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Flat Lightlike Hypersurfaces in Lorentz-Minkowski
4-space

Shyuichi Izumiya, Maŕıa del Carmen Romero Fuster ∗and Kentaro Saji

July 22, 2009

Abstract

The lightlike hypersurfaces in Lorentz-Minkowski space are of special interest in Rela-
tivity Theory. In particular, the singularities of these hypersurfaces provide good models
for the study of different horizon types. We introduce the notion of flatness for these
hypersurfaces and study their singularities. The classification result asserts that a generic
classification of flat lightlike hypersurfaces is quite different from that of generic lightlike
hypersurfaces.

1 Introduction

The extrinsic differential geometry of submanifolds in 4-dimensional Lorentz-Minkowski space
is of special interest in Relativity Theory. In particular the lightlike hypersurfaces, which can
be constructed as lightlike ruled hypersurfaces over spacelike surfaces, provide good models
for the study of different horizon types ( [3], [23]). In this sense, the singularities of lightlike
hypersurfaces are deeply related to the shapes of horizons. With the aim of studying the
extrinsic geometry of lightlike hypersurfaces in 4-dimensional Lorentz-Minkowski space, M.
Kossowski introduced ( [17], [18]) a Gauss map on its associated spacelike surface, obtaining
in this way interesting conclusions on the lightlike hypersurfaces which parallel known results
for surfaces in Euclidean 3-space concerning their contacts with the model surfaces (planes
and spheres). In order to generalize this method to Lorentz-Minkowski space, we considered
an approach from the view point of the theory of Legendrian/Lagrangian singularities [11, 13,
14]. When working in Lorentz-Minkowski space, we observe that the properties associated to
the contacts of a given submanifold with lightcones and lightlike hyperplanes have a special
relevance from the geometrical viewpoint. A local classification of the generic singularities
of the lightlike hypersurfaces in terms of algebraic and differential geometric invariants was
obtained in [13] (cf., Theorem 2.5). In [14], we pursued with this line by describing the Lorentz
invariant geometric properties of spacelike submanifolds of codimension two in Minkowski space
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that arise from their contacts with lightlike hyperplanes. For this purpose, we studied some
local properties of these spacelike submanifolds. Given such a submanifold, we can arbitrarily
choose a future directed timelike normal vector field nT along it. Once nT is fixed, there are
two possibilities for the choice of a normal frame class: future directed frames (nT ,nS) and
orientation reversing future directed frames (nT ,−nS). We can associate to any one of these
frames the notion of lightcone Gauss-Kronecker curvature K`(n

T ,±nS). This depends on the
particular choice of the frame (nT ,±nS), but it leads after normalization to a normalized

lightcone Gauss-Kronecker curvature K̃±
` which is independent of the choice of the future

directed normal frame (nT ,±nS). In order to investigate its associated geometrical properties,
we have chosen here the class of future directed frames, but it is clear that the results for the
orientation reversing choice would run in a parallel way. We also observe that an initial choice
of a past directed unit normal vector field −nT would lead to parallel results. We analyze the
geometric meaning of the normalized lightcone Gauss-Kronecker curvature from the view point
of Lagrangian and Legendrian singularity theory. In the present paper we shall concentrate our
attention in the properties related with flatness with respect to this curvature. Here we have,
by definition, that K̃`(p) = 0 if and only if K`(n

T ,nS)(p) = 0, for any future directed frame

(nT ,nS). In particular, we seek first for a characterization of flatness (i.e. K̃`(p) = 0) for the
spacelike surfaces in Lorentz-Minkowski 4-space. Once done this, we can introduce the concept
of flatness for lightlike hypersurfaces in Lorentz-Minkowski 4-space. We characterize the flat
lightlike hypersurfaces as envelopes of certain families of lightlike hyperplanes and study their
generic singularities.

The distribution of the paper is as follows. We include in § 2 the basic notions in Lorentz-
Minkowski space that shall be used throughout the paper and give a short review on the
lightcone Gauss-Kronecker curvature and the lightlike hypersurfaces, which are the main objects
in this theory [11–14]. Section 3 is devoted to the study of spacelike surfaces with vanishing
lightcone Gauss-Kronecker curvature. These are called lightlike flat spacelike surfaces. In
particular, we shall pay especial attention to those that admit a partially parallel normal
frame. By using this setting, we can introduce in §4 the notion of flat lightlike hypersurface.
Such a hypersurface can be seen as one-parameter family of lightlike lines along a lightlike flat
spacelike surface. We also introduce in this section the basic invariants for the flat lightlike
hypersurfaces. It should be noticed that the singularities of certain classes of surfaces (i.e.,
kinds of “flat”surfaces) have been recently investigated by several authors ( [6, 9, 15, 16, 21])
from a differential geometry viewpoint. One of the main purposes of the submanifold theory in
differential geometry is to study some special classes of submanifolds in different ambient spaces
such as “flat”surfaces. In general, such surfaces have singularities. Therefore the classification of
the singularities of these kinds of spacial surfaces is an interesting topic in differential geometry
too. In §5 we give a classification of singularities of flat lightlike hypersurfaces by using the
basic invariants. As a consequence, we get that the generic singularities are the suspended
cuspidal edge, the suspended swallowtail, the suspended cuspidal cross cap and the A4-type
hypersurface singularity. We emphasize that we give the exact conditions for these singularities
in terms of the basic invariants. Compared with the generic singularities for the general class of
lightlike hypersurfaces (cf., Theorem 2.5), theD±

4 -type singularities do not appear generically as
singularities of flat lightlike hypersurfaces. On the other hand, we observe that the suspended
cuspidal cross cap does not appear as a generic singularity in the general case of lightlike
hypersurfaces. Finally, §6 contains the classification of the generic singularities of flat spacelike
surfaces with partially parallel normal frame.
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We shall assume throughout the whole paper that all the maps and manifolds are C∞ unless
the contrary is explicitly stated.

2 Local differential geometry on spacelike surface

in Lorentz-Minkowski space

We introduce in this section some basic notions on Minkowski 4-space and spacelike surfaces.
For basic concepts and properties, see [26].

Let R4 = {(x0, x1, x2, x3) | xi ∈ R (i = 0, 1, 2, 3) } be an 4-dimensional cartesian space.
For any x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ R4, the pseudo scalar product of x and y is
defined by

〈x,y〉 = −x0y0 +
3∑

i=1

xiyi.

We call (R4, 〈, 〉) the Minkowski 4-space. We shall write R4
1 instead of (R4, 〈, 〉). We say that a

non-zero vector x ∈ R4
1 is spacelike, lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0 or 〈x,x〉 < 0

respectively. The norm of the vector x ∈ R4
1 is defined by ‖x‖ =

√
|〈x,x〉|. We have a canonical

projection π : R4
1 −→ R3 defined by π(x0, x1, x2, x3) = (x1, x2, x3). Here we identify {0} × R3

with R3 and it is considered as Euclidean 3-space whose scalar product is induced by the pseudo
scalar product 〈, 〉. For a vector v ∈ R4

1 and a real number c, we define a hyperplane with pseudo
normal v by

HP (v, c) = {x ∈ R4
1 | 〈x,v〉 = c }.

