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Abstract— This paper proposes a shape-from-silhouette-based 
3D geometry modeling scheme that is robust to defective sil-
houette extraction. The silhouette extraction is a significantly 
important task because it directly affects the quality of the gen-
erated 3D models. Our proposed approach improves the sil-
houette extraction and as a result the generated 3D models by 
the iterative feedback between the 3D modeling using the im-
proved silhouette images and the silhouette updating using the 
rendered 3D images. Namely, the generated 3D models are uti-
lized to obtain better foreground/background seeds for graph-
cuts-based silhouette extraction and vice versa. In this paper, we 
propose two modeling approaches aiming at more accurate seeds 
generation. As a result, 3D modeling featuring much less 
loss/surplus of voxels has been made possible. Experimental re-
sults demonstrated that the loss of voxels can be reduced from 
2.1% to 0.90% and the surplus of voxels can be reduced from 
9.4% to 1.2% as compared to the initial 3D model. In addition, 
the error rate is the minimum among the conventional ap-
proaches. 

I. INTRODUCTION 

Generating dynamic Three-Dimensional (3D) mesh se-
quences of human performances using multiple cameras has 
been investigated actively in the last 15 years [1]-[11]. In 
most cases, frames are generated independently of each other 
because of the nonrigid nature of human bodies and clothes. 
Therefore, the vertices and the connections are not always 
time-consistent. In this paper, we shall refer to such data as 
Time-Varying Meshes (TVMs). 

Shape-from-silhouette (or volume intersection) is a funda-
mental process in generating TVMs to obtain the convex hull 
of the 3D objects. Because the shape-from-silhouette algo-
rithm is directly affected by the foreground/background seg-
mentation, a well-controlled mono-tone background is often 
employed [4]-[9]. However, these studios tend to be large and 
fixed. On the other hand, we have been developing an easy-
to-setup TVM studio with a natural background.  

A lot of foreground/background segmentation algorithms 
have been proposed so far [12]-[14] but it is still a very diffi-
cult problem. Although some 3D model refinement algo-
rithms for high-quality TVM generation have been developed 
[3][4][10][11], these algorithms are designed only to elimi-
nate unnecessary voxels, not to recover erroneously removed 
voxels. Therefore, the misclassification of the foreground 
object region as the background is a critical problem. It is not 
to mention that the excess number of voxels due to the dila-

tion process to solve such a problem is difficult to remove 
even with [3][4][10][11]. Therefore, the purpose of this paper 
is to develop a TVM generation algorithm with smaller num-
ber of loss and surplus of voxels even with a natural back-
ground. 

This paper presents a robust TVM generation algorithm 
based on the iterative feedback between the silhouette extrac-
tion and the 3D modeling. Namely, the generated 3D models 
are rendered and used as a seed for the graph-cuts algorithm 
[15][16] for better silhouette extraction. The improved sil-
houette images are used to reconstruct the 3D models. This 
iterative process is repeated until the geometrical shape of the 
3D models converges. As a result, both the loss and the sur-
plus of voxels can be suppressed drastically as compared to 
conventional algorithms. Experimental results showed that the 
loss and the surplus of voxels were reduced to 0.9% and 1.2% 
of the total number of voxels, respectively. 

The rest of this paper is organized as follows. Section 2 re-
views related works for the robust 3D model reconstruction. 
Section 3 describes our TVM studio and our proposed algo-
rithm is presented in Section 4. Experimental results are dem-
onstrated in Section 5. Finally, concluding remarks are given 
in Section 6. 
 

II. RELATED WORKS 

Toyoura et al. [6] proposed a silhouette extraction using a 
random pattern background. By using small patches of a ran-
dom color pattern, the probability of the foreground color 
coinciding with that of the background in all viewpoints is 
made very small. Even when the color of the background is 
close to that of the foreground object in a certain view, the 
background color from a different view is far from that of the 
foreground object. Therefore, misclassification of the fore-
ground as the background can be suppressed. This approach 
can reduce the loss of voxels but on the other hand tends to 
yield surplus voxels. In addition, a proper design of a random 
pattern background depending on the size of the studio is re-
quired. 

