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ABSTRACT
Prediction of protein cleavage sites is an important step

in drug design. Recent research has demonstrated that con-
ditional random fields are capable of predicting the cleav-
age site locations of signal peptides, and their performance
is comparable to that of SignalP—a state-of-the-art predic-
tor based on hidden Markov models and neural networks.
This paper investigates the degree of complementarity be-
tween CRF-based predictors and SignalP and proposes us-
ing the complementary properties to fuse the two predictors.
It was found that about 40% of the sequences that are in-
correctly predicted by SignalP can be correctly predicted by
CRF, and that about 30% of the sequences that are incorrectly
predicted by CRF can be correctly predicted by SignalP. This
suggests that the two predictors complement each other. The
paper also shows that the performance of CRF can be further
improved by constructing the state features from spatially dis-
persed amino acids in the training sequences.

Index Terms— Conditional random fields, discriminative
models, signal peptides, cleavage sites, protein sequences.

Web Service: http://158.132.148.85:8080/CSitePred/faces/Page1.jsp

1. INTRODUCTION

1.1. Signal Peptides and Their Cleavage Sites

A newly created protein will either transported to an organelle
of a cell or secreted outside the cell through a secretary path-
way [1]. The destination information can be found in a short
segment of the amino acid sequence of the protein, which is
in some way analogous to the IP address of a TCP/IP packet
in data communication or the zipcode of letters. These short
segments are generally known as sorting-signals, targeting se-
quences, or signal peptides. After the protein is translocated
across the cell membrane, the signal peptide will be cleaved
off by an extracellular signal peptidase. The location at which
the cleave off occurs is called the cleavage site.
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1.2. Importance of Cleavage Site Prediction

The mechanism by which a cell transports a protein to its tar-
get location within or outside the cell is called the protein
sorting process. Defects in the sorting process can cause seri-
ous diseases. Therefore, identifying signal peptides and their
cleavage sites have both scientific and commercial values. For
instance, to produce recombinant secreted proteins or recep-
tors, it is important to know the exact cleavage sites of signal
peptides. The information of signal peptides also allows phar-
maceutical companies to manipulate the secretory pathway of
a protein by attaching a specially designed tag to it. This abil-
ity has opened up opportunity for the design of better drugs.

1.3. Existing Cleavage-Site Prediction Methods

Due to the ever increase in the number of new proteins enter-
ing the data banks and the time involved in identifying signal
peptides and determining their cleavage sites by experimen-
tal means, the development of effective computation tools for
cleavage site prediction has become increasingly important.
However, because of the great variation in length and degree
of conservation of signal peptides in different proteins, find-
ing the cleave sites by computation means is a challenging
task.

Although signal sequences that direct proteins to their tar-
get location differ in length and contents, common features
that make the sequences to act like signals still exist, as ex-
emplified in Fig. 1. For example, all signal sequences have
a long central region (the h-region) that is highly hydropho-
bic. These properties allow the cleavage sites to be predicted
computationally.

The earliest approach to cleavage site prediction is to com-
pute a weight matrix based on the position-specific amino
acid frequencies of aligned signal peptides (aligned at the
cleavage site) [2]. To predict the cleavage site of an unknown
sequence, the matrix is scanned against the sequence to find
the position of highest sum of weights. A recent implemen-
tation based on this approach is the PrediSi [3]. The weight
matrix approach is very efficient, but the performance is infe-
rior to more advanced approaches discussed below.



Different machine learning techniques have been applied
to cleavage site prediction. For example, in SignalP 1.1 [4],
a sliding window is applied to scan over an amino acid se-
quence. For each subsequence within the window, a numeri-
cally encoded vector is presented to a neural network for de-
tecting whether the current window contains a cleavage site.
An advantage of this approach is that a wide range physico-
chemical properties can be selected as network inputs. How-
ever, the prediction accuracy is dependent on the encoding
methods [5]. In SignalP 2.0 and 3.0 [6, 7], an amino acid se-
quence is thought of as generated from a Markov process that
emits amino acids according to some probability distributions
when transiting probabilistically from state to state. To pre-
dict the cleavage site of an unknown sequence, the most likely
transition path is found and the amino acid that aligns with the
cleavage site node is considered as the cleavage site. One ad-
vantage of using this approach is that biological knowledge
can be easily incorporated into the models. Another advan-
tage is that symbolic inputs can be naturally accommodated,
and therefore numerical encoding as in the neural network ap-
proach is not required.

