from Noisy Samples

Given finite noisy samples{(xi, yi) | i = 1, · · · , ℓ} ⊂ R
n×

R observed as

y := (y1, . . . , yℓ)
t
= (f(x1), . . . , f(xℓ))

t
+ n (2)

A(f) := (f(x1), . . . , f(xℓ))
t andn := (n1, . . . , nℓ)

t(3)

where f is the unknown function to be estimated,ni is a
zero-mean additive noise and the operatorA : HK → R

ℓ is a
linear operator called thesampling operator defined as in (3).
Our goal is to give a good estimate of the functionf ∈ HK

from the noisy sample data{(xi, yi) | i = 1, · · · , ℓ}. This
problem has been studied extensively as a valuable practical
extension of so called theShannon’s sampling theorem. A
milestone along this direction is found in the theory ofoptimal
reconstruction operator [2], where the general solution for a
certain operator optimization problem is explicitly presented
in more general scenarios. If we restrict the discussion in
[2] to a special case:H1 = H2 = HK and A1 = I (see
[2] for the definitions ofH1, H2 and A1), the theory is
applicable to our problem, i.e., function estimation in RKHS
with use of noisy finite samples. In this setting, Theorem 1
in [2] guarantees the existence of an optimal linear operator
Xopt : R

ℓ → HK that not only achievesXoptA = PR(A∗)

but also guarantees thatXopt(y) is the best linear unbiased
estimate (called also the minimum variance unbiased linear
estimate) off∗ := PR(A∗)(f) (See also [3] on this inter-
pretation), wherePR(A∗) denotes the orthogonal projection

onto the range subspaceR(A∗) of the adjoint operatorA∗

of the sampling operatorA. An elegant operator theoretic
analysis in [2] shows that the subspaceR(A∗) is the largest
one among all possible range spaces achieved by any linear
operatorX : R

ℓ → HK , i.e.,R(XA) ⊂ R(A∗) = R(XoptA),
henceXopt(y) = PR(A∗)(f) is the best approximation off
among all possible approximations through all linear operators
in noise free situation.

III. A R OBUST FUNCTION ESTIMATION VIA FINITE

DIMENSIONAL REFORMULATION

A. Limitation of Optimal Reconstruction Operator

Note that the function estimation problem touched in the
previous section allows us to use only finite information
to determine a point in the infinite dimensional spaceHK .
This simple observation suggests that we can reformulate the
estimation problem in terms of finite dimensional vector space
R

ℓ.
We start our discussion with the following simple observa-

tion:

R(A∗) = M := span(K(·,x1), · · · , K(·,xℓ)) ⊂ HK .

which is confirmed simply by

〈A(f), α〉Rℓ =

ℓ∑

i=1

αif(xi) =

ℓ∑

i=1

αi〈f, K(·, xi)〉HK

=

〈
f,

ℓ∑

i=1

αiK(·, xi)

〉

HK

= 〈f, A∗(α)〉HK

(∀f ∈ HK , ∀α := (α1, . . . , αℓ)
t ∈ R

ℓ).

From this observation, we see that the optimal linear oper-
ator Xopt : R

ℓ → HK in the previous section satisfies

XoptA(f) = PM(f) =

ℓ∑

i=1

βiK(·,xi) ∈ M,

for someβ := (β1, . . . , βℓ)
t ∈ R

ℓ, where the orthogonal pro-
jection theorem in Hilbert space ensures the unique existence
of PM(f) as the best approximation off in M hence the
existence of such aβ (Note: the uniqueness ofβ is guaranteed
only when{K(·,xi)}ℓ

i=1 are linearly independent). Moreover,
by using the well-known factM⊥ = R(A∗)⊥ = N (A), we
can also observe that the model (2) is reduced to

y = A(f) + n = A
(
PM(f) + PN (A)(f)

)
+ n

= A (PM(f)) + n =

ℓ∑

i=1

βiA (K(·,xi)) + n

=

ℓ∑

i=1

βi (K(x1,xi), . . . , K(xℓ,xi))
t
+ n, (4)

which suggests thaty does not contain any effective infor-
mation for the componentPM⊥(f). The componentPM⊥(f)
can be estimated only with some additional a priori knowledge
on f not through simple sampling atxi (i = 1, 2, . . . , ℓ).



B. Finite Dimensional Reformulation of An Optimal Recon-
struction Operator

Assume the standard situation: R(A) ={
(f(x1), . . . , f(xℓ))

t ∈ R
ℓ | f ∈ HK

}
= R

ℓ. In

this case, any linear operatorX : R
ℓ → HK

satisfying XA = PR(A∗) has its own range space
R(X) = R(XA) = R

(
PR(A∗)

)
= R(A∗) = M,

hence there existsΦ := (φ1, . . . , φℓ)
t ∈ R

ℓ×ℓ such that

X(y) =

ℓ∑

i=1

K(·, xi)φ
t
iy (y ∈ R

ℓ).

This fact shows clearly that any design problem for the opera-
tor X is equivalent to that for the matrixΦ without loss of any
generality. Moreover, since the best possible approximation of
f by linear operator under noise free situation is

PM(f) =

ℓ∑

i=1

βiK(·, xi),

our best achievable goal is the minimization of

Jmse(X) := E (X(y) − PM(f))
2

= E

[
ℓ∑

i=1

K(·, xi)φ
t
iy − PM(f)

]2

=: Ĵmse(Φ).

