Recent studies have shown that the global population of patients suffering from kidney disease is rapidly increasing. Renal disease, including chronic kidney disease (CKD), is a significant problem in all animals. In this study, we analyzed urinary deciduated cells (UDCs) derived from glomerular epithelial cells and collecting duct cells to develop new non-invasive early diagnostic methods. Our study will contribute to the development of earlier diagnostic methods.

Introduction

Recently, the global population of patients with CKD, associated with the change of lifestyle, is rapidly increasing. Renal disease including CKD is the most serious problem in all animals. In the present study, we analyzed UDCs to develop new non-invasive early diagnostic methods. Our study will contribute to decrease the number of patients having renal disease.

Materials and methods

<animals>
- Renal disease model: male BXSB/MpJ (lupus nephritis model<CKD model>, n=3)
- Control mice; male C57BL/6 (n=3)

<animals>

Section 1: Cytological observation of UDCs

BXSB/MpJ (12-week-old, No.1) C57BL/6 (12-week-old, No.1)

Magnified image of UDCs from BXSB/MpJ No.1 urine

UDCs with pyknotic nucleus
- Small round shaped cells
- Round(○) or spindle-shaped(◇) cells

UDCs without nucleus
- Homogeneous and amorphous cell-component
- Other kinds of cells (such as red blood cell, blood platelet etc.)

The UDC numbers of BXSB/MpJ mice were significantly higher than those of C57BL/6 mice. (However, these cells cannot be identified by morphological analysis.)

Section 2: Urinary mRNA expression

Moderate glomerular lesion (PAS, Bar=50μm)

Slight glomerular lesion (PAS, Bar=50μm)

The expressions of Wt1 and Aqp2 were not detected from the urine samples of BXSB/MpJ No.2 and No.3.

It is suggested that UDCs derived from glomerulus and collecting appeared with the developments of renal pathological lesion in BXSB/MpJ.

Conclusion

1. The urinary decidual cells (UDCs) derived from glomerular epithelial cells and collecting duct cells could be detected and increased with the development of lupus nephritis.
2. Evaluating the UDCs may be useful for diagnosis of lupus nephritis which is progress to chronic kidney disease (CKD).
3. In future study, we will target other urinary molecules derived from damaged kidney for development of earlier diagnostic methods.