1.4. Proposed Method

In our previous investigation [8], we have shown that con-
ditional random fields (CRFs) [9] are capable of predicting
cleavage site locations and that the prediction accuracy of
CRFs is comparable to that of SignalP. In this paper, we ex-
tend our previous work in two fronts: (1) we investigate the
degree of complementarity between CRF-based predictors and
SignalP and propose a new fusion scheme based on the com-
plementary information; and (2) we attempt to improve the
prediction accuracy of CRFs by using spatially dispersed amino
acids to construct the state features of the CRFs. Evalua-
tion based on the signal peptides extracted from the Swis-
sprot database shows that SignalP and CRFs posses signifi-
cant complementary information, leading to better prediction
performance when this information is exploited in the fusion
process.

2. CONDITIONAL RANDOM FIELDS

CRFs were originally designed for sequence labeling tasks
such as Part-of-Speech (POS) tagging, as exemplified in Ta-
ble 1. Given a sequence of observations, a CRF finds the
most likely label for each of the observations. CRFs have a
graphical structure consisting of edges and vertices in which
an edge represents the dependency between two random vari-
ables (e.g., two amino acids in a protein) and a vertex repre-
sents a random variable whose distribution is to be inferred.
Therefore, CRFs are undirected graphical models, as opposed
to directed graphical models such as HMMs. Also, unlike
HMMs, the distribution of each vertex in the graph is condi-
tioned on the whole input sequence.
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Fig. 1. Logo diagram of 179 signal peptides with cleavage site
between Positions 19 and 20. Positions preceding to the cleavage
site are rich in hydrophobic (e.g. A and L) and polar (e.g. G and
S) residues. The taller the letter, the more often the corresponding
amino acid appears in the signal peptides.

Word This has increased the risk of the government

POS DT VBZ VBN DT NN IN DT NN
Chunk ID B-NP O O B-NP I-NP O B-NP I-NP

Table 1. An example sentence with a part-of-speech (POS)
tag and a chunk identifier (in IOB2 format) for each word.

2.1. Formulation

Denote

x = {x1, . . . , xT } and y = {y1, . . . , yT }

as an observation sequence and the associated sequence of
labels, respectively. In the case of cleavage site prediction,

x ∈ A and y ∈ L ≡ {S, C, M},

where A is the set of 20 amino acid letters, and S, C, and M
stand for the signal part, cleavage site, and mature part of a
protein sequence, respectively. The cleavage site is located at
the transition from C to M in y.

Generative models such as HMMs model the joint dis-
tribution p(x,y) and computes the likelihood p(x|y) by as-
suming that the state yt is only responsible for generating the
observation xt. In other words, when predicting the label at
position t, HMMs cannot directly use information other than
xt. The independence assumption of xt’s restricts HMMs
from capturing long-range dependence between x and y. For
example, standard HMMs cannot model explicitly the depen-
dence between xt−d and xt where d > 1 or between xt−d

and yt where d 6= 0. Most biological sequences, however,
have such long-range dependence [10, 11]. Fig. 3 shows the
correlation of amino acids at different positions relative to the
cleavage site. Evidently, there is significant correlation be-
tween amino acids at non-adjacent positions. In particular,
the correlation is fairly strong between amino acids at posi-
tions −6 and −14, which are 8 positions apart.
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Fig. 2. (a) The mean and (b) the histograms of hydrophobicity of
179 signal peptides at different sequence positions. The cleavage site
of these sequences is between Positions 19 and 20.

