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Abstract—This paper introduces hardware accelerators for
regular expression matching and approximate string matching.
The hardware for regular expression matching accepts a subclass
of regular expressions, and achieves a high throughput string
matching for a wide range of patterns. In addition, since
the hardware is pattern-independent, we can update patterns
immediately without reconfiguring the hardware. Therefore, it is
useful for applications that require quick pattern updating, such
as network intrusion detection. The hardware for approximate
string matching calculates the edit distance as a degree of
similarity between two strings at high speed. Therefore, it
accelerates processing for text retrieval in database, analysis of
DNA, protein sequences in bioinformatics, and so on.

I. INTRODUCTION

String matching is a problem to search for strings from
the input text which match a given pattern. The problems
can be classified into the exact string matching which is
a problem to find strings equivalent to a pattern, and the
approximate string matching which is a problem to find strings
similar to a pattern [1], [5]. These problems occur in a broad
range of applications, such as network intrusion detection, text
retrieval in databases, analysis of DNA, and protein sequences
in bioinformatics. Various algorithms for string matching have
been extensively studied to shorten its computation time, and
a number of research results have been presented in last 50
years [1], [20].

Since the advent of VLSI era, it has become possible to
realize algorithms on VLSI circuits as hardware algorithms to
drastically reduce the computation time to solve problems [16].
Many hardware algorithms have been proposed for various
kinds of string matching [1]. For example, Foster, et al. [4]
and Mukhopadhyay [19] proposed hardware algorithms for the
string pattern matching problem. Kikuno, et al. [13] proposed
a hardware algorithm for the longest common subsequence
problem.

In this paper, we introduce two hardware algorithms for
exact and approximate string matching problems. As for
the exact string matching problem, we focus on a regular
expression matching problem, in which a subclass of regular
expressions is given as a pattern. And, as for the approxi-
mate string matching problem, we focus on a string-to-string
correction problem which is a problem to calculate the edit
distance as a degree of similarity between two strings [24].

The rest of this paper is organized as follows: Section II
describes the hardware algorithm for regular expression match-
ing, and shows its architecture. Section III describes the
hardware algorithm for calculating the edit distance, and shows
its architecture. Section IV gives some experimental results to
show the effectiveness of our hardware algorithms. Finally,
some concluding remarks are given in Section V.

II. REGULAR EXPRESSION MATCHING

In this section, we introduce the hardware algorithm for
regular expression matching and its architecture.

A. Related Work on Exact String Matching

In this subsection, we quickly overview previous results on
hardware algorithms for exact string matching problems. In
1970s and 1980s, hardware algorithms for simple character
string matching [4], [19] have been presented. In addition,
various hardware algorithms such as a special-purpose string
matching hardware for database machines [15], content ad-
dressable memory (CAM) based methods [28], trie based
methods [23], and hashing based methods [6] have been
reported. These hardware algorithms can realize high speed
string matching and immediate pattern updating. However,
since in these algorithms, patterns used in matching are
restricted only to simple character strings, their applications
also can be restricted to ones that require only simple patterns.

On the other hand, regular expression matching, in which
a regular expression is given as a pattern, can be used in
a wider range of applications because a regular expression
can encompass tens and hundreds of character strings [18],
and can represent various patterns compactly. Particularly, in
recent years, an applications of regular expression matching
to network intrusion detection systems (NIDSs) has attracted
much attention. In 2000s, FPGA implementation of regular
expression matching for NIDSs has been widely investigated,
and many research results have been reported [2], [21], [26].

As well known, any regular expression can be realized
by either non-deterministic or deterministic finite automaton
(NFA or DFA) [7], and NFA and DFA can be implemented
as simple circuits. In this case, patterns are embedded as
hardware circuits. Such pattern-specific circuits are high speed
and compact for given patterns. Thus, most of the existing



researches have adopted a pattern-specific hardware imple-
mentation approach [2], [21], [26]. However, this pattern-
specific approach has a major disadvantage. For those pattern-
specific matching engines, if a pattern is changed, then a
sequence of FPGA design and implementation processes (i.e.,
generating HDL code, logic synthesis, place and route, and
generating a configuration data) should be performed again.
This FPGA design sequence requires a fairly long time,
sometimes, a few hours. This property of pattern-specific
matching engines would be fatal for several applications like
NIDSs, in which patterns are frequently updated, and quick
response of matching results is strongly demanded.

