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Abstract—An FFT-based full-search block-matching algorithm
is described that uses the sum of squared difference(SSD) crite-
rion. The proposed method focuses on the relationship between
the circular cross-correlation and the SSD criterion. Because
FFT is used to calculate the cross-correlation between signals of
different sizes, the processing speed of block matching is greatly
increased. If the macroblock is composed of real signals, two
blocks can be matched at the same time. In a simulation of motion
estimation, the proposed method achieved the same performance
as a direct SSD full search, but with a processing speed 8 to 700
times higher.

I. INTRODUCTION

Block matching is widely used in many fields, including
pattern recognition, object tracking, motion detection, and
motion estimation. Because of its efficiency and simplicity,
it has been widely adopted in many video coding standards.
However, the direct full-search block-matching algorithm(with
exhaustively searches for every possible candidate in the
search window to find the most similar block) imposes a heavy
computational load, which makes it almost impossible to use
in any application. To solve this problem, many fast block-
matching algorithms(BMAs) have been developed. Their basic
approaches can be generally divided into three types.

The first type uses an approximative search window instead
of a full search window. For example three-step search[1]
and diamond search[2] are based on this approach. While the
computational load is greatly decreased, the accuracy is less
than that of a full-search BMA, and the initial value greatly
affects the results.

The second type has the same performance as a full-search
BMA in terms of accuracy, but imposes a lighter compu-
tational load so processing speed is higher. The successive
elimination algorithm(SEA)[3][4] is one representative of this
type. However, the degree to which the computational load
can be reduced depends on the input signal.

These first two types operate in the spatial domain. The third
type shifts the spatial domain problem into the frequency do-
main by using phase correlation[5] or cross-correlation[6][7].
And in all these full-search BMAs, SSDcorr[7] has the highest
processing speed.

Here we describe an FFT-based full-search BMA that is
of the third type. The proposed method focuses on the rela-
tionship between the circular cross-correlation and the SSD
criterion. With this method, we do not have to extend real
signals into complex signals, a big difference compared to

Fig. 1. macroblock and Search window.

other methods using FFT-based cross-correlation[6][7]. What-
ever the input signal, an FFT approach involves complex
arithmetics. Therefore, if two macroblocks share the same
search window and all signals are real, the proposed method
can match them at the same time. And the greater the number
of macroblocks, the higher the processing speed.

II. PREPARATION

We begin by defining block matching and discussing the
relationship between the cross-correlation and SSD of two
circular signals of the same size. Let Z denote the set of integer
numbers.

A. Block matching

First, a definition for block matching is needed. As shown
in Fig.1(a) and (b), let 2-D signal b(x, y) be a macroblock,
and let 2-D signal f(x, y) be the search window. Suppose that
the search window is bigger than the macroblock. That is,

b(x, y), x = 0, 1, . . . , A − 1, y = 0, 1, . . . , B − 1, (1)

f(x, y), x = 0, 1, . . . ,M − 1, y = 0, 1, . . . , N − 1. (2)

A < M,B < N, x, y,A,B ∈ Z.

Inside the search window there are (N − B) × (M − A)
different blocks, which have the same size as the macroblock
in terms of integral pixels. All these different blocks are
compared with the macroblock to find the most similar one(the
one with the minimum matching error). This procedure can be
defined as “full-search block matching”. One of the matching



criteria is the sum of squared differences(SSD) as

SSDb,f (u, v) =
A−1∑
x=0

B−1∑
y=0

{f(x + u, y + v) − b(x, y)}2 (3)

u ∈ [0,M − A], v ∈ [0, N − B], u, v ∈ Z.

The u and v are shift amounts. The purpose of block matching
is to find the particular (u, v) that yields the minimum of the
matching criterion:

(u0, v0)SSD = min
u,v

{SSDb,f (u, v)}. (4)

B. Circular cross-correlation and SSD

Next, let us take a look at the relationship between the
circular cross-correlation and SSD of two circular signals,
g(x, y) and f(x, y), that have the same period (M×N ). Given
shift amounts u and v, the circular cross-correlation of g(x, y)
and f(x, y) can be defined as

ĉorg,f (u, v) =
N−1∑
y=0

M−1∑
x=0

g(x, y)f(x + u, y + v), (5)

(u ∈ [0,M − 1], v ∈ [0, N − 1]).

The SSD of two signals can be written as

SSDg,f (u, v) =
N−1∑
y=0

M−1∑
x=0

{g(x, y) − f(x + u, y + v)}2

= Cg − 2ĉorg,f (u, v) + Cf .

(6)

where

Cg =
N−1∑
y=0

M−1∑
x=0

{g(x, y)}2, (7)

Cf =
N−1∑
y=0

M−1∑
x=0

{f(x + u, y + v)}2 =
N−1∑
y=0

M−1∑
x=0

{f(x, y)}2.

