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Abstract— This report theoretically analyzes the condition on 
word length of coefficients and signals such that the discrete 
wavelet transform (DWT) becomes DC lossless. The DWT 
discussed here is irreversible for an arbitrary input signal. 
However, it becomes lossless for a constant valued (DC) input 
signal under the condition. In conventional approaches, error 
due to shortening of word length of signals (signal error) and 
that of coefficients (coefficient error) are treated as additive and 
multiplicative, respectively. In this report, we introduce a new 
model which shifts the coefficient error to the signal error in 
order to treat them as additive. Furthermore, utilizing the fact 
that the accumulated error inside the circuit is nullified by the 
rounding at its output, we derive the condition for the DC 
lossless DWT. Theoretical bound of the word length is derived 
and the minimum word length is found to be 14 [bit] for 8 [bit] 
input signals. 

I. INTRODUCTION 

Recently the JPEG 2000 based on the discrete wavelet 
transform (DWT) was adopted as an international standard for 
digital cinema [1,2]. In the DWT circuit, all of signal values 
and coefficient values are expressed with finite word length. It 
contributes to high speed and low power implementation to 
shorten the word length [3,4]. However, the DWT is designed 
under the assumption that the word length is infinite. 
Therefore, it is inevitable to have loss due to shortening the 
word length in output signals of the DWT circuit. 

The lifting structure has been widely developed since it can 
cancel the loss between the forward transform and the 
backward transform [5,6]. In the JPEG 2000, the reversible 5-
3 DWT and the irreversible 9-7 DWT are utilized for lossless 
coding and lossy coding respectively [1]. The 9-7 DWT can 
achieve high performance lossy coding. However, it can't be 
lossless because of scaling for adjustment of signal gain [7]. 

Constructing the scaling with the lifting structure, a 
reversible 9-7 DWT is proposed [8]. However, its 
performance in lossless coding and in lossy coding is inferior 
to that of the reversible 5-3 DWT and the irreversible 9-7 
DWT respectively. 

In this report, we theoretically analyze the condition on 
word length of coefficient values and signal values such that 
the irreversible 9-7 DWT becomes DC lossless. Under this 
condition, output signals of the DWT contain no loss for a 
constant valued (DC) input signal. This DC lossless property 
is considered to be effective for the white balancing of a video 
system [9,10]. 

In conventional approaches, the error due to shortening the 
word length of signals (signal error) is described as additive to 

the signal [7]. It is treated as an independent and uniformly 
distributed white signal. On the other hand, the error of 
coefficients (coefficient error) is described as multiplicative to 
the signal and evaluated by the sensitivity [11]. However, 
both of them have been treated independently and their 
mutual effect has not been well studied. 

In this report, we introduce a new model which shifts the 
coefficient error to the signal error in order to treat them as 
additive. As a result, their mutual effect is taken into account. 
Furthermore, utilizing the fact that the accumulated error 
inside the circuit is nullified by the rounding at its output, we 
derive the condition for the DC lossless DWT. As a result, 
theoretical bound is derived as a function of the word length 
of signals and coefficients. Defining a cost function, we also 
find the minimum word length under the condition. 

II. DC LOSSLESS DWT AND ITS WORD LENGTH 

A. Irreversible 9-7 DWT 

Fig.1 illustrates the irreversible 9-7 DWT in the JPEG 2000 
[1]. The input signal x(n), n={1,2, ,N} is transformed to the 
band signals y1(m) and y2(m), m={1,2, ,N/2}. These are 
backward transformed to reconstruct the signal w(n). In the 
figure, z-1 and ↓2 indicate the delay and the down sampler 
respectively. The coefficients ci, i{1,2, ,6} of multipliers 
are designed as real numbers. In implementation, their word 
lengths are shortened. The fraction part of a signal value is 
also truncated to FS, FB or FX [bit] by the rounding operation 
illustrated as a circle in the figure.  
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Fig.1   Irreversible 9-7 DWT. 