We call HP (v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if v is
timelike, spacelike or lightlike respectively.

We now define the Hyperbolic 3-space by

H3
+(−1) = {x ∈ R4

1|〈x,x〉 = −1, x0 > 0}

and the de Sitter 3-space by
S3

1 = {x ∈ R4
1|〈x,x〉 = 1 }.

We also consider the cone

LC∗ = {x = (x0, x1, x2, x3) ∈ R4
1 |x0 6= 0, 〈x,x〉 = 0}

and call it the (open) lightcone at the origin. The future lightcone is the subset

LC∗+ = {x ∈ LC∗ |x0 > 0, }

If x = (x0, x1, x2, x3) is a non-zero lightlike vector, then x0 6= 0. Therefore we have

x̃ =

(
1,
x1

x0

,
x2

x0

,
x3

x0

)
∈ S2

+ = {x = (x0, x1, x2, x3) | 〈x,x〉 = 0, x0 = 1}.

We call S2
+ the lightcone (or, spacelike) unit sphere.
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Given vectors x1,x2,x3 ∈ R4
1, we define their wedge product x1 ∧ x2 ∧ x3 as

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣

−e0 e1 e2 e3

x1
0 x1

1 x1
2 x1

3

x2
0 x2

1 x2
2 x2

3

x3
0 x3

1 x3
2 x3

3

∣∣∣∣∣∣∣∣
,

where e0, e1, e2, e3 is the canonical basis of R4
1 and xi = (xi

0, x
i
1, x

i
2, x

i
3). We can easily check

that
〈x,x1 ∧ x2 ∧ x3〉 = det(x,x1,x2,x3),

so that x1 ∧ x2 ∧ x3 is pseudo orthogonal to any xi (i = 1, 2, 3).

We now recall the basic geometrical tools for the study of spacelike surfaces in Minkowski
4-space that were developed in [11, 14]). Let R4

1 be an oriented and timelike oriented space.
We choose e0 = (1, 0, 0, 0) as the future timelike vector field. Consider a spacelike embedding
X : U −→ R4

1 from an open subset U ⊂ R2 and write M = X(U) by identifying M and U
through the embedding X. We say that X is spacelike if Xui

i = 1, 2 are always spacelike
vectors. Therefore, the tangent plane TpM of M at p is a spacelike plane (i.e., consists of
spacelike vectors) for any point p ∈ M and the pseudo-normal space NpM is a timelike plane
(i.e., Lorentz plane) (cf., [26]). We denote by N(M) the pseudo-normal bundle over M. Since
this is a trivial bundle, we can arbitrarily choose a future directed unit timelike normal section
nT (u) ∈ Np(M), where p = X(u). Here, we say that nT is future directed if 〈nT , e0〉 < 0.
Therefore we can construct a spacelike unit normal section nS(u) ∈ Np(M) by

nS(u) =
nT (u) ∧Xu1(u) ∧Xu2(u)

‖nT (u) ∧Xu1(u) ∧Xu2(u)‖
,

and we have 〈nT ,nT 〉 = −1, 〈nT ,nS〉 = 0, 〈nS,nS〉 = 1. Although we could also choose
−nS(u) as a spacelike unit normal section with the above properties, we fix the direction
nS(u) throughout this paper. We call (nT ,nS) a future directed normal frame along M =
X(U). Clearly, the vectors nT (u) ± nS(u) are lightlike. Again, we choose nT + nS as a
lightlike normal vector field along M. Since {Xu1(u),Xu2(u)} is a basis of TpM, the system
{nT (u),nS(u),Xu1(u),Xu2(u)} provides a basis for TpR4

1. The following lemma has been shown
in [14]:

Lemma 2.1 Given two future directed unit timelike normal sections nT (u), n̄T (u) ∈ Np(M),
the corresponding lightlike normal sections nT (u) + nS(u), n̄T (u) + n̄S(u) are parallel.

Under the identification of M and U through X, we have the linear mapping provided by
the derivative of the lightcone normal vector field nT + nS at each point p ∈M ,

dp(n
T + nS) : TpM −→ TpR4

1 = TpM ⊕Np(M).

Consider the orthogonal projections πt : TpM ⊕Np(M) → Tp(M) and πn : Tp(M)⊕Np(M) →
Np(M). We define

dp(n
T + nS)t = πt ◦ dp(n

T + nS)

and
dp(n

T + nS)n = πn ◦ dp(n
T + nS).
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We respectively call the linear transformations Sp(n
T ,nS) = −dp(n

T +nS)t and dp(n
T +nS)n

of TpM , the (nT ,nS)-shape operator of M = X(U) at p = X(u) and the normal connection
with respect to (nT ,nS) of M = X(U) at p = X(u).

The eigenvalues of Sp(n
T ,nS), denoted by {κi(n

T ,nS)(p)}2
i=1, are called the lightcone prin-

cipal curvatures with respect to (nT ,nS) at p. Then the lightcone Gauss-Kronecker curvature
with respect to (nT ,nS) at p = X(u) is defined as

K`(n
T ,nS)(p) = detSp(n

T ,nS).

We say that a point p = X(u) is a (nT ,nS)-umbilic point if all the principal curvatures coincide
at p and thus Sp(n

T ,nS) = κ(nT ,nS)(p)1TpM , for some function κ. We say that M = X(U) is
totally (nT ,nS)-umbilic if all points on M are (nT ,nS)-umbilic.

We deduce now the lightcone Weingarten formula. Since Xui
(i = 1, 2) are spacelike vectors,

we have a Riemannian metric (the hyperbolic first fundamental form ) on M = X(U) defined
by ds2 =

∑2
i=1 gijduiduj, where gij(u) = 〈Xui

(u),Xuj
(u)〉 for any u ∈ U. We also have a

lightcone second fundamental invariant with respect to the normal vector field (nT ,nS) defined
by hij(n

T ,nS)(u) = 〈−(nT + nS)ui
(u),Xuj

(u)〉 for any u ∈ U. The following Weingarten
formulae with respect to (nT ,nS) was shown in [14]:

(a) (nT + nS)ui
= 〈nS,nT

ui
〉(nT + nS)−∑2

j=1 h
j
i (n

T ,nS)Xuj

(b) πt ◦ (nT + nS)ui
= −∑2

j=1 h
j
i (n

T ,nS)Xuj
.

Here
(
hj

i (n
T ,nS)

)
=

(
hik(n

T ,nS)
) (
gkj

)
and

(
gkj

)
= (gkj)

−1. It follows that we have an explicit
expression for the lightcone curvature in terms of the Riemannian metric and the lightcone
second fundamental invariant.

K`(n
T ,nS) =

det
(
hij(n

T ,nS)
)

det (gαβ)
.

Since 〈−(nT + nS)(u),Xuj
(u)〉 = 0, we have hij(n

T ,nS)(u) = 〈nT (u) + nS(u),Xuiuj
(u)〉.