To overcome this problem, pattern-independent regular ex-
pression matching engines which can update patterns im-
mediately have been proposed [3], but they accept only a
very small subclass of regular expressions. Although in many
applications, the whole class of regular expressions is not
required, a subclass large enough to describe patterns is
desired. In this section, we introduce a pattern-independent
regular expression matching engine which accepts a much
larger subclass of regular expressions.

B. A Subclass of Regular Expressions

In our hardware algorithm, a pattern is described as a reg-
ular expression RE with some restrictions. In the following,
we define a subclass of RE [7].

Let
∑

= {a1, a2, . . . , as} be a finite, nonempty set of
symbols (or, characters). We call

∑
an alphabet. |, ·, and ∗

are the union, concatenation, and Kleene closure operators of
regular expressions. The ∗ operator is of highest precedence,
and the · operator is the next one. The | operator has the
lowest precedence among those three operators. The · operator
is usually omitted, and for example, we denote “abc” instead
of “a · b · c”. ? is a special symbol not in

∑
, and let

? = a1|a2| . . . |as.
Now, we define a subclass of regular expressions, which

is used to specify a pattern in our algorithm. If expression
EC is a symbol in

∑
∪{?} or a concatenation of more than

one symbols, then EC is called a C-term. Let E1, E2 . . . , Ek,
k ≥ 2, be C-terms. If EU = E1|E2| . . . |Ek, then EU is called
a U-term. Let E be a U-term. If EK = (E)∗, then EK is
called a UK-term. If E is a C-term, a U-term, a UK-term, or
a concatenation of a finite number of C-, U-, and UK-terms,
then E is called admissible.

The problem of regular expression matching discussed in
this section is the problem of finding all occurrences of
substrings, which match a given pattern P , where P is an
admissible regular expression on alphabet

∑
.

An example of admissible regular expression is shown as
follows. Let

∑
= {a, b, c, d, e}. Then, abc(ac|de)∗(bd|ce) is

an example of admissible regular expression.
For an admissible regular expression P , nesting of parenthe-

ses is not allowed. Thus, the language represented by a class
of admissible regular expressions is strictly smaller than the
normal regular language. However, there are many applications
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Fig. 1. Overview of the regular expression matching engine.

in the real world, in which admissible regular expressions are
enough to specify patterns in regular expression matching.

Given a pattern P , the length of P is defined as the number
of alphabet symbols included in P . That is, ∗, ·, and | operators
and parentheses in P are not counted.

C. Overview of the Architecture

Our string matching engine is constructed as a one-
dimensional array of simple processing units called compar-
ison cell (CC) as shown in Fig. 1. This architecture can be
classified as a one-dimensional systolic array [14]. Assume
that the length of given pattern P is p, then there are p CCs
in the circuit.

The whole circuit is implemented as a synchronous circuit,
and the behavior of the circuit is synchronized to one global
clock signal. A CC is a processing unit, which stores one
symbol in the pattern P , and one symbol in the text T to be
searched. The main function of CC is to compare a symbol in
P with a symbol in T . Pattern P is input from the rightmost
cell before starting string matching. Each symbol in P is
stored in each CC. A text to be retrieved is input from the
leftmost cell, and string matching is performed in each CC in
parallel and pipeline fashion. Details of the behavior of CC
are described in the next subsection.

The matching algorithm supports two modes of string
matching; one is the anchor mode, and the other is the
unanchor mode [19]. The anchor mode is used to determine
whether the whole input text T matches with pattern P . In
this mode, we set the enable signal Ein of the leftmost cell
CC1 to true only when the first symbol in T is input from the
outside. If T matches with P , then the output signal Eout of
the rightmost cell becomes true when the last symbol of T is
output from the rightmost cell.

On the other hand, the unanchor mode is used to determine
whether the input text T contains a substring, which matches
with pattern P . In this mode, during the execution of the
algorithm, we always set the enable signal Ein of CC1 to
true. If T includes a substring S, which matches with P , then
the output signal Eout becomes true when the S is output
from the rightmost cell.

D. Comparison Cell

As mentioned, our regular expression matching engine
consists of p comparison cells. Fig. 2 shows the structure of
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Fig. 2. Comparison cell.

a comparison cell. It consists of the control circuit CON ,
flags E, ES, TM1, TM2, registers OP , LP , LC, TERM ,
TS, TM , counter TC, a comparator CMP , and FIFO buffer
TMM .