B. Word Length and Rounding Error 

In this report, we use the rounding operation defined by 
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as an example. It shortens the fraction part of the word length 
of a signal value s into FS [bit]. It also generates the error: 
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Denoting the integer part as IS [bit], the word length WS [bit] 
of a signal s is defined by 

 
1 SSS FIW  [bit]                          (3) 

 
including 1 [bit] for the sign part. Similarly, the word length 
WC [bit] of a coefficient c is defined by 

 
1 CCC FIW  [bit] .                       (4) 

 
Especially, in this report, we utilize the property [12]: 
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to analyze the condition on the word length for DC lossless. 

 

C. DC Lossless DWT 

In a video system, an input signal is processed through a 
camera, a pair of an encoder and a decoder, and a display. 
When the camera and the display are adjusted, a white 
balancing signal which is a constant valued signal (DC signal) 
is commonly used [10]. In this case, it is desirable that the 
encoder and the decoder do not generate any loss.  

In this report, we define the loss as the difference between 
the output signal of the DWT with infinite word length and 
that of the DWT with shortened word length. For DC input, 
when the output of the backward transform (reconstructed 
signal) w(n) becomes lossless, we call it DC lossless in wide 
sense (DCL-W). When the output of the forward transform 
(band signal) y1(m) and y2(m) become lossless, we call it DC 
lossless in narrow sense (DCL-N). When all the outputs 
become lossless, we call it DC lossless. 

 

III. ANALYSIS ON WORD LENGTH CONDITION 

A. Shifted Error Model for Analysis 

Fig.2 (a) illustrates a multiplier in the DWT circuit. A 
coefficient value c designed as a real number is rounded to a 
rational number c* in the circuit. The fraction part of both of 
the input signal s and the output signal s' is rounded to FS [bit]. 
These are denoted by  
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A conventional model for error analysis is illustrated in Fig.2 
(b). It describes the coefficient error sc   as multiplicative 
to the signal s [11], and the signal error e' as additive [7]. 
These are treated independently and approximately by 
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On the contrary, as illustrated in Fig.2 (c), we describe the 

coefficient error e'' as additive by 
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It utilizes the fact that the coefficient error e'' is observed as a 

value SF2  multiplier by an integer when both of coefficients 
and signals are rounded. It should be noticed that e'' in Eq.(8) 
is not an approximation but a strictly described value. This 
model can be denoted by  
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as illustrated in Fig.2 (d). Applying the properties in Eq.(5), 
under the assumption: 
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the maximum of the errors are given by 
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As a result, the coefficient error e'' is shifted to the signal error 
e (shifted error) and it becomes possible to derive the word 
length condition considering mutual effect of the coefficient 
error and the signal error. 

 

FS

s
FS

ccc *

s'

(b) Conventional model.

(c) New model I

SFpe  2)2( 1

SFe  12'

e'

FSFS

s
FS

s'
ec e''

SFpe  2''

c* s
FS

s'c

-Δc

(a) Multiplier.

s s'c

(d) New model II  
 

Fig. 2   A multiplier in the DWT and its models for analysis. 
 

B. DC Equivalent Circuit 

When the input is restricted to DC signals, x(n) can be 
described as a scalar x independent of n. The delay z-1 can be 



treated as 1 and (1+z-1) can be replaced by 2. Therefore, 
instead of the circuits in Fig.1, we use the equivalent circuits 
for DC signals in Fig.3 to derive the condition. 

In Fig.3 (a), a scalar x with FX [bit] fraction part is 
multiplied by the rational numbers ci and rounded to FS [bit]. 
Finally, the signals are rounded to FB [bit] at its output to 
produce the band signals [y1 y2]. The shifted errors inside the 
circuits are described by 
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For the backward transform in Fig.3 (b), signals and errors are 
similarly described. Since the reconstructed signal w(n) is [w1 
w2 w1 w2  ], it doesn't become DC for w1  w2 and it 
impedes the white balancing of a video system. 
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(b) Backward transform 
 

Fig. 3   Equivalent circuits of the DWT for DC input signals. 
 

C. Nullification of Accumulated Error 

In Fig.3(a), the shifted errors in Eq.(12) are accumulated in 
the circuit. When the accumulated errors are nullified by the 
rounding at output of the transform, the DWT becomes DC 
lossless. The output Y12=[y1 y2]

T is described by 
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and simplified as 
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It is described by the shifted errors E1 and E2. When the 9-7 
DWT is DC lossless, its output becomes 
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Therefore, from Eq.(5), the loss in the band signal is 
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and when the inequality: 
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holds, the DWT becomes DCL-N. Applying similar 
discussion to the backward transform in Fig.3 (b), the 
condition for DCL-W is also derived. 
 