Therefore the lightcone second fundamental invariant at a point p0 = X(u0) depends only on
the values, nT (u0) + nS(u0) and Xuiuj

(u0), respectively assumed by the vector fields nT + nS

and Xuiuj
at the point p0. And thus, the lightcone curvature depends only on nT (u0)+nS(u0),

Xui
(u0) and Xuiuj

(u0) too, independently of the choice of the normal vector fields nT and nS.
We write K`(n

T
0 ,n

S
0 )(u0) as the lightcone curvature at p0 = X(u0) with respect to (nT

0 ,n
S
0 ) =

(nT (u0),n
S(u0)). We might also say that a point p0 = X(u0) is (nT

0 ,n
S
0 )-umbilic because the

lightcone (nT ,nS)-shape operator at p0 only depends on the normal vectors (nT
0 ,n

S
0 ).

Analogously, we say that a point p0 = X(u0) is a (nT
0 ,n

S
0 )-parabolic point of X : U −→ R4

1

if K`(n
T
0 ,n

S
0 )(u0) = 0. And we say that a point p0 = X(u0) is a (nT

0 ,n
S
0 )-flat point if it is an

(nT
0 ,n

S
0 )-umbilic point and K`(n

T
0 ,n

S
0 )(u0) = 0. By Lemma 2.1, if we choose another future

directed unit timelike normal section n̄T (u), then we have ˜(nT + nS)(u) = ˜(n̄T + n̄S)(u) ∈ S2
+.

Therefore we define the lightcone Gauss map of M = X(U) as

L̃ : U −→ S2
+

(u) 7−→ ˜(nT + nS)(u).

This induces a linear mapping dL̃p : TpM −→ TpR4
1 under the identification of U and M, where

p = X(u). The following proposition is shown in [14]:
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Proposition 2.2 Under the above notation, we have the following normalized lightcone Wein-
garten formula:

πt ◦ L̃ui
= −

2∑
j=1

1

`0(u)
hj

i (n
T ,nS)Xuj

,

where L(u) = (`0(u), `1(u), `2(u), `3(u)).

We call the linear transformation S̃p = −πt ◦ dL̃p the normalized lightcone shape operator

of M = X(U) at p. The eigenvalues {κ̃i(p)}2
i=1 of S̃p are called normalized lightcone principal

curvatures. By the above proposition, we have κ̃i(p) = (1/`0)κi(n
T ,nS)(p). The normalized

lightcone Gauss-Kronecker curvature of M = X(U) is defined to be K̃`(u) = det S̃p. Then we
have the following relation between the normalized lightcone Gauss-Kronecker curvature and
the lightcone Gauss-Kronecker curvature:

K̃`(u) =

(
1

`0(u)

)2

K`(n
T ,nS)(u).

It is clear from the corresponding definitions that the lightcone Gauss map, the normalized
lightcone principal curvatures and the normalized lightcone Gauss-Kronecker curvatures are
independent on the choice of the normal frame (nT ,nS).

We say that a point u ∈ U or p = X(u) is a lightlike umbilical point if S̃p = κ̃(p)1TpM .
By the above proposition, p is a lightlike umbilic point if and only if it is a (nT ,nS)-umbilic
point for any (nT ,nS). We say that M = X(U) is totally lightlike umbilic if all points on
M are lightlike umbilic, as usual. We also say that p = X(u) is a lightlike parabolic point if

K̃`(u) = 0. Moreover, p is called a lightlike flat point if p is both lightlike umbilic and parabolic.
The spacelike surface M = X(U) is called totally lightlike flat provided every point of M is
lightlike flat.

Given the spacelike surface M = X(U), we construct a lightlike hypersurface

LHX : U × R −→ R4
1

given by
LHX(u, r) = X(u) + r(nT + nS)(u),

where p = X(u). We shall denote LHM = LHX(U×R). We call LHM the lightlike hypersurface
along M and the parametrization LHX(u, r) is referred to as an adapted parametrization of the
lightlike hypersurface LHM . We remark that we can also define LH−

X(p, r) = X(u) + r(nT −
nS)(u) as another lightlike hypersurface. Since the properties of LH−

X are the same as those of
LHX , we shall only consider here LHX .

In general, a hypersurface H ⊂ R4
1 is said to be a lightlike hypersurface if it is tangent to a

lightcone at any point. It is known that any lightlike hypersurface is given, at least locally, by
the construction above (cf. [18] and §6).

We define the family of Lorentzian distance-squared functions on a spacelike surface M =
X(U) as the family G : M × R4

1 −→ R given by

G(p,λ) = G(u,λ) = 〈X(u)− λ,X(u)− λ〉,
where p = X(u).

For any fixed λ0 ∈ R4
1, we write g(p) = Gλ0(p) = G(p,λ0). The following proposition has

been shown in [13].
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Proposition 2.3 Let M be a spacelike surface in R4
1 and G : M × R4

1 → R the Lorentzian
distance-squared function on M. Suppose that p0 6= λ0. Then we have the following:

(1) g(p0) = ∂g/∂ui(p0) = 0 (i = 1, 2) if and only if p0 − λ0 = µ(nT ± nS)(p0) for some
µ ∈ R \ {0}.

(2) g(p0) = ∂g/∂ui(p0) = detH(g)(p0) = 0 (i = 1, 2) ( where detH(g)(p0) is the determinant
of the Hessian matrix) if and only if

p0 − λ0 = µ(nT ± nS)(p0)

for some µ ∈ R \ {0} such that 1/µ is one of the non-zero lightcone principal curvatures
κ∓i (nT ,nS)(p0), (i = 1, 2).

We remark that the framework used in [13] was different and thus the corresponding notation
differs a little from that of the above proposition. An immediate consequence of Proposition
2.3 is that the discriminant set of the Lorentzian distance-squared function G is given by

DG =
{

λ
∣∣∣ λ = X(p) + u(nT ± nS)(p), p ∈M,u ∈ R

}
,

which is the image of the lightlike hypersurface along M. It follows that a singular point of the
lightlike hypersurface is a point λ0 = X(p0)+u0(n

T±nS)(p0) at which u0 = −1/κ∓i (nT ,nS)(p0),
i = 1, 2.

We can interpret such a correspondence from the contact geometry viewpoint. Let π :
PT ∗R4

1 −→ R4
1 be the projective cotangent bundle with its canonical contact structure. We

next review the geometric properties of this bundle. Consider the tangent bundle τ : TPT ∗R4
1 →

PT ∗R4
1 and the differential map dπ : TPT ∗R4

1 → TR4
1 of π. For any X ∈ TPT ∗R4

1, there exists
an element α ∈ T ∗R4

1 such that τ(X) = [α]. Given V ∈ TxR4
1, the property α(V ) = 0 does

not depend on the choice of representative of the class [α]. Thus we can define the canonical
contact structure on PT ∗R4

1 by

K = {X ∈ TPT ∗(R4
1) | τ(X)(dπ(X)) = 0}.