CON controls the overall behavior of the cell. The behavior
of each cell is synchronized to a global clock signal. We
assume a two-phase clocking scheme, and each clock cycle
T consists of a pair of two clock signals (t0, t1), which is
provided to each cell. When we want to describe i-th clock
cycle, then we represent it as Ti.

OP is a register which stores | operator and parentheses “(”
and “)”. “(” and its subsequent symbol in P is stored in the
same cell. “)” and “|” are stored in a cell having a symbol,
whose subsequent symbol in P is “)” or “|”. LP and LC are
registers to store symbols in the pattern and text, respectively.
CMP is a comparator which compares two symbols stored
in registers LP and LC. Other registers, a binary counter
TC, and FIFO buffers TMM are explained in the following
subsection.

From the definition of patterns, a given pattern P is a
concatenation of C-, U-, and UK-terms. In the next subsection,
first, a matching algorithm for UK-terms is described. Since
matching algorithms for C- and U-terms are easily derived
from the algorithm for UK-terms, their explanation will be
given in the subsequent subsections.

E. Matching of a UK-term

Let P = (t1|t2| . . . |tk)∗ be a UK-term, where each ti is a
C-term. Assume that P is given as a pattern to be retrieved.
A matching algorithm for a UK-term consists of three types
of matching; empty matching, tentative matching, and final
matching. In the following, we explain those matching.

1) Empty Matching: From the definition of a UK-term,
an empty input string is always matched with P . We call

cc1 cc2 cc3 cc4 cc5 cc6

T1

a b d | b | d e

T2

T3

T4

T5

T6

T7

T8

T9

T10

a

b

d

d

e

a

b

d

d

e

a

b

d

d

e

a

b

d

d

e

a

b

d

d

e

a

b

d

d

e

true

ES

ES

ES

ES

ES

Eout

Fig. 3. Empty matching.

this matching empty matching. Empty matching is realized
by the algorithm as follows. When the input signal Ein of
the leftmost cell becomes true, matching of an input text with
pattern P begins. For each cell, if its input Ein becomes true
in clock cycle Ti, this enable signal, denoted ES, is sent to its
right neighbor cell in the next clock cycle Ti+1. As a result, the
output signal Eout of the rightmost cell becomes true, when
the first symbol in the text string is output from the rightmost
cell (see Fig. 3).

2) Tentative Matching: Assume that a UK-term P =
(t1|t2| . . . |tk)∗ is given as an input pattern, where t1, t2, . . . , tk
are C-terms. When a given input text T matches with P ,
T can be divided into substrings, T1, T2, . . . , Ts such that
T = T1T2 . . . Ts, and for each Ti, there is a C-term tj in P and
Ti = tj . For example, let P = (abd|b|de)∗. Let T = abdde.
Then, P matches with T , and T = T1T2, T1 = abd, T2 = de.

From this observation, if you want to perform string match-
ing for UK-terms correctly, we should realize the following
two functions in the algorithm. The first function is to perform
string matching for C-terms. For any substring Ti in T , if there
is a C-term tj in P such that Ti = tj , the algorithm should
correctly decide that Ti matches with tj . In the following, we
call this function tentative matching of tj .

The second function of matching for UK-terms is to check
whether the input text T can be divided into substrings
T1, T2, . . . , Ts such that T = T1T2 . . . Ts, and in tentative
matching, it has been verified that for each Ti, there is a C-
term tj in P such that Ti = tj . In the following, we call
this function final matching. We will explain final matching in
detail in the next subsection.

Tentative matching of a C-term tj is realized by a set of
cells, which contain pattern symbols in tj . For example, let
P = (abd|b|de)∗. P consists of three C-terms, t1 = abd, t2 =
b, and t3 = de. This pattern is set in the systolic algorithm as
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shown in Fig. 4. Each cell can be classified into three types
of cells. For each C-term tj , the leftmost cell in tj is called
a term start cell, the rightmost cell in tj is called a term end
cell, and the remaining cells are called term middle cells. In
Fig. 4, CC1, CC4, and CC5 are term start cells, CC3, CC4,
and CC6 are term end cells, and CC2 is a term middle cell.
Note that, if a C-term consists of one symbol, the same cell is
classified into both the term start and end cells. We also call
all cells except the rightmost cell general cells. The rightmost
cell is called a decision cell.