Kim et al. [7] introduced a reliability map of fore-
ground/background segmentation. When the summation of 
the reliability score from all the views exceeds a certain thre-
shold value, the voxel is regarded as the foreground object. 
However, this approach also tends to yield superfluous voxels. 



An object silhouette extraction with error detection and cor-
rection using multi-viewpoint images were proposed by No-
buhara et al. [17]. In their approach, the two constraints were 
introduced: “intersection” that assume that projection of the 
visual hull on every viewpoint should be equal to the sil-
houette on each viewpoint and “projection” that implies that 
projection of the visual hull should have outline which 
matches with apparent edges of captured image on each 
viewpoint. This algorithm required several hundreds of itera-
tion and took 0.5~3 days to process only a single frame. 
Therefore, it is not feasible for our purpose. 

An alternative approach is using graph-cuts in the 3D space 
instead of improving the silhouette extraction [2]. In [2], the 
data term was the sum of the values attached to the voxels 
where the value is based on the observed intensities of the 
pixels that intersect it and the smoothness terms is defined as 
the number of empty voxels adjacent to filled ones. However, 
the accuracy of the modeling was not discussed in [2]. The 
graph-cuts algorithm was also employed to refine the generat-
ed 3D model in addition to the shape-from-silhouette espe-
cially for refining the concave part of the objects [10][11]. 
This process is used only for removing unnecessary voxels: 
the loss of voxels deriving from erroneous silhouette extrac-
tion cannot be recovered. 

On the other hand, we repeat the silhouette extraction and 
the 3D modeling iteratively to improve each other results. The 

rendering results of the generated 3D voxels are used for seed 
generation for better foreground/background segmentation in 
the next step modeling. Therefore, the loss of voxels can be 
reduced while suppressing the surplus of voxels even with 
natural backgrounds. In addition, the computational cost is not 
very large because the number of required iterations is quite 
small as discussed in Section 5. 
 

III. OUR TVM STUDIO 

Our TVM studio is illustrated in Fig. 1. The studio consists 
of 12 sets of a capturing unit: camera with 1360×1024 resolu-
tion and camera-link interface, light, and personal computer 
(Intel Core2 Duo 2.4GHz, 4GB memory, RAID-0 HDD oper-
ating at 3Gb/s) attached to a pole. All the cameras are syn-
chronized by an external signal generator. The frame rate is 
up to 34 fps. The system was setup in our laboratory room 
(Fig. 1 (b)). No special background such as blue sheet is uti-
lized. Only the computers are covered with clothes because 
they are shiny and affect the silhouette extraction. The camera 
calibration is done with Tsai’s method [18]. 

The system is easy-to-setup and portable. Disassembling 
and setting up the studio again can be done in a few hours. 
The size of the studio is about 6m × 5m but it is flexible de-
pending on the size of the object and the area for the object to 
move around. 
 

IV. ALGORITHMS FOR ROBUST TVM GENERATION 

A. Flow of the Algorithm 
The flowchart of our TVM generation algorithm is shown 

in Fig. 2. In the initial step, conventional silhouette extraction 
and 3D modeling is conducted. Then, we proceed to the itera-
tive processing between the silhouette refinement using the 
rendered images and the 3D model reconstruction with the 
error compensation. When the generated 3D model converges 
and is not very different from that of the previous step, the 
iteration is terminated and the final 3D mesh is obtained. 

For higher-quality modeling, especially for reconstructing 
the concave parts, sophisticated model refinement algorithms 
after the shape-from-silhouette are required such as deforma-
ble mesh [3], stereo matching, [4] and graph-cuts in the 3D 
space [10][11]. However, such model refinement process is 

(a) 

 
(b) 

Fig. 1. Our TVM studio: (a) floor plan, (b) a view from a 
certain camera. 

