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Abstract—An improved hybrid particle swarm optimization 
(PSO) that incorporates a wavelet-based multi-mutation operation 
is proposed.  It applies wavelet theory to enhance PSO in exploring 
solution spaces more effectively for better solutions.  A suite of 
benchmark test functions are employed to evaluate the 
performance of the proposed method.  It is shown empirically that 
the proposed method outperforms significantly the existing 
methods in terms of convergence speed, solution quality and 
solution stability. 

I. INTRODUCTION 

Particle swarm optimization (PSO) is a recently proposed 
population based stochastic optimization algorithm which is 
inspired by the social behaviours of animals like fish schooling 
and bird flocking [6].  Comparing with other population based 
stochastic optimization methods, such as the evolutionary 
algorithms, PSO has comparable or even superior search 
performance for many hard optimization problems with a faster 
and more stable convergence rate [7].  However, observations 
reveal that PSO converges sharply in the early stage of the 
searching process, but it saturates or even terminates in the later 
stage.  It behaves like the traditional local searching methods that 
trap in local optima.  It is hard to obtain any significant 
improvement by examining neighbouring solutions in the later 
stage of the search.  Vaessens et al. [11] and Reeves [14] put 
these searching methods into the context of local search or 
neighbourhood search. 

Ahmed et al. [1] proposed a hybrid PSO that integrated the 
Genetic Algorithm (GA) mutation within a constant mutating 
space.  Under this approach, particles can search different 
directions by themselves, and local positions of particles can be 
permutated.  The solution space can still be explored by the 
mutation operation in the later stage of the search, and 
pre-mature convergence is more likely to be avoided.  However, 

 
 

under that approach, the mutating space is kept unchanged all the 
time throughout the search.  It can be further improved by 
varying the mutating space along the search. 

On doing GA’s mutation operation, the solution space is more 
likely to be explored in the early stage of the search by setting a 
larger mutating space, and it is more likely to be fine-tuned to a 
better solution in the later stage of the search by setting a smaller 
mutating space, based on the properties of wavelet [2].  This 
technique can also be applied to improve the hybrid PSO with 
GA’s mutation.  A mutation operation with a dynamic mutating 
space that incorporates a wavelet function [2] is proposed.  The 
wavelet is a tool to model seismic signals by combining dilations 
and translations of a simple, oscillatory function (mother 
wavelet) of a finite duration.  The PSO’s mutating space is 
varying dynamically based on the properties of the wavelet 
function.  However, in recent research [16] of PSO with wavelet 
mutation (WPSO), only one element in each particle may 
undergo the mutation process in an iteration step.  This may 
pre-maturely restrict the searching space, although the searching 
space has been varying during the searching process.  An 
improved wavelet mutation is proposed in this paper, which 
allows more than one element in each particle to be mutated in 
each searching process.  The resulting multi-mutation operation 
aids the hybrid PSO to perform more efficiently and provide a 
faster convergence than the PSO with wavelet mutation, the 
standard PSO, and other hybrid PSOs [1][9] in solving a suite of 
8 benchmark test functions.   

This paper is organized as follows: Section II presents the 
operation of the hybrid PSO with multi-wavelet mutation.  
Experimental studies and analysis are given in Section III.  Eight 
benchmark test functions are used to evaluate the performance of 
the proposed method.  A conclusion will be drawn in Section IV. 

II.  HYBRID PSO WITH MULTI-WAVELET MUTATION  

PSO is a novel optimization method developed by Eberhart et 
al. [6-7].  It models the sociological behaviour of bird flocking, 
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and is one of the important evolutionary computation techniques.  
Within a number of particles that constitute a swarm, each 
particle traverses the search space looking for the global 
optimum.  The standard PSO (SPSO) process is shown in Fig. 1.  
In this paper, a hybrid PSO with multi-wavelet mutation 
(MWPSO) is proposed and shown in Fig. 4.  The details of SPSO, 
WPSO and MWPSO will be discussed as follows.   