For any term start cell, after starting empty matching, the
term start cell always starts tentative matching if an input text
symbol is matched with a pattern symbol stored in this term
start cell. In Fig. 4, assume that T = abdde, which is input
from CC1, and moves rightward one cell by one cell in each
clock cycle. The cell CC1 starts tentative matching in clock
cycle T1, CC4 starts tentative matching in T5, and CC5 starts
tentative matching in T7 and T8. When a term start cell starts
tentative matching for C-term tj , the tentative matching start
signal TSj is set to true, and this signal is transferred in the
systolic array one cell by one cell in each clock cycle. In
Fig. 4, this signal is denoted as a solid line. The term start
cell also sends the tentative matching enable signal TE to its
right neighbor cell in two clock cycles. In Fig. 4, this signal
is denoted as a rough dotted line.

For any term middle cell, when it receives the tentative
matching enable signal TE from its left neighbor cell, it starts
tentative matching, and if the matching is successfully done,
then it sends the tentative matching enable signal TE to its
right neighbor cell in two clock cycles. If matching fails, the
cell does not send TE to its right neighbor cell.

For any term end cell receiving the tentative matching
enable signal TE, it starts tentative matching, and if the
matching is successfully done, then it sends the tentative
matching success signal TMj to its right neighbor cell in two
clock cycles. This tentative matching success signal TMj is

transferred in the systolic array one cell by one cell in each
clock cycle. In Fig. 4, this signal is denoted as a fine dotted
line.

3) Decision Cell: As noted, string matching for UK-terms
with the systolic algorithm is performed in two steps, tentative
matching and final matching. In the following, we explain how
final matching is performed.

As described, the rightmost cell is called a decision cell.
In addition to functions of general cells, the decision cell
performs final matching. As the case shown in Fig. 4, the cell
CC6 is a decision cell. The decision cell has a binary counter,
called Text Counter, TC and a set of First-In-First-Out (FIFO)
buffers, called Term Matching Memories, TMMi, 1 ≤ i ≤ t,
where t is the number of C-terms in pattern P .

The initial value of TC is set to 0, and it is incremented
when the decision cell receives a text symbol from its left
neighbor cell. Each FIFO buffer TMMi is set to empty when
the algorithm starts.

When the decision cell receives the tentative matching
start signal TSi from its left neighbor cell, and in the same
clock cycle, the decision cell decides that empty matching or
tentative matching for some C-term in P is successfully done,
then the current value of TC+lengthi is written into the FIFO
buffer TMMi, where lengthi is the length of i-th C-term. For
example, in Fig. 4, in clock cycle T6, the decision cell receives
TS1. In clock cycle T6, as shown in Fig. 3, empty matching
is successfully done. Thus, TC + length1 = 1 + 3 = 4
is written into FIFO buffer TMM1. In clock cycle T7, the
decision cell receives TS2. However, in this clock cycle, no
tentative matching is successfully done. Thus, no data will be
written into FIFO TMM2.

For each clock cycle, each FIFO buffer TMMi is checked.
Let the oldest data stored in the FIFO buffer TMMi be topi.
If the value of topi is equal to the value of counter TC, and
in the same clock cycle, the decision cell receives the tentative
matching success signal TMi, then the decision cell decides
that tentative matching for C-term ti has been successfully
done, and the matching enable signal Eout is set to true by
setting flag E to true. Otherwise, the data topi is simply
discarded from the buffer. For example, in Fig. 4, in clock
cycle T8, the decision cell receives TM2. However, the FIFO
buffer TMM2 is empty. Thus, tentative matching has been
failed. In clock cycle T9, the decision cell receives TM1.
The FIFO buffer TMM1 holds 4 as the oldest value. Since
this is equal to the value of TC, tentative matching has been
successfully done.

4) Behavior of Cells: The algorithm descriptions of general
and decision cells are given in Fig. 5 and Fig. 6. As noted, the
behavior of each cell is synchronized to a global clock signal,
and we assume a two-phase clocking scheme, and each clock
cycle T consists of a pair of two clock signals (t0, t1). Each
cell repeats this procedure until a given text is output from
the rightmost cell. In these descriptions, we omit the pattern
input phase. ‘MOVE INPUT STRING’ means that a given
text is shifted right by one cell. Each cell has a special register
TERM , whose value is set to i, if the cell has a symbol in



t0: begin
MOVE INPUT STRING;
if OP =’(’ then E1:=Ein or ME;

else if Uin then E1:=ESin or ME;
else E1:=TEin;

if OP =’(’ then begin
ES:=Ein; ME:=Ein or ME end;
else begin ES:=ESin;

if Uin then ME:=ESin or ME end;
TSi:=TSi in; TMi:=TMi in;
if OP =’|’ then begin

TMi:=TM1; TM2:=false end;
else begin E:=false; TM2:=TM1 end;