Initial Silhouette Images

Shape-from-Silhouette Final 3D Model

Silhouette Extraction
using Graph-Cuts

Rendering from 
Each Camera Position

voxel change>ε

voxel change>ε

Fig. 2. Flowchart of the proposed algorithm. 
 



out of scope of this paper. Our target is generating shape-
from-silhouette-based 3D mesh models with less loss of vox-
els while suppressing surplus of voxels so that such refine-
ment algorithms work better. 

 

B. Shape-from-Silhouette with Error Compensation 
The shape-from-silhouette is a 3D modeling algorithm by 

taking the intersections of visual cones of all the cameras sur-
rounding the object as shown in Fig. 3. In other words, if a 
voxel, which is a small 3D region like a pixel in a 2D image, 
is seen from all the cameras, the voxel remains. Otherwise, 
the voxel is removed. In this manner, a visual hull of the 3D 
object is estimated. Then, various refinement algorithms 
[3][4][10][11] are applied for modeling convex parts or 
smoothing the model. One of the most significant disadvan-
tages of this approach is that when the voxel is invisible from 
even a single camera due to erroneous silhouette extraction, 
the voxel is eliminated. On the other hand, the probability of 
the non-object voxel to be visible to all the cameras is quite 
low because the voxel can be labeled as non-object by other 
cameras. Such loss of voxels degrades the visual quality of 
the model. An example is shown in Fig. 4. In this case, the 
left arm in the camera #10 is missing due to erroneous sil-
houette extraction and the error affects the generated 3D 
model very much. Note that the error in Fig. 4 is an actual 
result, not a simulation. The refinement algorithms 
[3][4][10][11] cannot recover such loss of voxels because 
they are designed to eliminate unnecessary voxels, not to add 
necessary voxels. Therefore, two kinds of error (loss) com-
pensation algorithms are proposed in this paper.  

One is a voting-based modeling method. Here, we assume 
the number of cameras in the studio as n and m is an integer 
ranging from 1 to n-1. If the voxel is visible from n-m cam-
eras, the voxel is left. Typically, m is set as 1~2 because the 
probability of the voxel that belongs to the object to be invisi-
ble from more than two or three cameras is quite low. If we 
increase m, the generated 3D model would expand more than 
necessary. If the error in silhouette extraction occurs in many 
camera views, we should reconsider the silhouette extraction 

algorithm itself. In this approach, one 3D model is generated 
for a single frame independent of the value m. 

The other approach is modeling with the other (n-1) camera 
views. When generating the background/foreground seeds for 
the i-th camera view, the (n-1) camera views excluding the i-
th camera view are used for the modeling. And the generated 
3D model is rendered from the i-th camera position only for 
improving the i-th silhouette. Therefore, we need to conduct 
the 3D modeling for all the n camera views. This approach 
implicitly assumes that the segmentation error does not occur 
in multiple views at the same time, which is reasonable in 
most cases. Important to note here is that such errror can oc-
cur in multiple parts. The restriction here is that a voxel is 
misclassified as a non-object region by not more than a single 
camera. Modeling with the other (n-2) camera or less views is 
not a reasonable approach because the number of models to 
generate becomes quite large: n×(n-1).  

In the iteration process, 3D model reconstruction is con-
ducted multiple times. In particular, the cost for the modeling 
with (n-1) camera views approach becomes quite expensive as 
the number of cameras increases. To save the computational 
cost, the 3D modeling in the iteration can be done with rough 
spatial resolution and only the final modeling should be car-
ried out with finer spatial resolution. Another option is iterate 
the refinement process only once because the modeling accu-

 
Fig. 3. Shape-from-silhouette algorithm. 
 