D. Condition on Word Length for DC Lossless DWT 

According to Eq.(5), when Eq.(10) holds for any value of c 
and any value of s, the inequality: 
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should be satisfied. In this case, the maximum of the shifted 
error is given by Eq.(11). Therefore, Eq.(17) becomes 
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as the worst case, where 1L

H  denotes a row vector 
composed of sum of absolute values in each column of H. 
Substituting FX =FB =0 and the coefficient values of the 9-7 
DWT, and including results on the backward transform, 
Eq.(19) implies  
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where GE means degree of accumulation of the shifted error 
inside the circuit. Compiling Eq.(18) and Eq.(20), we can 
finally derive the word length condition for DC lossless as 
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where 
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The result means that the fraction part of signals and 
coefficients should be increased to attain DC lossless, and 
they can be traded each other.  

The integer part of the word length is set to avoid overflow. 
Namely, IC =1 >log2|c1| and IS =IX +1 >log2|s6| by the 
maximums c1= -1.586 and s6=1.230max|x|, where IX is an 
integer part of the input signal x. 



IV. SIMULATION RESULTS 

A. Verification of Condition on Word Length 

Fig.4 illustrates a pair of (FS, FC) at which the DWT 
becomes DC lossless for any integer x with WX =8 [bit]. The 
bold line indicates the theoretical lower bound derived from 
Eq.(21). It means the sufficient condition. "x" indicates 
experimentally measured points with the practically 
implemented DWT circuit. All of them satisfy the sufficient 
condition. Therefore, it can be concluded that the theory in 
Eq.(21) is verified. 

 

B. Optimization of Word Length 

Utilizing the result of our analysis, we calculate the 
optimum word length under the condition in Eq.(21). The cost 
function J=2-1(FC +FS) is minimized for the three examples. 
Ex.1 trades the word length between FC and FS, namely FC 

=F0 +T and FS =F0 -T where T is optimized. Ex.2 and Ex.3 are 
FC = FS and WC = WS, respectively. Results are summarized in 
table 1 and table 2. Ex.1 has the minimum cost and it requires 
14 [bit] and 13 [bit] for coefficients and signals respectively. 
Ex.2 requires 11 [bit] for fraction part. It was found that the 
optimum word length is 14 [bit] for both of coefficients and 
signals for Ex.3. 
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Fig. 4   Word length (FS, FC) which guarantees the DC lossless. 

 
TABLE   I  THEORETICALLY DERIVED OPTIMUM WORD LENGTH. 

Ex.1 Ex.2 Ex.3

FC
FS

GE+1+IS
GE+1 GE+IS

* GE+IC
*+IS -IC

GE+IC
*

WC
WS

GE+2+IS +IC
GE+2+IS

GE+IS
*+1+IC

GE+IS
*+1+IS 

GE+IC
*+IS +1

J GE+1+IS/2 GE+IS
* GE+IC

*+(IS -IC) /2

IS
*=log2(2IS +1), IC

*=log2(2IC +1)  
 

TABLE   II  THEORETICALLY DERIVED OPTIMUM WORD LENGTH 
FOR THE 9-7 DWT AT WX=8 [BIT].  

Ex.1 Ex.2 Ex.3

FC
FS

11.66
3.66 10.67 11.25

4.25

WC
WS

13.66
12.66

12.67
19.67 13.25

J 7.66 10.67 7.75
 

V. CONCLUSIONS 

In this report, we derived the condition on the word length 
of signals and coefficients such that the DWT becomes DC 
lossless. In our theoretical analysis, we introduced a new 
model which shifts the coefficient error to the signal error in 
order to consider their mutual effect. We also utilized the fact 
that the accumulated error inside the circuit is nullified by the 
rounding at its output. As a result, we derived the condition 
for the DC lossless DWT. Theoretical bound of the word 
length is derived and the minimum word length was found to 
be 14 [bit] for 8 [bit] input signals. 

Discussion in this report should be extended to multi stage 
octave decomposition in the near future. 
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