TM1:=false;
end;

;
t1: begin

if E1 then begin
R:=CMP (LP , LC)
if R or (LP =’?’) then begin

TM1:=true;
if (OP =’(’) or Uin then

TSi:=true end;
end

end;

Fig. 5. Behavior of general cells.

i-th C-term ti in pattern P .
For each cell, if its left neighbor cell has “|” in register OP ,

then its input Uin is set to true.
When implementing comparison cells, any cell has a ca-

pability of performing both general and decision cells. Note
that, basically, a set of functions supported by a general cell
is a subset of functions of the decision cell. When setting a
pattern, if a cell contains “)” in register OP , it is designated
as a decision cell, otherwise, it is designated as a general cell.

In the algorithm description of the decision cell in Fig. 6,
TOP TMM(i) is a function, whose return value is the oldest
data stored in the FIFO buffer TMMi. ADD TMM(i, x) is
a procedure, which stores x in TMMi. DELETE TMM(i)
is a procedure, which deletes the oldest data stored in TMMi.
Let the width of the binary counter TC be W . Then, any addi-
tion to TC in the algorithm is actually an addition with modulo
2W . W is specified as follows. Let L be the longest length of
a C-term contained in UK-term. Then, W = dlog2 Le.

F. Matching of a C-term

If a given pattern P is a C-term, it is easy to realize a
matching algorithm using comparison cells described in the
previous subsection with a slight modification. Only when the
leftmost cell, i.e., the term start cell, receives the enable signal
Ein from the outside, tentative matching of a given C-term
begins. If tentative matching is successfully done, then the
rightmost cell, i.e., the decision cell, outputs Eout by setting
flag E to true. The other functions of comparison cells and
decision cells, such as empty matching or final matching, are
not utilized. Due to the lack of space, the detailed description
is omitted here.

t0: begin
MOVE INPUT STRING;
TC:=TC+1;
if Uin then E1:=ESin or ME;

else E1:=TEin;
ES:=ESin;
E:=false;
if Uin then ME:=ESin or ME;
for all j such that (ji) in parallel

if (TC=TOP TMM(j))
then begin E:=TMj in; T :=TMj in;
DELETE TMM(j) end;

if (TC=TOP TMM(i))
then begin E:=TM1; T :=TM1;

DELETE TMM(i) end;
E:=ESin or E;
if ESin or T then

for all j in parallel
if TSj in then ADD TMM(j, TC+lengthj)

TM1:=false
end;

;
t1: begin

if E1 then begin
R:=CMP (LP , LC)
if R or (LP =’?’) then begin TM1:=true;

if Uin then begin TSi:=true;
if ESin or T then

ADD TMM(i, TC+lengthi); end end;
end

end;

Fig. 6. Behavior of the decision cell.

G. Matching of a U-term

If a given pattern P is a U-term, it is easy to realize a
matching algorithm using comparison cells described in the
previous subsection with a slight modification. Only when
the leftmost cell, i.e., the term start cell, receives the enable
signal Ein from the outside, tentative matching of a given U-
term begins. If tentative matching for some C-term tj in P

is successfully done, then the rightmost cell, i.e., the decision
cell, outputs Eout by setting flag E to true. The other functions
of comparison cells and decision cells, such as empty matching
or final matching, are not utilized. Due to the lack of space,
the detailed description is omitted here.

H. Matching of an Admissible Pattern

If a given pattern P is a concatenation of C-, U-, and
UK-terms, for each term Tj , corresponding comparison cells,
denoted CCj1 , CCj2 , . . . , CCjp

, perform string matching of
Tj . The comparison cell CCj1 starts matching when it receives
the valid enable signal Ein from its left neighbor cell. If
matching of Tj has been successfully performed, then the cell
CCjp

sets Eout to true, which starts matching of term Tj+1.

III. APPROXIMATE STRING MATCHING

In this section, we introduce the hardware algorithm for
calculating the edit distance and its architecture.