(a) 

(b) 
Fig. 4. Example of loss of voxels: (a) error in silhouette 
extraction only in camera #10, (b) generated 3D model in 
which left arm is not reconstructed properly. 



racy becomes high enough by a single iteration as demon-
strated in Section 5. 

 

C. Silhouette Extraction and Updating 
In the initial silhouette extraction, conventional background 

subtraction with the graph-cuts is employed. The background 
and foreground regions with high confidence are generated as 
follows: 

( ) ( ) ( )
( ) ( ) ( )

if , , 1, then , is foreground

elseif , , 2, then , is background

otherwise,

BG

BG

Y x y Y x y Th x y

Y x y Y x y Th x y

unknown

⎧ − >
⎪⎪ − <⎨
⎪
⎪⎩

Here, Y(x,y) is the chroma value of the pixel at (x,y) and 

YBG(x,y) is that of the background model. Th1 and Th2 are 
predefined threshold values where Th1 > Th2 in order to ex-
tract background and foreground regions with high confi-
dence. When |Y(x,y)-YBG(x,y)| is between Th1 and Th2, the 
pixel is left as unknown. Then, the background/foreground 
maps are fed to the graph-cuts algorithms as seeds. The sil-
houette extraction results are shown in Fig. 4(a). 

In the iteration process, we assume that the erroneous loss 
of voxels is compensated by either way described in 4B. The 
silhouette refinement for each camera view is conducted using 
three images: the original captured image (Fig. 5(a)), the sil-
houette image in the previous step (Fig. 5(b)), and the ren-
dered 3D image from the camera position (Fig. 5(c)). The 
background seed is generated by the logical AND operation 
between the background regions in the previous silhouette 

  
(a)     (b)     (c) 

  
(d)     (e)     (f) 

   
(g)      (h) 

 
Fig. 5. Silhouette updating using the rendered 3D model: (a) original captured image, (b) initial silhouette by background sub-
traction and graph-cuts, (c) generated 3D model with error compensation algorithm described in 4B, (d) close-color map be-
tween (a) and (c), (e) eroded silhouette using (b), (f) updated seeds for graph-cuts, (g) updated silhouette, (h) updated 3D model. 



image (Fig. 5(b)) and the rendered image (Fig. 5(c)). A simi-
lar color region (Fig. 5(d)) between the original captured im-
age (Fig. 5(a)) and the rendered image (Fig. 5(c)) and the 
eroded silhouette image in the previous step (Fig. 5(e)) are 
logically summed to form a foreground seed. As a result, the 
seeds for the background and the foreground for the graph-
cuts in the next step are generated as demonstrated in Fig. 5(f). 
In the figure, the green, blue, and red regions represent the 

background, foreground, and unknown regions, respectively. 
The updated silhouette is shown in Fig. 5(g). This procedure 
is applied to each camera view independently. The updated 
silhouette images are utilized for the 3D modeling again. An 
example of the updated 3D model after a single feedback loop 
is shown in Fig. 5(h). 

 

V. EXPERIMENTAL RESULTS 

The experiments were conducted using the TVM studio 
with 12 cameras as described in Section 3. Consecutive 10 
frames of video (12 cameras × 10 frames = 120 images) were 
selected and ground truth data of the silhouettes were generat-
ed by hand. Then, 10 frames of ground truth data of TVMs 
were generated by the shape-from-silhouette algorithm. Our 
shape-from-silhouette program is based on [4] by the courtesy 
of Tomiyama et al. The stereo matching in [4] was disabled in 
the experiments 

The loss and surplus of voxels and the total error for each 
frame is shown in Fig. 6. The accuracy of the initial 3D model 
and the voting-based modeling without the iteration process 
are also shown. Besides, the mean accuracy is summarized in 
Table 1. The modeling performance by Toyoura et al. [6] is 
also shown for comparison. Note to mention is that the expe-
rimental setup and the target models are very different from 
[6]. The voting-based modeling without the iteration is better 
in terms of loss of voxels but tends to yield much more sur-
plus voxels than the others. In fact, the total error gets worse 
than the initial 3D model. On the other hand, the proposed 
algorithms yield a good performance both in terms of loss and 
surplus of voxels. The total error is less than 2% for both the 
voting-based modeling by (n-1) cameras and the modeling 
with other (n-1) camera views. When we increase the number 
m in the voting-based method, the loss of voxels is reduced 
more but on the other hand the surplus voxels increases rapid-
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Fig. 6. Modeling accuracy: (a) surplus of voxels, (b) loss of 
voxels, (c) total error. 