 
 

A.  Standard particle swarm optimization (SPSO) 

In Fig.1, X(t) denotes a swarm at the t-th iteration.  Each 
particle ( ) ( )tXtp ∈x  contains κ elements ( ) ( )ttx pp

j x∈  at the 

t-th iteration, where p = 1, 2,...  , γ  and j = 1, 2,… , κ ; γ  

denotes the number of particles in the swarm.  First, particles of 
the swarm are initialized and then evaluated by a defined fitness 
function.  The objective of SPSO is to minimize the fitness value 
(cost value) of a particle through iteration steps.  The swarm 
evolves from iteration t to t +1 by repeating the procedure as 
given in Fig. 1.  The SPSO operations are discussed as follows.  
The velocity ( )tv p

j  (corresponding to the flight speed in a search 

space) and the coordinate ( )tx p
j  of the j-th element of the p-th 

particle at the t-th generation can be calculated using the 
following formulas [12]: 
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where ppbest = [ ]ppp pbestpbestpbest κ,...21 , 

gbest= [ ]κgbestgbestgbest ,...21 , j = 1, 2, …, κ .  The best 

previous position of the p-th particle is recorded and represented 
as ppbest ; the position of best particle among all the particles is 

represented as gbest; w is an inertia weight factor; 1ϕ  and 2ϕ  

are acceleration constants; rand() returns a random number in 
the range of [0,1]; k is a constriction factor derived from the 
stability analysis of equation (2) to ensure the system 
convergence but not prematurely [5].  Typically, k is a function 
of 1ϕ  and 2ϕ  as reflected in the following equation: 
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where 21 ϕϕϕ +=  and 4>ϕ . 

 
SPSO utilizes ppbest  and gbest to modify the current search 

point to avoid the particles moving in the same direction, but to 
converge gradually toward pbest and gbest.  A suitable selection 
of the inertia weight w provides a balance between the global and 
local explorations.  Generally, w can be dynamically set with the 

following equation [7]: 
 

         t
T

ww
ww ×−−= minmax

max  (4) 

 
where t is the current iteration number, T is the total number of 
iteration, maxw  and minw  are the upper and lower limits of the 

inertia weight, and are set as 1.2 and 0.1 respectively in this 
paper. 

In (1), the particle velocity is limited by a maximum value 

maxv .  The parameter maxv determines the resolution, or fitness, 

of regions between the present position and the target position to 
be searched.  This limit enhances the local exploration of the 
problem space, and it realistically depicts the incremental 
changes of human learning.  If the value of maxv  is too high, 

particles might fly past good solutions; if it is too small, particles 
may not explore sufficiently beyond local solutions.  From many 
experiments with PSO, maxv  was often set at 10%–20% of the 

dynamic range of the variables on each dimension. 
 

 
Fig. 1.  Pseudo code for SPSO. 

 
 
B.  Recent Hybrid Particle swarm optimization and its 
limitation 

 
From our observation, SPSO [9] works well in the early 

iteration stage, but it usually presents problems on reaching a 
near-optimal solution.  The behaviour of the SPSO is affected by 
some important aspects related to the velocity update.  If a 
particle’s current position coincides with the global best position, 
the particle will only move away from this point if its inertia 
weight and velocity are different from zero.  If their velocities 

begin 
         t→0                    // iteration number 
         Initialize X(t)     // X(t): swarm for iteration t 
         Evaluate f(X(t)) // f(⋅): fitness function 
while (not termination condition) do 
           begin 

t→t+1 
// Process of SPSO // 
Update velocity v(t) and position of each 
particle x(t) based on (1) and (2) respectively 

if  v(t)>vmax 
v(t)= vmax 

end 
if  v(t)<−vmax 
v(t)= − vmax 

end 
// End of the process of SPSO // 
Reproduce a new X(t) 
Evaluate f(X(t)) 

            end 
end  
 



 
 

 

are very close to zero, all the particles will stop moving once they 
catch up with the global best particle, which may lead to 
premature convergence and no further improvement can be 
obtained.  This phenomenon is known as stagnation [4].   

Ahmed et al. [1] proposed to integrate GAs’ mutation 
operation into PSO, which aids to overcome stagnation.  Here, 
we call this hybrid PSO as APSO.  The mutation operation starts 
with a randomly chosen particle in the swarm and moves to 
different positions inside the search area.  The following 
mutation operation is used in APSO: 

 
( ) ω−= jj xxmut  (5) 

 
where jx  is the randomly chosen particle element from the 

swarm, and ω is a number randomly generated within the range 
( )[ ]jj parapara minmax1.0,0 −×  representing 10% of the length of 

the search space.  jparamax  and jparamin  are the upper and lower 

bounds of each particle element.  The pseudo code of the hybrid 
PSO with the mutation operation is shown in Fig. 4, in which the 
mutation on particles will perform after updating the velocities 
and positions of the particles.  It can also be seen from Fig. 1 and 
Fig. 4 that the two PSO methods are identical except the 
mutation operation has been integrated in the second method.  
However, (5) indicates that the mutating space in APSO is 
limited by ω in which 10% of the range of the parameter x is used.  
It may not be a good approach in fixing the mutating space at all 
time of the search.  It can be further improved by employing a 
dynamic mutation operation in which the size of the mutating 
space varies during the search. 