A. Related Work on Approximate String Matching Engine

As previous results related to our study, for the problem of
calculating the edit distance, Yu, et al. have also proposed a
hardware algorithm to be implemented on an FPGA chip [27].
However, in this algorithm, character symbols in a pattern
were restricted to A, C, G, and T, since their algorithm was
originally proposed for the analysis of DNA sequences. It
would be very difficult to extend this algorithm for the general
approximate string matching problem. As far as we inves-
tigated, no previous results have been known for hardware
implementation of a string matching engine for an arbitrary
set of character symbols. In this section, we introduce an
approximate string matching engine which calculates the edit
distance for an arbitrary set of character symbols.

B. Edit Distance

Let A be a finite string (or sequence) or character (or
symbols). A < i > is the ith character of string A; A < i : j >

is the ith through jth characters (inclusive) of A if i ≤ j. |A|
denotes the length of string A.

An edit operation is a pair (a, b) 6= (Λ, Λ) of strings of
length less than or equal to 1, and usually written a → b,
where Λ denotes the null string. String B results from the
application of the operation a → b to string A, written A ⇒ B

via a → b, if A = σaτ and B = σbτ for some strings σ and
τ . We call a → b a change operation if a 6= Λ and b 6= Λ; a
delete operation if b = Λ; and an insert operation if a = Λ.

Let γ be an arbitrary cost function which assigns to each
edit operation a → b a nonnegative real number γ(a → b).
Extend γ to a sequence of edit operations S = s1, s2, . . . , sm

by letting γ(S) =
∑m

i=1
γ(si). We now let the edit distance

δ(A, B) from string A to string B be the minimum cost of all
sequences of edit operations which transform A into B [24].

Given a pair of strings A and B, the approximate string
matching problem is to find the edit distance between two
strings A and B. For this problem, the following theorem
holds [24].

Theorem 1: Let A(i) = A < 1 : i > and B(j) = B < 1 :
j >, and D(i, j) = δ(A(i), B(i)), 0 ≤ i ≤ |A|, 0 ≤ j ≤ |B|.
Then,

D(i, j) = min{

D(i − 1, j − 1) + γ(A < i >→ B < j >),

D(i − 1, j) + γ(A < i >→ Λ),

D(i, j − 1) + γ(Λ → B < j >)} (1)

for all i, j, 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|.
From Theorem 1, for given two strings A and B, the

edit distance δ(A, B) from string A to string B is given as
D(|A|, |B|). In this section, the matrix D is called the edit
distance matrix.

In this section, we slightly extend the approximate string
matching problem, and formulate this extended problem as the
multiple string matching problem. Given a set of finite strings
R = {S1, S2, . . . , Sm} and a pattern string P , the multiple
string matching problem is to calculate the edit distance
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Fig. 7. Parallel calculation of the edit distance matrix.
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δ(P, Si) from string P to string Si for all i, 1 ≤ i ≤ m.
We call each string Si to be matched a text string. When
m = 1, this problem is equivalent to the original approximate
string matching problem. Applications of this problem include
the text retrieval in large text database, and DNA sequence
alignment in bioinformatics.

C. Basic Algorithm

In this section, for the multiple string matching problem,
we introduce a hardware algorithm, which is implemented on
FPGAs, to realize a high-speed calculation of edit distance.
The basic idea of the proposed algorithm is as follows. From
Theorem 1, for a given pair of two strings, the edit distance is
obtained by computing the edit distance matrix. In this matrix
computation, one can easily understand that all entries on any
positive slope diagonal lines can be computed in parallel, since
there are no data dependencies among them. Fig. 7 shows how
to compute the edit distance matrix in parallel. The basic idea
of the proposed algorithm is to assign a processing element to
each row of the edit distance matrix, and all processing units
calculate the values of matrix elements on each positive slope
diagonal line in parallel.

Fig. 8 shows the overview of the architecture. It consists of
(n+1) simple processing units, called cells, where n = |P |. As
mentioned, the entire algorithm calculates diagonal elements
in the edit distance matrix in the parallel and pipeline fashion.
In the following, the details of the algorithm are explained.

1) Inputs of the Algorithm: For a given pattern string P =
p1p2 . . . pn, let P ′ = θp1p2 . . . pn, and each character in P ′

is stored in each cell in advance, where θ is a special start
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t0: begin
C ← Sin;
if Sin = θ then Sc ← true;
if Sin = λ then Sc ← false;
F ← (Sin = θ) ∨ (Sin = “,′′ ) ∨ (Sin = λ);
sub← DM(P, C);

end;
t1: begin

if Sc then
case (Pf, F ) begin

00: D1← min{D1in + del,
D1 + ins, D2in + sub};

01: D1← D1in + del;
10: D1← D1 + ins;
11: D1← 0;

end;
D2← D1;

end;

Fig. 10. The algorithm of a cell.

symbol. The pattern string is input from the rightmost cell.
On the other hand, a given set of text strings to be matched
is concatenated and sequentially input from the leftmost cell.
When concatenating multiple text strings, special symbol “,” is
inserted as a delimiter, and θ and λ are added as the first and
last symbols, respectively. For example, if S1 = abb, S2 =
cba, and S3 = acb then the text string to be input is S =
θabb, cba, acbλ.