In fact, to predict the labels y given x, the only distribu-
tion needs to be modeled is p(y|x). CRFs [9] are discrimina-
tive models that directly evaluate p(y|x):

p(y|x) =
F (x,y)

Z(x)

=

T∏
t=1

exp

{
|L|∑
i=1

|L|∑
j=1

αijfij(yt−1, yt) +
|L|∑
j=1

|P|∑
k=1

βjkgjk(x, yt)

}

Z(x)
(1)

where Z(x) =
∑

y F (x,y) is a normalization factor, αij and
βjk are model parameters, fij(·) are transition-feature func-
tions, gjk(·) are state-feature functions, P is a set of amino
acid patterns (see Section 2.2 for an example), and |L| is the
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Fig. 3. Correlation of hydrophobicity of 1695 protein sequences
at different positions relative to their cleavage site. Entries in gray
mean that the correlation between the hydrophobicity at the corre-
sponding relative positions are statistically significant (p-value <
0.05). The grayness is proportional to the degree of correlation. Cor-
relation at identical relative positions, which gives maximum corre-
lation, is not shown for clarity of display.

cardinality of the set L. Therefore, in CRFs, the relationship
between adjacent states (yt−1, yt) is modelled as a Markov
random field conditioned on the whole input sequence x.

2.2. Feature Functions

The definitions of feature functions depend on the application.
In fact, one advantage of CRFs is the freedom of choosing
suitable feature functions for modeling. This allows investi-
gators to incorporate domain knowledge into the model.

To facilitate presentation in the sequel, let’s denote Li as
the i-th label in L, e.g., L1 ≡ S. A similar notation is also ap-
plied to P . The feature functions are typically boolean func-
tions of the form:

fij(yt−1, yt) =
{

1 if yt−1 = Li and yt = Lj

0 Otherwise (2)

gjk(x, yt) =
{

1 if yt = Lj and b(x, t) = Pk

0 Otherwise (3)

where 1 ≤ i, j ≤ |L|, 1 ≤ k ≤ |P|, and b(x, t) is a function
that depends on the amino acids in x around position t. One
possibility is to use n-grams of the amino acid alphabet as P
and the residues near position t as b(x, t). More formally, we
have

P = n-gram(A) and b(x, t) = xt−d1xt−d2 · · ·xt−dn , (4)

where d1 > d2 > · · · > dn. A large di enables the CRF to
capture the long-range dependence among the amino acids in
the input sequence.



The operation of the feature functions can be explained
via a simple example. Consider the amino acid sequence
and its labels in Table 2. At t = 5, we have y4 = S and
y5 = C. Because L1 = S, L2 = C, and L3 = M, we have
f1,2(y4, y5) = 1. Assume that bi-gram is used for generating
P , i.e.,

P = {AA,AC, . . . ,WA, . . . ,YY},
and that d1 = 1 and d2 = 0. Assume further that the amino
acid pair WA occupies position k in P , i.e., Pk = WA. Then,
we have b(x, 5) = WA = Pk and therefore g2,k(x, y5) = 1.

2.3. Advantages of CRFs

The CRFs enjoy several advantages over the HMMs.

1. Avoid computing likelihood. Because CRFs are discrim-
inative models that compute the conditional probability
p(y|x), it is not necessary to compute the likelihood of the
input observation. It has been shown that discriminative
models are usually superior to the generative models [12]
because computing the probability of the observation is
avoided.

2. Model long-range dependence. CRFs can model long-
range dependence between the labels and observations with-
out making the inference problem intractable, making it
particularly useful for text processing [9] and bioinformat-
ics [13].

3. Guarantee global optimal. The global normalization in
Eq. 1 means that the global optimal solution can always be
found.

4. Alleviate label-bias problem. Many discriminative mod-
els, such as the maximum entropy Markov model, are prone
to the label-bias problem (preferring states with fewer out-
going transitions) [9]. Because CRFs use global normal-
ization, they possess the advantages of discriminative mod-
els but without suffering from the label bias problem.