 
C.  Wavelet theory 

 
Certain seismic signals can be modelled by combining 

translations and dilations of an oscillatory function with a finite 
duration called a “wavelet”.  A continuous function )(xψ  is 

called a “mother wavelet” or “wavelet” if it satisfies the 
following properties: 
 
Property 1: 

0)( =∫
+∞

∞−
dxxψ  (6)  

 
In other words, the total positive momentum of )(xψ is equal to 

the total negative momentum of )(xψ . 

 
Property 2: 

∞<∫
+∞

∞−
dxx

2
)(ψ  (7) 

 
which means most of the energy in )(xψ  is confined to a finite 

duration and bounded.  The Morlet wavelet (as shown in Fig. 2) 
[2] is an example mother wavelet: 
 

( ) ( )xex x 5cos2/2−=ψ  (8) 

 
The Morlet wavelet integrates to zero (Property 1).  Over 99% of 
the total energy of the function is contained in the interval of 

5.25.2 ≤≤− x  (Property 2).  In order to control the magnitude 
and position of )(xψ , a function )(, xbaψ  is defined as follows. 
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Fig. 2.  Morlet wavelet. 

 
where a is the dilation parameter and b is the translation 
parameter.  Notice that 
 

( )xx ψψ =)(0,1 , (10) 
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It follows that )(0, xaψ  is an amplitude-scaled version of )(xψ .  

Fig. 3 shows different dilations of the Morlet wavelet.  The 
amplitude of  )(0, xaψ  will be scaled down as the dilation 

parameter a increases.  This property is used to do the mutation 
operation in order to enhance the searching performance. 
 

 
Fig. 3.  Morlet wavelet dilated by different values of the parameter a (x-axis: x, 

y-axis: )(0, xaψ .) 

( )xψ  



 
 

 

D.  WPSO and the Proposed MWPSO 
 

We propose a multi-wavelet mutation that varies the mutating 
space based on the wavelet theory.  The MWPSO is identical to 
WPSO except the number of elements that undergo the mutation 
process in each particle can been controlled.  Both WPSO and 
MWPSO will be discussed in the following sub-section.   

 
1.  WPSO and its Operation 

The mutation operation is used to mutate the elements of 
particles.  In general, various methods like uniform mutation or 
non-uniform mutation [8, 10] can be employed to realize the 
mutation operation.  The proposed wavelet mutation (WM) 
operation exhibits a fine-tuning ability.  The details of the 
operation are as follows.  Every particle of the swarm will have a 
chance to mutate governed by a probability of mutation, 

[ ]10∈mµ , which is defined by the user.  For each particle, a 

random number between 0 and 1 will be generated that controls 
which element in the particle will be mutated, the mutation will 
take place on that element of particle.  For instance, if 

( ) ( ) ( ) ( )[ ]txtxtxt pppp
κ,,,

21
…=x  is the selected p-th 

particle and the element of particle( )txp
j  is randomly selected 

for mutation (the value of ( )txp
j  is inside the element’s bounds 

[ jj parapara maxmin , ]), the resulting particle is given 

by ( ) ( ) ( ) ( ) ( )[ ]txtxtxtxt ppppp

j κ,,,,,
21

……=x , 

where j ∈ 1, 2, … κ ; κ  denotes the dimension of  particle and  
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By using the Morlet wavelet in (8) as the mother wavelet, 
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If σ  is positive ( 0>σ ) approaching 1, the mutated element 

will tend to the maximum value of ( )txp
j .  Conversely, when σ  

is negative ( 0≤σ ) approaching −1, the mutated element will 

tend to the minimum value of ( )txp
j .  A larger value of σ  gives 

a larger searching space for( )txp
j .  When σ  is small, it gives a 

smaller searching space for fine-tuning.  Referring to Property 1 
of the wavelet, the total positive energy of the mother wavelet is 

equal to the total negative energy of the mother wavelet.  Then, 
the sum of the positive σ  is equal to the sum of the negative σ  
when the number of samples is large and ϕ  is randomly 

generated.  That is, 
 

0
1 =∑

N
N

σ  for ∞→N ,             (16) 

 
where N is the number of samples.   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

di
la

tio
n 

pa
ra

m
et

er
 

5 

2 

1 

0.5 

0.2 

a 

 
Fig. 5 Effect of the shape parameter 

wmζ  to a with respect to t/T. 