2) The Cell: The structure of a cell is shown in Fig. 9.
Each cell consists of two latches P and C, which are used
to store characters in P and Si. The cost function γ is stored
in the memory DM in each cell. DM is realized as a two-
dimensional array of words, and is called the edit cost matrix.
For any pair of two characters a and b, DM(a, b) returns the
value of γ(a → b). The values of all elements of the edit cost
matrix are set in advance before starting the string matching.
D1 and D2 are also latches, which store values of the edit
distance matrix D. Sc, Pf and F are flags to be used in the
cell algorithm.

3) Behavior of the Cell: As noted, the behavior of each cell
is classified into two phases, the pattern input phase and the
text matching phase. In the former phase, the pattern string is
input from the rightmost cell one character by one character,
and shifted left until all characters are stored in corresponding
cells. Any cell which stores the start symbol θ in latch P sets
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Fig. 11. Behavior of the algorithm.

the flag Pf to 1, and any other cell sets Pf to 0. In the
text matching phase, the actual text matching is performed. In
the following, we only describe the cell behavior of the text
matching phase.

Fig. 10 shows the behavior of a cell during the text matching
phase. We assume that each clock cycle consists of two clock
phases (t0, t1). We also assume that the delete and insert costs
of any character are the same values, and denoted as del and
ins, respectively. For each clock cycle, each cell repeatedly
executes this algorithm.

Cell i stores pattern character pi, and it calculates all
elements D(i, ∗) of the edit distance matrix. Assume that cell
i receives text string character si from its left neighbor cell,
stores it in latch C, and starts calculating D(i, j) in clock cycle
Tk. Fig. 11 shows this situation. From Theorem 1, to calculate
D(i, j), values of D(i, j−1), D(i−1, j), and D(i−1, j−1)
are required. Cell i holds D(i, j − 1) in latch D1, which was
calculated in clock cycle Tk−1. D(i − 1, j) was calculated
also in clock cycle Tk−1 in cell i − 1, and stored in D1.
D(i − 1, j − 1) was calculated in clock cycle Tk−2 in cell
i−1, and stored in D1. This value was shifted to D2 in clock
cycle Tk−1. Thus, all values required to calculate D(i, j) are
stored in cell i or cell i − 1.

When cell i receives θ or “,” or “λ”, then the latch D1 is
initialized, and set to 0. It means that matching for a next text
string is started.
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Fig. 12 shows how string matching was processed by the
proposed algorithm when P = abc and R = {S1, S2, S3},
where S1 = abb, S2 = cba, and S3 = acb. From this figure,
it is easy to understand that the proposed algorithm solves the
multiple string matching problem in O(L) clock cycles, where
L is the total length of input string R.

4) Memory Structure: As mentioned, each cell has its own
copy of the edit cost matrix DM , in which matrix element
DM(a, b) represents the change cost from character a to
character b, i.e., γ(a → b). When implementing the proposed
algorithm on FPGAs, the edit cost matrices are implemented
by using the block RAMs. When the edit cost matrix is
symmetric, it is easy to reduce the total memory size to its
half size with a simple address transformation.

In the algorithm shown above, the insert and delete costs
are assumed to be fixed. However, it is easy to extend the
algorithm so that arbitrary insert and delete costs are allowed
by extending the edit cost matrix. We newly introduce a
special symbol, denoted Λ to show the null character. Then,
DM(a, Λ) represents the delete cost of character a, and
DM(Λ, b) represents the insert cost of character b. Before
starting string matching, each cell reads the delete cost from
the edit cost matrix for a pattern character which the cell has
in latch P , and stores it in a register. The leftmost cell reads
the insert cost from the edit cost matrix for a text character
which the cell receives from the input terminal, and stores
it in another register. This value will be shifted right as the
text string character is moved right. Note that the performance
would be degraded if each cell reads the insert and delete costs
from the edit cost matrix when D(i, j) is calculated, since it
would require three times of memory accesses.