(8)

Because Cg and Cf are independent of shift amounts u and
v,

(u0, v0)SSD = min
u,v

{SSDg,f (u,v)} = max
u,v

{ĉorg,f (u, v)}.
(9)

The DFT of the cross-correlation, the “cross-spectrum” can
be calculated using the FFT approach if both signals are
circular and have the same period. If these conditions hold,
the (u0, v0)SSD in Eq.(9) can be easily found.

III. PROPOSED METHOD

A. Non-circular cross-correlation

In the block matching, the macroblock b(x, y) and search
window f(x, y) are non-circular signals of different sizes.
Therefore, we can not use the property discussed in the
foregoing section directly. To solve this problem, we need to

extend macroblock signal b(x, y) into a new signal, gb(x, y),
by padding it with zeros, as shown in Fig.1(c). Namely,

region R = {(x, y)|A − 1 < x ≤ M − 1 or B − 1 < y ≤ N − 1},
region S = {(x, y)|0 ≤ x ≤ A − 1 and 0 ≤ y ≤ B − 1},
entire region Q = R ∪ S.

(10){
gb(x, y) = 0, (x, y) ∈ R,

gb(x, y) = b(x, y), (x, y) ∈ S.
(11)

Then it is assumed that the extended signal, gb(x, y), and
search window signal, f(x, y), are both circular. Therefore,
the circular cross-correlation of the two signals can be written
as

ĉorgb,f (u, v) =
N−1∑
y=0

M−1∑
x=0

gb(x, y)f(x + u, y + v), (12)

(u ∈ [0,M − 1], v ∈ [0, N − 1]).

Let the range of shift amounts u and v be appropriate to the
case of block matching in Eq.3 and define the cross-correlation
as

corgb,f (u, v) =
N−1∑
y=0

M−1∑
x=0

gb(x, y)f(x + u, y + v), (13)

(u ∈ [0, M − A], v ∈ [0, N − B]).

Then we can get the relation

corgb,f (u, v) = ĉorgb,f (u, v), (14)

(u ∈ [0,M − A], v ∈ [0, N − B]).

This means that the non-circular cross-correlation,
corgb,f (u, v), can be calculated by using the FFT.

B. Non-circular cross-correlation and SSD

According to Eq.(6), SSDgb,f (u, v) can be written as

SSDgb,f (u, v) = Cgb
− 2corgb,f (u, v) +

∑
(x,y)∈Q

{f(x + u, y + v)}2,

(15)

where

Cgb
=

B−1∑
y=0

A−1∑
x=0

{b(x, y)}2. (16)

Since Eq.(3) and gb(x, y) are made up of two regions,
SSDgb,f (u, v) can also be written as

SSDgb,f (u, v)

=
∑

(x,y)∈R

{gb(x, y) − f(x + u, y + v)}2+

∑
(x,y)∈S

{gb(x, y) − f(x + u, y + v)}2,

=
∑

(x,y)∈R

{f(x + u, y + v)}2 + SSDb,f (u, v).

(17)



Therefore, combining Eqs.(15) and (17) we obtain

SSDb,f (u, v) = Cgb
− 2corgb,f (u, v) + Sf2(u, v), (18)

where

Sf2(u, v) =
∑

(x,y)∈S

{f(x + u, y + v)}2, (19)

=
∑

(x,y)∈S

f2(x + u, y + v). (20)

Thus,

(u0, v0)SSD = min
u,v

{SSDb,f (u, v)},

= max
u,v

{2corgb,f (u, v) − Sf2(u, v)}. (21)

The corgb,f (u, v) can be easily calculated by using the FFT.
Since Sf2(u, v) can be considered as the convolution or the
correlation, there are some different ways to calculate it.

For example, we may use a recursive running sum (RRS)
filter[8] and the transfer function for the RRS filter can be
written as

H(z1, z2) = (1 + z−1
1 + · · · + z

−(B−1)
1 )

(1 + z−1
2 + · · · + z

−(A−1)
2 ), (22)

=
1 − z−B

1

1 − z−1
1

1 − z−A
2

1 − z−1
2

. (23)

When Sf2(u, v) is calculated as the convolution, only 4
additions is needed for one coordinate point.

We may also calculate Sf2(u, v) using FFT-based cross-
correlation which has higher processing speed and is easier to
be applied, if the process is performed by software such as
Matlab.

In addition, from a point view of computational load, the
heaviest part in Eq.(21) is the calculation of corgb,f (u, v).

C. BMA for real signals

In most cases, macroblock and search window in the block
matching are real signals. In contrast, the FFT approach is
designed for complex signals. Unlike other FFT-based methods
that need to use the imaginary part of real signals, the proposed
method does not extend a real signal into a complex one.
Therefore, if we combine two real signals to form a complex
signal before the FFT approach, the proposed method can
match two macroblocks sharing the same search window at
the same time.