 
Hence, the overall positive mutation and the overall negative 
mutation throughout the evolution are nearly the same.  This 
property gives better solution stability (smaller standard 
deviation of the solution values upon many trials).  As over 99% 
of the total energy of the mother wavelet function is contained in 
the interval [−2.5, 2.5], ϕ  can be generated from [−2.5, 2.5] 

randomly.  The value of the dilation parameter a is set to vary 
with the value of Tt  in order to meet the fine-tuning purpose, 

where T is the total number of iteration and t  is the current 
number of iteration.  In order to perform a local search when t is 

begin 
         t→0                    // iteration number 
         Initialize X(t)     // X(t): Swarm for iteration t 
         Evaluate f(X(t)) // f(⋅): fitness function 
while (not termination condition) do 
           begin 

t→t+1 
Perform the process of PSO (shown in Fig. 1) 
Perform mutation operation with pm 

       If  perform multi-mutation  
              Select the elements with Nm 

Reproduce a new X(t) 
Evaluate f(X(t)) 

            end 

Fig. 4 Pseudo code for hybrid PSO with mutation operation. 
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large, the value of a  should increase as Tt  increases so as to 

reduce the significance of the mutation.  Hence, a monotonic 
increasing function governing a  and Tt  is proposed as 

follows. 
 

( ) ( )g
T

t
g

wm

ea
ln1ln +







 −×−
=

ζ
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where wmζ  is the shape parameter of the monotonic increasing 

function, g is the upper limit of the parameter a.  The effects of 
the various values of the shape parameter wmζ  to a with respect 

to Tτ  are shown in Fig. 5.  In this figure, g  is set as 10000.  

Thus, the value of a  is between 1 and 10000.  Referring to (15), 
the maximum value of σ  is 1 when the random number of ϕ =0 

and 1=a  ( Tt = 0).  Then referring to (12), the offspring gene 

( ) =tx p
j  ( ) ( )( )txparatx p

j
jp

j −×+ max1  = jparamax .  It ensures 

that a large search space for the mutated element of particle is 
given.  When the value Tt  is near to 1, the value of a  is so 

large that the maximum value of σ  will become very small.  For 
example, at Tt =0.9 and 1=wmζ , the dilation parameter a = 

400; if the random value of ϕ  is zero, the value of σ  will be 
equal to 0.0158.  A smaller searching space for the mutated 
element of particles is then given for fine-tuning. 
 After the operation of wavelet mutation, a new swarm is 
generated.  This new swarm will repeat the same process.  Such 
an iterative process will be terminated when a defined number of 
iteration is met. 
 
2.  The proposed MWPSO 

 
For the proposed MWPSO, one more parameter [ ]10∈mN  

is defined.  The value of Nm is randomly set at each iteration step.  
This parameter control the number of elements in the particle 
that mutate, such that more than one element in each particle can 
vary its value and more freedom will be given to the particle to 
explore the searching space.  For instance, if 

( ) ( ) ( ) ( )[ ]txtxtxt pppp
κ,,,

21
…=x is the selected p-th 

particle, the number of elements that undergoes mutation is 
controlled by:  
 

κ×= mNelements mutated ofNumber        (18) 

 
The elements for doing mutation are randomly selected.  The 

resulting particle is denoted by 
 ( ) ( ) ( ) ( )[ ]1,,1,1

21
+++= txtxtxt pppp

κ…x , where j ∈ 1, 2, … κ  

 
 
 

III.  BENCHMARK TEST FUNCTIONS AND RESULTS 

A.  Benchmark test function 

A suite of eight benchmark test functions [13] are used to test 
the performance of the MWPSO.  Many different kinds of 
optimization problems are covered by these benchmark test 
functions.  They can be divided into three categories.  The first 
type is the unimodal function, which is a symmetric model with a 
single minimum; f1 to f3 are unimodal functions.  The second type 
is the multimodal function with a few local minima; f4 and f5 
belong to this type.  The last one is the multimodal function with 
many local minima; f6 to f8 belong to this type.  The details of 
these functions are shown in Table I.   
 
Table I.  Benchmark Test Functions. 