Via the coordinates (v0, v1, v2, v3), we have the trivialization PT ∗R4
1
∼= R4

1 × P 3(R)∗, and
call

((v0, v1, v2, v3), [ξ0 : ξ1 : ξ2 : ξ3])

the homogeneous coordinates of PT ∗R4
1, where [ξ0 : ξ1 : ξ2 : ξ3] are the homogeneous coordinates

of the dual projective space P 3(R)∗.
It is easy to show thatX ∈ K(x,[ξ]) if and only if

∑3
i=0 µiξi = 0, where dπ̃(X) =

∑3
i=0 µi∂/∂vi.

An immersion i : L → PT ∗(R4
1) is said to be a Legendrian immersion if dimL = 3 and

diq(TqL) ⊂ Ki(q) for any q ∈ L. The map π ◦ i is also called the Legendrian map and the set
W (i) = imageπ ◦ i, the wave front of i. Moreover, i (or, the image of i) is called the Legendrian
lift of W (i). In Appendix A, we include a quick survey of the theory of Legendrian singularities.
For additional definitions and basic results on generating families, we refer to ( [1], Chapter
21). By the previous arguments we have that the lightlike hypersurface LH±

M coincides with
the discriminant set of the Lorentzian distance-squared function G. We also have the following
proposition (See Appendix A for the definition of a Morse family) (proven in [13]).

Proposition 2.4 Let G be the Lorentzian distance-squared function on M. The family G is a
Morse family in a neighborhood of any point (u,λ) ∈ G−1(0).

7



Since G is a Morse family, if we denote

Σ∗(G) = (∆∗G)−1(0) = {(u,λ) | λ = LH±
M(u, t) for some t ∈ R}

with ∆∗G a map germ as described in Appendix A, we have a Legendrian immersion

L±G : Σ∗(G) −→ PT ∗(R3
1)

given by

L±G(u,λ) = (λ, [(X0(u)− λ0) : (λ1 −X1(u)) : (λ2 −X2(u)) : (λ3 −X3(u))]).

We observe that G is a generating family of the Legendrian immersion L±G whose wave front is
LH±

M (cf. Appendix A). Therefore we might say that the Lorentzian distance-squared function
G on M provides a Minkowski-canonical generating family for the Legendrian lift of LH±

X .
In [13], we have investigated the meaning of singularities of the lightlike hypersurface LH±

X

from the view point of Legendrian singularity theory and given a classification of the generic
singularities of lightlike hypersurfaces as follows:

Theorem 2.5 ( [13], Theorem 5.2 and Corollary 5.3) There exists an open dense subset
O ⊂ Embsp (U,R4

1) such that for any X ∈ O, the germ of the Legendrian lift of the corre-
sponding lightlike hypersurface LH±

M at each point is Legendrian stable. Here, Embsp (U,R4
1)

is the space of spacelike embeddings from an open subset U ⊂ R2 equipped with the Whitney
C∞-topology.

Moreover, by the classification results on stable Legendrian mappings (cf., [29]), the cor-
responding lightlike hypersurface (wave front of L±G) LH±

M at any point (x, y, u) ∈ U × R is
diffeomorphic to the image of one of the map germs Ak (1 ≤ k ≤ 4) or D±

4 : where Ak and D±
4

represent map-germs f : (R3, 0) −→ (R4, 0) given by

(A1) f(u1, u2, u3) = (u1, u2, u3, 0),

(A2) f(u1, u2, u3) = (3u2
1, 2u

3
1, u2, u3),

(A3) f(u1, u2, u3) = (4u3
1 + 2u1u2, 3u

4
1 + u2u

2
1, u2, u3),

(A4) f(u1, u2, u3) = (5u4
1 + 3u2u

2
1 + 2u1u3, 4u

5
1 + 2u2u

3
1 + u3u

2
1, u1, u2),

(D+
4 ) f(u1, u2, u3) = (2(u2

1 + u2
2) + u1u2u3, 3u

2
1 + u2u3, 3u

2
2 + u1u3, u3),

(D−
4 ) f(u1, u2, u3) = (2(u3

1 − u1u
2
2) + (u2

1 + u2
2)u3, u

2
2 − 3u2

1 − 2u1u3, u1u2 − u2u3, u3).

3 Lightlike flat spacelike surfaces with partially parallel

normal frames

In this section we consider spacelike surfaces with vanishing normalized lightcone Gauss-
Kronecker curvature. A surface M = X(U) is said to be lightlike flat if K̃`(p) = 0 at any

point p ∈ M. By definition, K̃`(p) = 0 if and only if K`(n
T ,nS)((p) = 0 for arbitrarily chosen

future directed normal frame (nT ,nS). Typical lightlike flat surfaces are the spacelike surfaces
contained in lightlike hyperplanes. They can be characterized as the spacelike surface with
constant lightcone Gauss map. In the case of surfaces located in the Euclidean space R3

0, we
have that the lightlike flatness is equivalent to flatness in the Euclidean space, so these surfaces
are the classical developable surfaces in the Euclidean space. Another interesting example is
provided by the horo-flat surfaces in the hyperbolic space. These are linear Weingarten surfaces
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of non-Bryant (non-elliptic) type in the terminology of [7]. In this case, the surface does not
admit the Weierstrass-Bryant type parametrization.

If we suppose that the spacelike surface X : U −→ R4
1 has no lightlike umbilical points,

then there are two lightcone principal curvature lines at each point, one of which corresponds
to the vanishing lightcone principal curvature with respect to (nT ,nS). We may assume that
both, the u-curve and the v-curve of the coordinate system (u, v) ∈ U , coincide with the light-
cone principal curvature lines. Moreover, we can assume that the u-curve corresponds to the
vanishing lightcone principal curvature with respect to (nT ,nS). By the lightcone Weingarten
formula, we have

πt ◦ (nT + nS)u(u, v) = 0 πt ◦ (nT + nS)v(u, v) = −κ(u, v)Xv(u, v),

where κ(u, v) 6= 0.

In order to obtain more interesting properties we shall impose now a further condition to the
spacelike surfaces with vanishing lightcone Gauss-Kronecker curvature. Recall that a normal
vector field n of M is said to be parallel if πn ◦ dn = 0. Moreover, given a curve γ : I −→ M ,
the normal field n is said to be parallel along γ provided πn ◦ (n ◦ γ)′ = 0. We shall say
that M is a spacelike surface with a partially parallel normal frame if the lightlike normal field
(nT +nS)(u, v) is parallel along one of the lightlike curvature lines. This condition is equivalent
to asking that πn ◦ (nT ,nS)u(u, v) = 0, where the u-curve is one of the lightlike curvature lines.

Of course, if nT + nS is a parallel lightlike normal field, then the frame (nT ,nS) is a
partially parallel normal frame. All the surfaces contained in the Euclidean space R3

0, or in
the Hyperbolic space H3

+(−1) admit parallel normal frames and hence all of them have such a
property.

A surface M is said to be a lightlike flat spacelike surface with partially parallel normal frame
if it is lightlike flat and the normal frame (nT + nS) is parallel along each vanishing lightcone
principal curvature line in M . This is equivalent to asking that πt ◦ (nT + nS)u(u, v) = 0 and
πn ◦ (nT + nS)u(u, v) = 0 for the above coordinate system (u, v), which is in turn equivalent
to the condition (nT + nS)u(u, v) = 0. It follows that

(nT + nS)(0, v) = (nT + nS)(u, v), ∀u.