For a simple explanation, let us assume three 1-D real
signals of the same length, N : g1(n), g2(n), and f(n). G1(k),
G2(k), and F (k) are the DFTs of the signals, respectively.
We combine g1(n) and g2(n) to create a new complex signal,
h(n) = g1(n) + jg2(n). The DFT of h(n) can be written
as H(k) = G1(k) + jG2(k). Therefore, the cross-correlation
between h(n) and f(n) can be written as

Fig. 2. Four macroblocks sharing the same search window.

ĉorh,f (n) =
1
N

N−1∑
k=0

H(k)F (k)W−nk
N

=
1
N

N−1∑
k=0

(G1(k) − jG2(k))F (k)W−nk
N

=
1
N

N−1∑
k=0

G1(k)F (k)W−nk
N − j

1
N

N−1∑
k=0

G2(k)F (k)W−nk
N ,

(24)

where j is the square root of −1, H(k) means the complex
conjugate of H(k), and W−nk

N = e−j2π/N .
Note that the real part of ĉorh,f (n) is the cross-correlation

between g1(n) and f(n) and that the imaginary part of
corh,f (n) is the cross-correlation between g2(n) and f(n).

D. BMA for multiply macroblocks

Let us consider the case shown in Fig. 2(a). Four mac-
roblocks, b1(x, y), b2(x, y), b3(x, y), and b4(x, y), share the
same search window, f(x, y). They are all real signals.

Using the property discussed before, the proposed method
can match two macroblocks at the same time. And please
note that Sf2(u, v) is separated from the macroblocks and the
search window. Therefore we calculate this part only one time.
These two advantages make the proposed method better than
SSDcorr[7] at matching multiply macroblocks in terms of the
computation efficiency. Fig.3 shows times for FFT and IFFT,
which are the heaviest part in the computation load, against
number of macroblock sharing the same search window.

Motion estimation may involve such a case of block match-
ing many times, so using the proposed method can increase
the processing speed significantly. Fig.4 shows the flow chart
for the proposed method when only one macroblock needs to
be matched. Fig.2(b) shows the flow chart for matching four
macroblocks sharing the same search window.

IV. SIMULATION

We simulated motion estimation by using the 0-9 frames of
the video sequence “caltrain”. We used one frame before the
current one to generate a predicted frame. The macroblock size



Fig. 3. Times for FFT and IFFT against number of macroblock sharing the
same search window.

Fig. 4. Flow chart for proposed method. j is the square root of −1. F (k, l)
and Gb(k, l) are DFTs of f(x, y) and gb(x, y).

was fixed at 16 × 16. There were two search window sizes:
32 × 32 (±8 pixels around the macroblock) and the entire
frame (400 × 512). We compared four different methods in
terms of both the PSNR (between the predicted frame and
the current one) and the processing speed. The methods were
direct SSD full search, SSD diamond search[2], SSDcorr[7],
and the proposed method.

Fig.5 plots the PSNR between the predicted frame and the

Fig. 5. PSNR between predicted frame and current frame. Diamond search
depends greatly on the start point. The larger the search window, the better
the PSNR of Proposed method.

TABLE I
PROCESSING SPEED OF GENERATING ONE PREDICTED FRAME(1).

Method Time(s) Ratio
Proposed (SW size: 32 × 32) 0.36 1.0

SSD diamond search (start point (0,0)) 0.78 2.2
SSD diamond search (start point (3,0)) 1.02 2.8

Direct SSD full search (SW size: 32 × 32) 3.05 8.5

TABLE II
PROCESSING SPEED OF GENERATING ONE PREDICTED FRAME(2).

Method Time(s) Ratio
Proposed (SW size: entire frame) 26.6 1.0
SSDcorr (SW size: entire frame) 44.1 1.7

Direct SSD full search (SW size: entire frame) 19.6 × 103 737

current frame for different methods. The proposed method and
SSDcorr are exactly the same as the direct SSD full search
from the view point of the PSNR, so in Fig.5 they share the
same curve. Diamond search depends greatly on the start point.
So if we do not select the start point appropriately, both the
PSNR and the processing speed became worse.

Table I and Table II show the processing speed of generating
one predicted frame using different methods. We can see that
the proposed method is faster than the others. (The experi-
ments were performed using Matlab 6.0 on a computer with
an Intel Core2 2.4-GHz CPU and 2-GB memory. Sf2(u, v)
were calculated using FFT-based cross-correlation.)

V. CONCLUSIONS

In this paper, we proposed a full-search block-matching
algorithm that uses the sum of squared difference (SSD)
criterion. Because we define the SSD criterion on the basis
of the cross-correlation, which can be calculated using FFT
approach, the spatial domain problem is shifted into the
frequency domain. If the block-matching signals are all real
and more macroblocks share the same search window, the
processing speed can be largely increased.
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