Test function Domain range Optimal point 

Sphere function 

∑
=

=
30

1

2
1 )(

i
ixf x  

15050 ≤≤− ix

 

Min(f1)= 
f1(0)=0 

Step function 

( )
230

1
2 5.0)( ∑

=

+=
i

ixf x  

105 ≤≤− ix  Min(f2)= 
f2(0)=0 

Schwefel’s Problem 2.21 

{ }301,max)(3 ≤≤= ixf i
i

x  

50150 1 ≤≤− x  Min(f3)= 
f3(0)= −1 

Kowalik’s function 

( ) 2
11

1 43
2

2
2

1
4 )( ∑

=









++
+−=

i ii

ii
i xxbb

xbbx
af x  

55 ≤≤− ix  Min(f4)= 
f4([0.1928 
0.1908 0.1231 
0.1358])= 
3.075x10-4 

Hartman’s Family I 

( )∑ ∑
= =









−−−=

4

1

3

1

2
5 exp)(

i j
ijiiji pxacf x

 

10 ≤≤ ix  Min(f5)= 
f5([0.114 0.556 
0.852])= 
-3.8628 

Griewank Function 

1cos
4000

1
)(

30

1

30

1

2
6 +








−= ∏∑

== i

i

i
i

i

x
xxf  

6001200 ≤≤− ix

 

Min(f6)= 
f6(0)=0 

Generalized Ackley’s function 

( )

e

x

xf

i
i

i
i

++








−














−−=

∑

∑

=

=

20

2cos
30

1
exp

30

1
2.0exp20

30

1

30

1

2
17

π

x

 

3264 ≤≤− ix  Min(f7)= 
f7(0)=0 

Schwefel’s function 

∑
=

=
30

1
8 ))sin(()(

i
ii xxxf  

500500 ≤≤− ix  Min(f8)= 
f8([420.9687, ..., 
420.9687])= 
−12569.5 

 
B.  Experimental Setup 

The performance of SPSO [9], APSO [1], WPSO and the 
proposed MWPSO on solving the benchmark test functions is 
evaluated.  The following simulation conditions are used: 
 



 
 

 

• The shape parameter of  wavelet mutation (wmζ ): 0.2 

• The acceleration constant 1ϕ : 2.05 

• The acceleration constant 2ϕ : 2.05 

• Maximum velocity maxv : 0.2 

• Swarm size: 40 
• Number of runs: 50 
• Probability of mutation ( mµ ): 0.1 

• Mutation parameter ( mN ): 0.3 

• Initial population: generated uniformly at random 
 

C.  Results and Analysis 

In this section, the simulation result for the 8 benchmark test 
functions are given to show the merits of the MWPSO.  The 
experimental result in terms of the mean cost value, best cost 
value, standard deviation and convergence rate are summarized 
in Table II and Fig. 6. 
 
1.  Unimodal function 

Function f1 is a sphere model.  In view of the characteristic of 
f1, which is smooth and symmetric, the main purpose is to 
measure the convergence rate of the searching.  It is probably the 
most widely used test function.  For this function, the result in 
terms of the mean cost value, the best cost value, and the 
standard deviation of MWPSO and WPSO are much better than 
those of the other methods.  As shown in Fig. 6(a), the 
convergence rate of MWPSO is higher than that of WPSO, 
APSO and SPSO. 

Function f2 is a step function, which is a representative of flat 
surfaces.  Flat surfaces are obstacles for optimization algorithms 
because they do not give any information about the search 
direction, unless the algorithm has a variable step size.  From 
Fig. 6(b), it is clearly shown that MWPSO has the best 
convergence rate as compared with SPSO, WPSO and APSO.  
We see that by increasing the number of elements for mutation, 
we can enhance the searching space. 

Function f3 is a Schwefel’s problem 2.21.  According to Fig. 
6(c), the performance does not show significant difference at the 
first 400 iteration steps.  From Table II, although the best cost 
value of the MWPSO is a little bit larger than that of the APSO, 
the mean cost value and the standard derivation of the MWPSO 
are the best.  Thus, MWPSO can offer better solution quality and 
stability. 
 
2.  Mulitmodal function with a few local minima 

For function f4, which is a multimodal function with only a few 
local minima, different results from the proposed methods are 
obtained.  As shown in Fig. 6(d), SPSO, APSO and WPSO are 
trapped in different local minima, and the convergence rate of 
the MWPSO is faster than that of others.  Moveover, MWPSO 
can provide the best result in terms of cost value and standard 
deviation.   

From the result obtained from function f5, we see that there is 
no significant difference for all the PSO methods; the curves of 

convergence are quite similar, and they all can reach or get near 
to the global optimum.  However, MWPSO still provides the 
best standard deviation value. 
 