That is, the vector field nT + nS is constant along the u-curves. In order to simplify the
notation we shall write L = (nT + nS). Then we define a function F : R4

1 × (−ε, ε) −→ R by

F (x, v) = 〈L(0, v),x−X(0, v)〉,

for sufficiently small ε > 0. For any fixed v ∈ (−ε, ε), we have a lightlike hyperplaneHP (L(0, v), c),
where c = 〈L(0, v),X(0, v)〉. Hence F = 0 defines a one-parameter family of lightlike hyper-
planes. We have the following proposition.

Proposition 3.1 A lightlike flat spacelike surface M = X(U) with partially parallel normal
frame is a subset of the envelope of the family of lightlike hyperplanes defined by F = 0.

Proof. The envelope defined by F = 0 is the (possibly singular) hypersurface satisfying the
condition F = Fv = 0. Here we have

Fv(x, v) = 〈Lv(0, v),x−X(0, v)〉+ 〈L(0, v),−Xv(0, v)〉.

9



Since L(0, v) is a normal vector and xv(0, v) is a tangent vector of M at X(0, v), we get

Fv(x, v) = 〈Lv(0, v),x−X(0, v)〉.

Consider now the function H(u, v) = F (X(u, v), v) = 〈L(0, v),X(u, v)−X(0, v)〉, then

H(0, v) = F (X(0, v), v) = 〈L(0, v),X(0, v)−X(0, v)〉 = 0.

Since L(u, v) = L(0, v), we have

Hu(u, v) = 〈L(0, v),Xu(u, v)〉 = 〈L(u, v),Xu(u, v)〉 = 0.

Therefore H(u, v) = H(0, v) = 0, and hence F (X(u, v), v) = 0.

We now define a function G on U as follows

G(u, v) = Fv(X(u, v), v) = 〈Lv(0, v),X(u, v)−X(0, v)〉.

Obviously G(0, v) = 0.

On the other hand, since Lu(u, v) = 0, we get that Lvu(u, v) = Luv(u, v) = 0, and thus
Lv(u, v) = Lv(0, v). Therefore, we obtain

πt ◦ Lv(u, v) = πt ◦ L(0, v) and πn ◦ Lv(u, v) = πn ◦ L(0, v).

And it follows that

Gu(u, v) = 〈Lv(0, v),Xu(u, v)〉
= 〈πt ◦ Lv(0, v) + πn ◦ Lv(0, v),Xu(u, v)〉
= 〈πt ◦ Lv(u, v) + πn ◦ Lv(u, v),Xu(u, v)〉
= 〈πt ◦ Lv(u, v),Xu(u, v)〉
= 〈−κ(u, v)Xv(u, v),Xu(u, v)〉.

Since Xu(u, v),Xv(u, v) are the eigenvectors of Sp at p = X(u, v), they are orthogonal, and
thus Gu(u, v) = 0. Therefore G(u, v) = G(0, v) = 0, and we get

Fv(X(u, v), v) = 0.

Consequently, we have that X(u, v) satisfies both the conditions,

F (X(u, v), v) = Fv(X(u, v), v) = 0,

which means that M = X(U) is a subset of the envelope of the family of lightlike hyperplanes
defined by F = 0. 2

We now associate to the spacelike surface M = X(U) a lightlike hypersurface. This is given

by the embedding X̃ : R× R× I −→ R4
1, defined by

X̃(r, s, v) = X(0, v) + s
Xu(0, v)

‖Xu(0, v)‖ + rL(0, v),

where I ⊂ R is an open interval. We have the following proposition.
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Proposition 3.2 Under the conditions of Proposition 3.1, the hypersurface M̃ = X̃(R×R×J)
is the envelope of the family of lightlike hyperplanes defined by F = 0.

Proof. We remind that L(u, v) = nT (u, v) + nS(u, v) is a lightlike normal vector field along
M = X(U). It follows that

F (X̃(r, s, v), v)) =

〈
L(0, v), s

Xu(0, v)

‖Xu(0, v)‖ + rL(0, v)

〉
= 0.

By differentiating the relation 〈L(u, v),L(u, v)〉 = 0 with respect to the v-variable, we get that
〈Lv(u, v),L(u, v)〉 = 0. Since πt ◦Lv(0, v) = −κ(0, v)Xv(0, v) and 〈πn ◦Lv(0, v),Xu(0, v)〉 = 0,
we obtain

Fv(X̃(r, s, v), v) =

〈
Lv(0, v), s

Xu(0, v)

‖Xu(0, v)‖ + rL(0, v)

〉
= − sκ(0, v)

‖Xu(0, v)‖〈Xv(0, v),Xu(0, v)〉.

Both the u-curve and the v-curve are the lines of curvature, so we have that 〈Xv(0, v),Xu(0, v)〉 =

0. This means that Fv(X̃(r, s, v), v) = 0, which completes the proof. 2

By Propositions 3.1 and 3.2, we can view any lightlike flat spacelike surface with partially
parallel normal frame as a subset of the lightlike hypersurface parameterized (at least locally)
by

X̃(r, s, v) = X(0, v) + s
Xu(0, v)

‖Xu(0, v)‖ + rL(0, v).

The image of X(u, v) is a subset of the image of X̃(r, s, v), where v is the common parameter.
Therefore we have a reparametrization

X(u, v) = X(0, v) + s(u, v)a1(v) + r(u, v)L(0, v),

where a1(v) = Xu(0, v)/‖Xu(0, v)‖ ∈ S3
1 . By assumption,

Xu(u, v) = su(u, v)a1(v) + ru(u, v)L(0, v),

Xv(u, v) = Xv(0, v) + sv(u, v)a1(v) + s(u, v)a1v(v) + rv(u, v)L(0.v) + r(u, v)Lv(0, v)

are spacelike vectors. If su(u0, v) = 0, then Xu(u0, v) = tu(u0, v)L(0, v) is lightlike, so su(u, v) 6=
0. By an adequate parameter transformation, we may (at least locally) put

X(s, v) = X(0, v) + s
Xu(0, v)

‖Xu(0, v)‖ + r(s, v)L(0, v).

We now analyze the meaning of the above parametrization. Fix v = v0 and denote

a0 = nT (0, v0), a1 =
Xu(0, v0)

‖Xu(0, v0)‖ , a2 = nS(0, v0).

Then we have a curve

σ(s) = X(s, v0) = X(0, v0) + sa1 + r(s, v0)(a0 + a2).

Since σ′(s) = a1 +rs(s, v0)(a0 +a2), we have that 〈σ′(s),σ′(s)〉 = 〈a1,a1〉 = 1. Therefore σ(s)
is a unit speed spacelike curve. This means that t(s) = a1 +rs(s, v0)(a0 +a2) is a unit spacelike
vector. Moreover, the vector σ(s) −X(0, v0) belongs to the lightlike plane 〈a1,a0 + a2〉R, so
the surface can be seen as a one-parameter family of lightlike plane curves, where by a lightlike
plane curve we understand a spacelike curve contained in a lightlike plane.
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Theorem 3.3 Suppose that M ⊂ R4
1 is a lightlike flat spacelike surface with partially parallel

normal frame and no lightlike umbilic points, then M is a one-parameter family of lightlike
plane curves. Moreover, each one of these lightlike plane curve is a vanishing lightcone principal
curvature line in M .