Table 1. Averaged modeling accuracy over the 10 frames. 
 

 Loss Surplus Total Error
Initial model 2.1% 9.4% 11.5% 
Voting-based 
w/o iteration 
(n-1 cameras)

0.18% 25.7% 25.9% 

Voting-based 
with iteration 
(n-1 cameras)

0.73% 1.2% 1.9% 

Voting-based 
with iteration 
(n-2 cameras)

0.64% 2.0% 2.7% 

Modeling with 
the other (n-1) 
camera views

0.90% 0.99% 1.9% 

Toyoura et al. 
[6] 11.3% 2.7% 14.0% 

 



ly. Therefore, m should be kept as small as possible depend-
ing on the silhouette extraction performance. 

An example of the improved modeling by the voting-based 
modeling by (n-1) cameras is shown in Fig. 7 (frame #9). The 
back of the head and the right hand are missing in the initial 
3D model and they are recovered by our proposed algorithms. 
The errors in the silhouette extraction in the two regions oc-
curred in different views.  

An example of the unsuccessful case by the voting-based 
modeling is shown in Fig. 8. In the figure, the right arm is 

properly reconstructed but the left arm is still missing because 
the voxels in the silhouette extraction for the left arm failed in 
two cameras at the same time. In such a case, voting-based 
modeling with (n-m) cameras (m>1) is feasible. In addition, 
such an error can be detected by monitoring the abrupt change 
in the number of voxels in the successive frames. 

The modeling performance improvement as a function of 
the number of iterations is shown in Fig. 9. In this experiment, 
the convergence verification was disabled. Zero means the 
initial 3D model. It is shown that the model converges with a 
small number of iterations (1~2 times). This means the seed 
regeneration for the graph-cuts is accurate enough in the first 
iteration process. Therefore, only a single feedback is suffi-
cient in most cases. 

The processing time for the initial 3D model generation and 
the voting-based modeling without iterations were both about 
2.5 seconds. On the other hand, the voting-based modeling 
with iterations and the modeling with (n-1) camera views took 
35 seconds and 45 seconds, respectively. In this paper, no 
code optimization was conducted. Parallel processing using 
GPUs or dedicated hardware is our future work for higher-
speed modeling. 
 

VI. CONCLUSIONS 

In this paper, we have presented an iterative refinement al-
gorithm for the silhouette-from-based 3D modeling. By the 
cross-feedback between the 3D model reconstruction with the 
updated silhouette and the silhouette extraction using the ren-

  
(a) 

  
(b) 

  
(c) 

Fig. 7. Example of the improved 3D model: (a) whole im-
age, (b) close-up of head, (c) close-up of right arm. The 
images on the left are those of the initial 3D model and the 
images on the right are those of the refined model. 

Fig. 8. The case where our proposed algorithm fails to re-
cover the missing part. 



dered image, the loss and surplus of voxels can be kept very 
small. We have also proposed two shape-from-silhouette al-
gorithms with error compensation to recover miss segmenta-
tion of the background/foreground. Experimental results 
demonstrated that the loss of voxels was reduced from 2.1% 
to 0.90% and the surplus of voxels was reduced from 9.4% to 
1.2%, respectively.  
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Fig. 9: Model refinement as a function of the number of 
iterations: (a) voting-based modeling by (n-1) cameras (b) 
modeling with the other (n-1) cameras. . 
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