3.  Multimodal function with many local minima 

Functions f6 to f8 are multimodal functions with many local 
minima.  For function f6, it can be seen clearly from Fig. 6(f) that 
MWPSO is the fastest to reach the optimal point.  From the result 
obtained, MWPSO, WPSO and APSO return the same best cost 
value, but the standard deviation of MWPSO is the best.  Hence, 
MWPSO can provide more stable and high-quality result. 

For function f7, as seen from Fig 6(g), the proposed method 
has already reached the optimal point after a few iteration steps, 
while other methods almost use 200 iteration steps to reach the 
optimal point.  It shows that the MWPSO offers a good searching 
ability thanks to the multi-wavelet mutation in the PSO.  Also, 
the mean and the standard deviation offered by MWPSO are 
much better than those of others.   

For function f8, it is shown that the searching ability of the 
proposed method is quite different from the other methods.  All 
the algorithms except MWPSO have similar behaviour at the 
first 400 iteration steps, and are trapped in some local minima.  
On the other hand, the cost value offered by MWPSO is 
decreasing gradually, and it can provide the best result as 
compared with others.   

IV.  CONCLUSION 

In this paper, we proposed a new hybrid PSO with 
multi-wavelet mutation.  Our objective is to increase the 
searching area by increasing the number of elements in a particle 
that undergo mutation so as to further improve the performance 
of WPSO.  The solution space can be explored more effectively 
on reaching the optimal solution.  Simulation results have shown 
that the proposed method is a useful technique to solve 
optimization problems.  On solving a suite of benchmark 
functions, MWPSO offers better results in terms of solution 
quality and stability than WPSO, APSO and SPSO.  Also a faster 
convergence speed can be achieved by MWPSO. 
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TABLE II:  COMPARISON BETWEEN DIFFERENT PSO METHODS FOR 

SELECTED FUNCTIONS.  ALL RESULTS ARE AVERAGED ONES OVER 50 RUNS 
f1 (x100), number of iteration: 500 

  MWPSO WPSO APSO SPSO 
Mean 0 0 0.0004 32857.9467 
Best 0 0 0.0001 12500.4982 
Std Dev 0 0 0.0003 8626.6124 

 
f2 (x100), number of iteration: 500 

  MWPSO WPSO APSO SPSO 
Mean 0 0.62 0.9 39.58 
Best 0 0 0 0 
Std Dev 0 1.4553 3.37 34.5154 

 
f3 (x100), number of iteration: 1000 

  MWPSO WPSO APSO SPSO 
Mean 0.7374 1.3189 8.4366 14.61 

Best 0.2894 0.1854 0.0743 1.8902 
Std Dev 0.255 7.0255 18.421 19.2 

 
f4 (x10-3), number of iteration: 1000 

  MWPSO WPSO APSO SPSO 
Mean 1.4 4.2 6.3 8.5 

Best 0.3 0.4 0.5 0.3 
Std Dev 3.9 7.7 8.9 9.3 

 
f5 (x100), number of iteration: 500 

  MWPSO WPSO APSO SPSO 
Mean -3.8628 -3.8628 -3.8628 -3.8625 

Best -3.8628 -3.8628 -3.8628 -3.8628 
Std Dev 2.7683e-15 3.5092e-11 2.7849e-14 0.0016 

 
f6 (x100), number of iteration: 500 

  MWPSO WPSO APSO SPSO 
Mean 0 0.1925 0 138.1759 
Best 0 0 0 0.0709 
Std Dev 0 0.2864 0 128.0549 

 
f7 (x100), number of iteration :500 

  MWPSO WPSO APSO SPSO 
Mean 0.0044 509.6625 0.0179 3278.0132 
Best 0 0 0 3.8481 
Std Dev 0.0069 1744.8548 0.112 3581.2285 

 
f8 (x10-4), number of iteration :1000 

  MWPSO WPSO APSO SPSO 
Mean -11210.9656 -7441.1954 -7180.3602 -6951.7609 
Best -12352.3469 -8161.4782 -8159.9612 -8278.3995 
Std Dev 578.664 438.2333 450.2045 656.8472 



 
 

 

 
(a) f1 

 
(b) f2 

 
(c) f3 

 
(d) f4 

 
(e) f5 

 
(f) f6 

 
(g) f7 

 
(h) f8 

Fig. 6 Comparisons between different PSO methods for f1 to f8. 
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