3. CRF FOR CLEAVAGE SITE PREDICTION

To use CRFs for cleavage site prediction, the prediction prob-
lem is formulated as a sequence labelling task. Similar to
the POS tagging task [14] in Table 1 where words are cat-
egorized as different types, amino acids of similar proper-
ties can be categorized as sub-groups.1 We propose to di-
vide the 20 amino acids according to their hydrophobicity
and charge/polarity as shown in Table 3. These properties
are used because the h-region of signal peptides is rich in hy-
drophobic residues and the c-region is dominated by small,
non-polar residues [16], as illustrated in Fig. 1. Moreover, as
illustrated in Fig. 2, the degree of hydrophobicity is also very
different at different positions. It is believed that different
sets of alphabets can complement each other in finding sig-
nificant conserved regions along the amino acid residues. In

1This is called alphabet indexing [15] in the literature.

Property Group
Hydrophobicity H1={D,E,N,Q,R,K}

H2={C,S,T,P,G,H,Y}
H3={A,M,I,L,V,F,W}

Charge/Polarity C1={R,K,H}
C2={D,E}
C3={C,T,S,G,N,Q,Y}
C4={A,P,M,L,I,V,F,W}

Table 3. Grouping of amino acids according to their hydrophobic-
ity and charge/polarity [17].

case several alphabet sets indicate the same conserved region,
that region is also likely to be of functionally important to the
protein.

Table 2 shows an example amino acid sequence together
with its hydrophobicity sequence and charge/polarity sequence.
Note that either amino acid, hydrophobicity, charge/polarity,
or their combinations can be used as observations to train a
CRF.

4. FUSION OF CRF AND SIGNALP

We noticed from the outputs of SignalP and CRF that for
some sequences, when CRF made a wrong decision, SignalP
made a correct one. Similarly, there are also sequences whose
cleavage sites are incorrectly predicted by CRF but correctly
predicted by SignalP. This suggests a potential performance
improvement by fusing the decisions of CRF and SignalP. To
fuse the two decisions, some kinds of reliability scores need
to be determined. For CRF, we used the probability of the
best viterbi path, and for SignalP, we used the Cmax scores.
Hereafter, we refer to these scores as CRF scores and SignalP
scores, respectively.

Table 4 (upper part) shows the number of sequences with
CRF scores smaller than some pre-defined thresholds, below
which the predicted sites are deemed untrustworthy. The table
shows that less than 40% of these untrustworthy decisions are
correct, suggesting that CRF has difficulty in predicting the
cleavage sites of these sequences. On the other hand, among
these sequences, over 60% of them can be correctly predicted
by SignalP. The situation is reversed in the lower part of Ta-
ble 4. In particular, while SignalP can only predict the diffi-
cult sequences at a rate of 54%–69%, the CRF achieves 97%
accuracy on these sequences.

Based on these observations, we implemented the fusion
as follows.

Step 1 Given a query sequence x, present it to the CRF and
SignalP to obtain a CRF score (denoted crf(x)) and
a SignalP score (denoted snp(x)), respectively.

Step 2 Perform z-norm independently on these two scores to
obtain the z-norm scores, namely crfn(x) and snpn(x).



AA Sequence (x) T – Q – T – W – A – G – S – H – S
Hydrophobicity (x) H2 – H1 – H2 – H3 – H3 – H2 – H2 – H2 – H2

Charge/Polarity (x) C3 – C3 – C3 – C4 – C4 – C3 – C3 – C2 – C3

Label (y) S – S – S – S – C – M – M – M – M

Table 2. An example amino acid sequence with the corresponding hydrophobicity sequence and charge/polarity sequence. The
2nd and 3rd rows represent the hydrophobicity and charge/polarity groups shown in Table 3.

Step 3 Determine the cleavage site position according to

p(x) =





SignalP’s decision if snpn(x) > crfn(x)− ε
or
crfn(x) < η

CRF’s decision otherwise

where ε and η are predefined constants that can be be
determined from training data. In this work, ε = 0.8
and η = −2. A positive ε means that the cleavage site
position is based on CRF only when the normalized
CRF score is significantly higher than the normalized
SignalP scores.

5. EXPERIMENTS AND RESULTS

5.1. Materials and Procedures

Amino acid sequences of eukaryotic proteins with experimen-
tally found cleavage sites were extracted from the flat files
of Swissprot Release 56.5 using the programs provided by
Menne et al. [18], which results in 1,937 sequences. Ten-fold
cross validations were applied to these sequences to obtain
the prediction accuracies.