Proof. The first assertion of the theorem is a consequence of the above arguments. As for
the second, we assume that M = X(U) and that both the u-curve and the v-curve are the
curvature lines as above, so they satisfy that Lu(u, v) = 0 and πt ◦Lv(u, v) = −κ̄(u, v)Xv(u, v).
We consider now the parametrization

X̃(s, v) = X(0, v) + s
Xu(0, v)

‖Xu(0, v)‖ + r(s, v)L(0, v)

of M = X(U). By a straightforward calculation, we get

X̃s(s, v) =
Xu(0, v)

‖Xu(0, v)‖ + rs(s, v)L(0, v),

X̃v(s, v) = Xv(0, v) + s

(
Xuv(0, v)

‖Xu(0, v)‖ −
2〈Xu(0, v),Xuv(0, v)〉

‖Xu(0, v)‖2
Xu(0, v)

)

+rv(s, v)L(0, v) + r(s, v)Lv(0, v).

Since 〈L(0, v),Xu(0, v)〉 = 0, we have that 〈Lv(0, v),Xu(0, v)〉 + 〈L(0, v),Xuv(0, v)〉 = 0.
Since the v-curve is a curvature line satisfying that πt ◦ Lv(0, v) = −κ̄(0, v)Xv(0, v), we
have 〈Lv(0, v),Xu(0, v)〉 = 〈πn ◦ Lv(0, v) + πt ◦ Lv(0, v),X(0, v)〉 = 〈πt ◦ Lv(0, v),Xu(0, v)〉 =
−κ̄(0, v)〈Xv(0, v),Xu(0, v)〉 = 0. Therefore we get that 〈L(0, v),Xuv(0, v)〉 = 0. Since L(0, v)
is the lightlike normal vector of M = X(U) at X(0, v), we obtain

〈L(0, v), X̃s(s, v)〉 = 〈L(0, v), X̃v(s, v)〉 = 0.

This means that L(0, v) is the lightlike normal of M = X(U) at X̃(s, v). Therefore we have
that the lightlike normal L is constant along the s-curve. Since (u, v) = (u(s, v), v), we get
that Ls(u(s, v), v) = Lu(u(s, v), v)us(s, v) = 0, so the s-curve must be the vanishing lightcone
principal curvature line. 2

4 Flat lightlike hypersurfaces

We introduce in this section a notion of flatness for the lightlike hypersurfaces in R4
1. Let

LHX : U ×R −→ R4
1 be the lightlike hypersurface along the spacelike surface M = X(U). We

say that LHM is flat if M = X(U) is a lightlike flat spacelike surface with partially parallel
normal frame. We must show now that this notion of flatness on lightlike hypersurfaces is
independent of the choice of the parametrization. Let U an open subset of R2 and X : U −→ R4

1

a spacelike embedding such that M = X(U) ⊂ LHM . Then we can write

X(u, v) = X(u(u, v), v(u, v)) + r(u, v)L(u(u, v), v(u, v)).

Moreover, we assume that there is a diffeomorphism (parameter transformation) φ : U −→ U
defined by φ(u, v) = (u(u, v), v(u, v)).

Under these notations, we have the following proposition.
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Proposition 4.1 If X is a lightlike flat spacelike surface with partially parallel normal frame,
then X is lightlike flat.

Proof. We may assume that the u-curves and the v-curves are the curvatures lines on M and
that the u-curves correspond to the vanishing lightcone curvature. This means that Lu ≡ 0.
By a straight forward calculation, we have

Xu = Xu + (ruuu + rvvu)L+ r(u, v)Lu = Xu + (ruuu + rvvu)L
Xv = Xv + (ruuv + rvvv)L+ r(u, v)Lv = (1− rκ)Xv + (ruuv + rvvv)L,

and thus L(u(u, v), v(u, v)) is normal to Xu,Xv. However, we have that Xu = Xuuu +
Xvvu,Xv = Xuuv + Xvvv, so L(u(u, v), v(u, v)) is a lightlike normal to X(u, v). There-
fore we can choose (nT ,nS) as a future directed normal frame along X, such that (nT +
nS)(u, v) is parallel to L(u(u, v), v(u, v)). It follows that there exists a function λ(u, v), such
that L(u((u, v)), v((u, v))) = λ(u(u, v), v(u, v))(nT + nS)(u, v). Denote L = (nT + nS). It can
be seen that Lu = λuL+λLu. Since Lu ≡ 0 and L is a lightlike normal, we get that the tangent
component of Lu is identically zero. This implies that the φ(u, v0)-curve on M is a vanishing
lightcone curvature line. 2

By the proposition above we have that the definition of flat lightlike hypersurface is inde-
pendent of the choice of the lightlike flat spacelike surface with partially parallel normal frame
along which it is defined. Moreover, in the proof of the above proposition, we have that the
diffeomorphism φ : U −→ U satisfies L(u, v) = λ(u, v)L(u(u, v), v(u, v)). This extends to a
diffeomorphism Φ : U × R −→ U × R given by

Φ(u, v, r) = (u(u, v), v(u, v), r(u, v) + rλ(u, v)).

By definition, we have LHX(Φ(U × R)) = LHX(U × R). We call Φ an adapted parameter
transformation of LHM .

Proposition 4.2 Given a lightlike hypersurface LHM = LHX(U × R), we can find (at least
locally) a spacelike surface X : U −→ R4

1 with partially parallel normal frame and an adapted
parameter transformation Φ : U × R −→ U × R of LHM .

Proof. For a given spacelike embedding X : U −→ R4
1, we consider the lightlike normal

L(u, v) = (nT + nS)(u, v). We denote R3
c = {(c, x1, x2, x3) ∈ R4

1 | c ∈ R }, which is a spacelike
hyperplane in R4

1. For any (u0, v0) ∈ U, let c be the first component of X(u0, v0). Then
LHX(U × R) ∩ R3

c is a non-singular surface near the point X(u0, v0). It follows that there is a
neighborhood U ⊂ R2 of (u0v0), W ⊂ R4

1 of X(u0, v0) and a embedding X : V −→W such that
X(U) = W ∩LHX(U×R)∩R3

c . Then we choose nT (u, v) = e0 = (1, 0, 0, 0) as a future directed
timelike unit normal of X. We also choose the spacelike normal field nS as the (unique) unit
normal vector field in R3

c such that nT +nS is parallel to L. It follows that (nT ,ns) is a parallel
normal frame along X. The remaining assertions are trivial by construction. 2

Consider now a flat lightlike hypersurface LHX : U × R −→ R4
1, where the u-curves of

M = X(U) are the family of vanishing lightcone principal curvature lines and the v-curves
are the orthogonal lightcone principal curvature lines. This implies that Lu(u, v) ≡ 0. By the
results in §3, the lightlike hypersurface defined by

X̃(r, s, v) = X(0, v) + s
Xu(0, v)

‖Xu(0, v)‖ + rL(0, v)
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is the envelope of lightlike hyperplanes given by

F (x, v) = 〈L(0, v),x−X(0, v)〉.