If we use the Gram matrixG := [K(xi,xj)] ∈ R
ℓ×ℓ, we have

alternative expression:

Ĵmse(Φ) = {(ΦG − I)β}t
G(ΦG − I)β

+
∑

i

∑

j

K(xi, xj)φ
t
iE(nnt)φj ,

where the 1st term expresses the squared bias of the estimate
X(y) of PM(f), and the 2nd term expresses its variance. Fi-
nally, we observe that the design of anoptimal reconstruction
operator [2] is reduced to the finite dimensional constrained
optimization problem (on the matrixΦ):

{
minimize

∑ℓ
i=1

∑ℓ
j=1 K(xi, xj)φ

t
iE(nnt)φj

subject to {(ΦG − I)β}t G(ΦG − I)β = 0.

Remark that under the most typical situation whereG is a
positive definite matrix (See Example 1), we have only one
choiceΦ = G−1 in order to satisfy the unbiasedness. In this
case, theoptimal reconstruction operator offers G−1y as the
estimate ofβ, i.e.,

ℓ∑

i=1

K(·, xi)e
(ℓ)
i

t
G−1y ≈

ℓ∑

i=1

K(·, xi)βi = PM(f),

wheree
(ℓ)
i denotes thei-th vector of the canonical basis of

R
ℓ.
Unfortunately, as seen in the Example 1, the matrixG is

often very ill-conditioned, hence theoptimal reconstruction
operator determined withΦ = G−1 in this case becomes very
sensitive against noise.

C. Robust Function Estimation by Finite Dimensional Tech-
niques

In this subsections, we propose a pair of robust function
estimators by applying finite dimensional techniques [5], [6],
[7], [8] applicable to estimation ofβ in (4) which is usually
ill-conditioned inverse problems.

Assume that the noisen ∈ R
ℓ in (2) is a zero mean random

vector with its positive definite covariance matrixE(nnt) =
σ2Q ∈ R

ℓ×ℓ. Let the singular value decomposition (SVD) of
G:

G = UΣV t =

rank(G)∑

i=1

σiuiv
t
i (5)

whereU = (u1, · · · ,uℓ) ∈ R
ℓ×ℓ, V = (v1, · · · ,vℓ) ∈ R

ℓ×ℓ

are orthogonal matrices andΣ ∈ R
ℓ×ℓ contains on its main

diagonal the singular valuesσ1 ≥ σ2 ≥ · · · ≥ σrank(G) of
G and 0′s elsewhere. We also assume that these pieces of
information are available to estimateβ.

1) Reduced-Rank Techniques: In this simple scenario, we
propose to use, as a simplest example of MV-PURE estimator
[7],

Φr := ṼrṼ t
r (G̃tG̃)−1G̃tQ−1/2, (6)

where r ≤ rank(G), Ṽr = (ṽ1, · · · , ṽr) and Ṽ :=
(ṽ1, · · · , ṽℓ) is given by the SVD:G̃ := Q−1/2G = ŨΣ̃Ṽ t,
and approximateβ by Φr(y). This estimator was proposed
in [6] as a direct generalization of Marquardt’s reduced-rank
estimator [5]. Obviously,Φr satisfies rank(Φr) ≤ r and
can eliminate the influence of very small singular values
σr+1, · · · , σℓ. We will present a simple criterion for selection
of r in Section IV (8).

2) L-curve method for Tikhonov regularization: A
Tikhonov type regularization of the optimal reconstruction op-
erator has been proposed for example in [3], which inherently
introduces bias to make the operator to be more robust against
noise. However the design of the regularization parameter in
[3] is not made based on well-known techniques e.g.L-curve
method [8] which has been widely used mainly for finite
dimensional inverse problems. We propose a Tikhonov type
regularization withL-curve method for the estimation ofβ. By
using the SVD ofG (5), Tikhonov’s regularization estimator
Φα is derived as follows:

Φα :=

rank(G)∑

i=1

σi

σ2
i + α

viu
t
i. (7)

The parameterα is determined by the algorithm shown in [10].

IV. N UMERICAL EXAMPLES

In this section, we present numerical examples for the
RKHS with its kernelK2π(x, x̂) = sin 2π(x−x̂)

π(x−x̂) in Example
1. The unknown function to be estimated is given byf(x) =
sinc(x) = sin πx

πx
. Noisy samples are given equidistantly as{

(xi, yi = f(xi) + ni) | xi = −10 + 20
ℓ−1 i (i = 0, . . . , ℓ − 1)

}

where ni is white Gaussian noise of which the covariance
matrix is σ2Iℓ. The accuracy of the estimatêf is measured
by

‖f − f̂‖max := max
x∈[−10,10]

|f(x) − f̂(x)|



‖f − f̂‖2 :=
{∫ 10

−10

|f(x) − f̂(x)|2 dx
}1/2

We compared the performances of the function estimators
based on finite dimensional estimation techniques forβ ∈
R

ℓ in III-A. Fig.1, Fig.2 and Fig.3 depict the experimental
result. ’Reduced-Rank’ denotes the Reduced-Rank Estimator
(6), where rankr is chosen by following rule:

argmaxr

(√
σ2

1 + · · · + σ2
r√

σ2
1 + · · · + σ2

ℓ

< 0.8
)

(8)

’L-curve’ uses the Tikhonov’s regularization method (7) with
its regularization parameter designed byL-curve method [10].
’BLUE’ denotes the function estimated through BLUE for
β ∈ R

ℓ. Fig.1 and Fig.2 demonstrate the effectiveness of the
proposed techniques for a pair of criteria in particular forlarge
number of samples are used. We also demonstrate the potential
of the Reduced-Rank technique in Fig.3 by showing the ideal
performance achievable with globally optimal rank.
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