IV. FPGA IMPLEMENTATION RESULTS

To evaluate the effectiveness of our hardware accelerators
for string matching, we designed the accelerators with Verilog-
HDL, and implemented them on an FPGA board, which
has a Xilinx FPGA chip XC4VLX100-11F1513, using Xilinx
ISE Version 8.2i as the FPGA design tool. The following
subsections show the results of each accelerators.

A. Results of Regular Expression Maching Engine

In Section II, we assume a 2-phase clock scheme. However,
in the actual design of the circuit, we adopted a single phase
clock scheme since for FPGA design, a single phase clock is
normally used. The circuit has two states, denoted T0 and T1,
and those are corresponding to t0 and t1 in the circuit behavior
in Section II. Furthermore, those two states are executed in
a pipeline fashion, i.e., T1 of the circuit for matching an i-
th symbol in the text is overlapped with T0 for matching an
(i+1)-th symbol in the text. Hence, pattern matching for one
symbol in the text can be performed in one clock cycle.

In current design, one symbol in text and pattern consists
of 8 bits, and the maximum length of a pattern is 192 due
to the limit of the number of LUTs in the FPGA chip. The
HDL description of the circuit consists of 8, 150 lines. As
the result of logic synthesis, 91, 830 LUTs were utilized. The

TABLE I
RESULTS OF APPROXIMATE STRING MATCHING ENGINE.

Algorithm #LUT Clock Time [µs] Ratio
[MHz]

Software – 3600 1,040,000 1
Hardware 12248 165 729 1427

estimated maximum clock frequency reported by the design
tool was 182 MHz. Due to the restriction of the FPGA board,
the actual clock frequency used in experiments was set to 125
MHz.

In experiments, we prepared several patterns, and measured
the execution time of string matching by the accelerator. For
each case, we verified the result, and made sure that the
correct result was produced. Since the accelerator can perform
string matching in one clock per one symbol, the maximum
throughput of the accelerator was approximately 182, 000, 000
symbols per second, if the clock frequency was set to 182
MHz. Since one symbol consists of 8 bits, this was equivalent
to 1.456 Gigabits per second (Gps). On the FPGA board, a
throughput of 1.0 Gps was achieved when the clock frequency
of the board was set to 125 MHz.

B. Results of Approximate String Maching Engine

We have also developed a software program for solving
the multiple string matching problem, and compared it with
our hardware algorithm implemented on the FPGA board. The
software program was executed on a PC with a Pentium 4
3.6GHz CPU.

Table I shows the experimental results. In this table, “Soft-
ware” shows the result of software program, and “Hardware”
shows the result of the hardware algorithm described in
Section III. “#LUT”, “Clock”, “Time” and “Ratio” show the
number of LUTs used to implement the circuit, the clock
frequencies of the CPU for software and the FPGA chip
for hardware, the execution time, and the speedup ratio of
the hardware algorithm compared to the software program,
respectively. The length of a pattern was 120 for the cases of
“Software” and “Hardware”. The total length of input strings
to be matched with a pattern was set to 120, 000.

From the experimental results, we see that the proposed
hardware string matching engine drastically outperformed the
software program.

We would also like to point out that, since the proposed
hardware algorithm has an simple one-dimensional systolic
architecture, it is easy to implement the algorithm for longer
patterns by connecting multiple FPGA chips.

V. CONCLUSION

We have introduced hardware algorithms for the two string
matching problems, which are regular expression matching
and the string-to-string correction problems, and shown their
FPGA implementation results. Experimental results showed
the effectiveness of the hardware algorithms. The future work
on these research is as follows. First, extending a subclass



of regular expressions is interesting and important. Second,
it is better to introduce convenient forms for describing
regular expressions. The syntax adopted in the programming
language Perl is a good example of convenient expressions
of regular expressions [22]. Third, our regular expression
matching engine was not area-efficient, that is, much hard-
ware resource was required to implement it, compared with
regular expression matching engine based on a pattern-specific
approach (i.e., a pattern was embedded as hardware during the
circuit design). Therefore, designing an area-efficient, as well
as pattern-independent, regular expression matching engine
will be a difficult, but, important, challenging, and interesting
work in the future. Finally, we will try to develop hardware
algorithms for different kinds of string matching. In particular,
besides the string-to-string correction problem, there are many
other problems, for which dynamic programming algorithms
have been known in bioinformatics [8]. It is interesting and
important to develop hardware algorithms for those problems.
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