The property set P for the state-feature function fjk(·)
contains n-grams of amino acids, where n = 1, . . . , 5, and
bi-gram of hydrophobicity groups and polarity/charge groups.
CRF++ was used to implement the CRFs.2 The parameters
-c and -f were set to 1.0.

To investigate the effect of the varying the maximum al-
lowable offset for indexing amino acids in a sequence on pre-
diction accuracy, various values of max{dn} in Eq. 4 were
tried.

5.2. Results and Discussions

5.2.1. Effect of Indexing Offsets

Table 5 shows the performance of CRF at different value of
max{dn}. Evidently, varying the maximum allowable offset
affects the prediction performance. The superiority of large
offset seems to suggest that signal sequences exhibit long-
range dependency. However, this conjecture needs to be con-
firmed biologically.

2http://crfpp.sourceforge.net/

Maximum Allowable Offset Prediction Accuracy

5 80.54%
6 81.41%
7 82.40%
8 83.17%
9 83.32%

10 83.12%
11 82.71%
12 82.40%

Table 5. Accuracy of CRF predictors at different maximum AA
position offsets, i.e., max{dn} in Eq. 4.

Cleavage Site Predictor Accuracy
SignalP [7] 81.88%
PrediSi [3] 77.06%
CRF5 [8] 79.71%
CRF5 + SignalP [8] 83.12%
CRF9 83.32%
CRF9 + SignalP 85.03%

Table 6. Accuracy of different cleavage site predictors and the
fusion of CRF and SignalP. CRF5 and CRF9 stand for CRFs with
window size of 5 and 9 amino acids, respectively.

5.2.2. Compared with State-of-the-Art Predictors

We compared the performance of the CRF-based predictor
with SignalP V3.0 [7] and PrediSi [3]. Table 6 shows that
CRF with window size of 9 performs the best, followed by
SignalP and PrediSi.

5.2.3. Fusion of CRF and SignalP

Table 6 suggests that fusing the decisions of SignalP and CRF
can increase the prediction accuracy. In particular, the fusion
strategy adopted in this study achieves an even higher perfor-
mance than the one we used in [8].

6. WEB INTERFACE AND SERVICES

To facilitate researchers to use CRF for cleavage site predic-
tion, a web server called CSitePred was developed.3 CSitePred
allows users to submit amino acid sequences by either coping-
and-pasting FASTA format sequences into a window or up-
loading a FASTA file containing a large number of sequences.
The web server returns the most likely cleavage site locations

3http://158.132.148.85:8080/CSitePred/faces/Page1.jsp



Predictor Score
Threshold

No. of seqs below threshold
(deemed untrustworthy)

No. of seqs correctly
predicted by CRF

No. of seqs correctly
predicted by SignalP

0.60 94 32 (34.0%) 64 (68.1%)
CRF 0.65 125 44 (35.2%) 81 (64.8%)

0.70 156 61 (39.1%) 96 (61.5%)
0.60 444 426 (96.0%) 243 (54.7%)

SignalP 0.70 668 647 (97.0%) 412 (61.7%)
0.80 917 893 (97.4%) 628 (68.5%)

Table 4. The complement between CRF and SignalP. The 3rd column is the number of sequences whose cleavage-site scores are less than
the CRF score threshold (upper part) and SignalP score threshold (lower part).

and their corresponding prediction scores of the submitted se-
quences to the user. Therefore, prediction on individual se-
quences or whole datasets are supported. Users can also in-
voke a collection of web services via the WSDL interface of
the software.

7. CONCLUSIONS
This paper has demonstrated that there is a high degree of
complementarity between CRF-based predictors and SignalP,
and that this complementary information can be easily ex-
ploited to fuse the two types of predictors in a protein cleav-
age site prediction task. The paper also shows that the CRF
can be further enhanced by constructing state features from
more spatially dispersed amino acids along the peptide chain.
A Web interface and a collection of web services of the CRF-
based predictor are available online.
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