Since L(u, v) = L(u, v), we can show the following proposition by using exactly the same
arguments as in the proof of Proposition 3.2.

Proposition 4.3 Suppose that LHX : U × R −→ R4
1 is a flat lightlike hypersurface along a

lightlike flat spacelike surface M = X(U) with partially parallel normal frame. If the u-curves
are the family vanishing lightcone curvature lines, then LHM is the envelope of the lightlike
hyperplanes defined by F (x, v) = 〈L(0, v),x−X(0, v)〉.

As a consequence of this we have that the flat lightlike hypersurface LHM can be reparametrized
(at least locally) by the mapping X̃(r, s, v). If we denote

t = v,γ(t) = X(0, t), a0(t) = nT (0, t), a1(t) =
Xu(0, t)

‖Xu(0, t)‖ , a2(0, t) = nS(0, t),

then we have
X̃(r, s, t) = γ(t) + sa1(t) + r(a0(t) + a2(t)).

With this we arrive to the central point of the paper: Let γ : I −→ R4
1 be a regular

spacelike curve (ie., 〈γ ′(t),γ ′(t)〉 > 0), and a0 : I −→ H3
+(−1) and ai : I −→ S3

1 (i = 1, 2),
smooth curves such that 〈ai(t),aj(t)〉 = 0, where I denotes an open interval. We now write
`(t) = a0(t) + a2(t) and define a mapping

F(γ,a0,a1,a2) : R× R× I −→ R4
1

by
F(γ,a0,a1,a2)(s, r, t) = γ(t) + sa1(t) + r`(t).

We observe that for any fixed t = t0, we have a lightlike plane F(γ,a0,a1,a2)(s, r, t0).

We call F(γ,a0,a1,a2) (or the image of it) a lightlike planar hypersurface. Each lightlike plane
F(γ,a0,a1,a2)(s, r, t0) is called a generating lightlike plane.

We can summarize the consequences of the previous arguments together with Proposition
4.3 as follows:

Proposition 4.4 A flat lightlike hypersurface is a lightlike planar hypersurface.

For each t ∈ I, we can take the unit spacelike vector a3(t) = a0(t) ∧ a1(t) ∧ a2(t), so
that we have a pseudo-orthonormal frame {a0(t),a1(t),a2(t),a3(t)} of R4

1. By using the above
curve γ(t) and the pseudo-orthonormal frame {a0(t),a1(t),a2(t),a3(t)}, we define the following
fundamental invariants for lightlike planar hypersurfaces:

c1(t) = 〈a′0(t),a1(t)〉 = −〈a0(t),a
′
1(t)〉, c4(t) = 〈a′1(t),a2(t)〉 = −〈a1(t),a

′
2(t)〉,

c2(t) = 〈a′0(t),a2(t)〉 = −〈a0(t),a
′
2(t)〉, c5(t) = 〈a′1(t),a3(t)〉 = −〈a1(t),a

′
3(t)〉,

c3(t) = 〈a′0(t),a3(t)〉 = −〈a0(t),a
′
3(t)〉, c6(t) = 〈a′2(t),a3(t)〉 = −〈a2(t),a

′
3(t)〉

and

b0(t) = 〈γ ′(t),a0(t)〉, b1(t) = 〈γ ′(t),a1(t)〉, b2(t) = 〈γ ′(t),a2(t)〉, b3(t) = 〈γ ′(t),a3(t)〉.
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It can be shown that the following fundamental differential equations hold:





a′0(t) = c1(t)a1(t) + c2(t)a2(t) + c3(t)a3(t)

a′1(t) = c1(t)a0(t) + c4(t)a2(t) + c5(t)a3(t)

a′2(t) = c2(t)a0(t)− c4(t)a1(t) + c6(t)a3(t)

a′3(t) = c3(t)a0(t)− c5(t)a1(t)− c6(t)a2(t),

(4.1)

and
γ ′(t) = b0(t)a0(t) + b1(t)a1(t) + b2(t)a2(t) + b3(t)a3(t). (4.2)

This can be written in the following form:




a′0(t)
a′1(t)
a′2(t)
a′3(t)


 =




0 c1(t) c2(t) c3(t)
c1(t) 0 c4(t) c5(t)
c2(t) −c4(t) 0 c6(t)
c3(t) −c5(t) −c6(t) 0







a0(t)
a1(t)
a2(t)
a3(t)


 .

Where we remark that

C(t) =




0 c1(t) c2(t) c3(t)
c1(t) 0 c4(t) c5(t)
c2(t) −c4(t) 0 c6(t)
c3(t) −c5(t) −c6(t) 0


 ∈ so(3, 1).

Here so(3, 1) denotes the Lie algebra of the Lorentzian group SO0(3, 1). If {a0(t),a1(t),a2(t),a3(t)}
is the above pseudo-orthonormal frame field, we have that the above 4 × 4-matrix defines a
smooth curve A : I −→ SO0(3, 1). Therefore we get the relation that A′(t) = C(t)A(t). Con-
versely, let A : I −→ SO0(3, 1) be a smooth curve, then we can show that A′(t)A(t)−1 ∈ so(3, 1).
Moreover, given any smooth curve C : I −→ so(3, 1), we can apply the fundamental theorem
for linear systems of ordinary differential equations, and conclude that there exists a unique
curve A : I −→ SO0(3, 1) such that C(t) = A′(t)A(t)−1 with initial data A(t0) ∈ SO(3, 1).
Moreover, for any spacelike curve b(t) = (b0(t), b1(t), b2(t), b3(t)) ∈ R4 with 〈b(t), b(t)〉 > 0,
we have γ(t). Therefore, a smooth curve (b, C) : I −→ R4 × so(3, 1) might be identified
with a lightlike planar hypersurface in R4

1. Let C : I −→ so(3, 1) be a smooth curve with
C(t) = A′(t)A(t)−1 and B ∈ SO(3, 1), then we have C(t) = (A(t)B)′(A(t)B)−1. This means
that the curve C : I −→ so(3, 1) is a Lorentzian invariant of the pseudo-orthonormal frame
{a0(t),a1(t),a2(t),a3(t)}, and thus it is a Lorentzian invariant of the corresponding lightlike
planar hypersurface. For simplicity, we shall write in what follows F(γ,A) instead of F(γ,a0,a1,a2).

Let C∞(I,R4
1× so(3, 1)) be the space of smooth curves into so(3, 1) equipped with Whitney

C∞-topology. We consider an open subset

C∞sp (I,R4
1 × so(3, 1)) = {(b, C) ∈ C∞(I,R4

1 × so(3, 1)) | 〈b(t), b(t)〉 > 0 }.

By the above arguments, we may regard C∞sp (I,R4
1 × so(3, 1)) as the space of lightlike planar

surfaces, where I is an open interval, or the unit circle.

Motivated by the result of Proposition 4.3, we have the following definition: For any lightlike
planar hypersurface F(γ,A), consider the surface defined by

F(γ,A;r(s,t))(s, t) = γ(t) + sa1(t) + r(s, t)`(t),
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where r = r(s, t) is a smooth function. By a straight forward calculation, we can show that the
surface F(γ,A;r(s,t)) is spacelike.

On the other hand, let M = X(u, v) be a lightlike flat spacelike surface without umbilics
and with partially parallel normal frame nT (u, v),nS(u, v), whose u-curves are the vanishing
lightcone principal curvature lines. Suppose that F(γ,A;r(s,t))(s, t) provides a (local) parametriza-
tion for M = X(u, v). By using the same arguments than in §3, we can write (u, v) = (u(s, t), t)
with us(s, t) 6= 0. Moreover, we may assume that

γ(t) = X(u(0, t), t),a0(t) = nT (u(0, t), t),a1(t) =
Xu(u(0, t), t)

‖Xu(u(0, t), t)‖ ,a2(t) = nS(u(0, t), t).

Since Lu ≡ 0, Ls = Luus ≡ 0, and hence L(u, v) = L(u(0, t), t) = `(t). Therefore, `(t) is a
lightlike normal vector at (s, t). Conversely, if `(t) is a lightlike normal vector at (s, t), then
`s(t) ≡ 0 means that F(γ,A;r(s,t)) is lightlike flat spacelike surface with partially parallel normal
frame. It follows that the s-curves coincide with the vanishing lightcone curvature lines. We
can now show the following.

Proposition 4.5 The vector `(t) is a lightlike normal of the surface F(γ,A;r(s,t)) at any regular
point (s, t) if and only if

(b2(t)− b0(t)) + s(c4(t)− c1(t)) = 0.

Proof. By using the basic invariants, we obtain

∂F(γ,A;r(s,t))

∂t
(s, t) = (b0 + sc1)a0 + b1a1 + (b2 + sc4)a2 + (rt + rc2)` + (b3 + sc5 + r(c3 + c6))a3,

∂F(γ,A;r(s,t))

∂s
(s, t) = a1 + rs`.

On the other hand, we have that 〈(∂F(γ,A;r(s,t))/∂s)(s, t), `(t)〉 ≡ 0, `(t) is a normal vector at
(s, t) if and only if

0 = 〈∂F(γ,A;r(s,t))

∂t
(s, t), `(t)〉 = −(b0(t) + sc1(t)) + (b2(t) + sc4(t)),

which completes the proof.

2

We remark that b2(t)− b0(t) + s(c4(t)− c1(t)) = 0 for any (s, t) if and only if b2(t)− b0(t) =
c4(t) − c1(t) = 0. Therefore, we say that a lightlike planar hypersurface F(b,)A(r, s, t) is flat if
b2(t) − b0(t) = c4(t) − c1(t) = 0. In such case, we have that a spacelike surface of the form
F(γ,A;r(s,t)) must be lightlike flat. In particular, F(γ,A;0), which is said to be a lightlike flat
spacelike ruled surface.

By the above arguments, we can consider the linear subspace of so(3, 1) defined by

fl(3, 1) =




C =




0 c1 c2 c3
c1 0 c4 c5
c2 −c4 0 c6
c3 −c5 −c6 0


 ∈ so(3, 1)

∣∣∣ c1 − c4 = 0





and the lightlike hyperplane HP (e0 + e2, 0) = {b = (b0, b1, b2, b3) ∈ R4
1 |b0 = b2 }. Then the

space of flat lightlike planar hypersurfaces can be regarded as the space

C∞sp (I,HP (e0 + e2, 0)× fl(3, 1)) = {(b, C) : I −→ HP (e0 + e2, 0)× fl(3, 1) | 〈b(t), b(t)〉 > 0 }
with Whitney C∞-topology.
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5 Singularities of flat lightlike hypersurfaces

In this section, we shall work with flat lightlike planar hypersurfaces. According to Proposition
4.3, such a hypersurface has a parametrization F(γ,A)(s, t, r) = γ(t) + sa1(t) + r`(t), satisfying

〈`,γ ′〉 ≡ 0 (b0 ≡ b2) and 〈`′,a1〉 ≡ 0 (c1 ≡ c4). (5.1)

Fix a point p0 = (s0, t0, r0) and denote F(γ,A)(p0) = x0. We define a function H(t,x) =
〈`(t),x− γ(t)〉, (x = (x0, x1, x2, x3) ∈ R4

1). Then we have the following lemma.

Lemma 5.1 If c3 + c6 6= 0 then the discriminant set

DH =

{
x ∈ R4

1

∣∣∣∣ there exists t ∈ R such that H(t,x) =
∂H

∂t
(t,x) = 0

}

of H is equal to the image Im(F(γ,A)).

The proof of this Lemma is essentially included in the proof of Proposition 4.3. However,
we give a proof using the parametrization above.

Proof. We shall use the abbreviation c36 = c3 + c6. It is easy to check Im(F(γ,A)) ⊂ DH .
Assume that x ∈ DH . By (5.1), we have that x ∈ DH if and only if 〈`(t),x− γ(t)〉 =
〈`′(t),x− γ(t)〉 = 0, for some t. We can take real numbers αi(t) (i = 0, . . . , 3) such that
x − γ(t) =

∑3
i=0 αi(t)ai(t). Then, since c36 6= 0, we have α2(t) = α0(t) and α3(t) = 0. Hence

x− γ(t) = α0(t)`(t) + α1(t)a1(t) holds, which means that x ∈ Im(F(γ,A)). 2

By (4.1), we have that c36 6= 0 if and only if ` and `′ are linearly independent. Provided
c36 6= 0, we have that the map

∆∗H =

(
H,

∂H

∂t

)
: (R× R4,0) −→ (R× R,0)

is submersive, namely H is a Morse family (see Appendix A.). In fact, it is submersive if and
only if the matrix (

∂H

∂x
,
∂2H

∂x∂t

)
=

(
`, `′

)

has the maximal rank. Moreover, we use the following (see [2, Section 6.10]):

Lemma 5.2 Let f : (R, 0) → (R, 0) and F : (R × Rn,0) → (R, 0) be functions such that
F (t,0) = f(t). Assume f has type Ak at t = 0 (f ′(0) = · · · f (k)(0) = 0 and f (k+1)(0) 6= 0).
Write (k − 1)-jet of F as

n∑
i=0

α0,i xi +
n∑

i=0

α1,i xit+
n∑

i=0

α2,i xit
2 + · · ·+

n∑
i=0

αk−1,i xit
k−1, x = (x1, . . . , xn).

Then F is a K-versal unfolding (See Appendix A.) if and only if the (k×n) matrix of coefficients

VF =




α0,1 α1,1 · · · αk−1,1

α0,2 α1,2 · · · αk−1,2

· · · · · · · · · · · ·
α0,n α1,n · · · αk−1,n




has rank k.
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Since H is defined by H(t,x) = 〈`,x− γ〉, the matrix VH is (`, `′, . . . , `(k)). Therefore, if
H(t,x0) is of type Ak (k ≤ 4) at 0 and {`, `′, . . . , `(k)} is linearly independent, then H is a Morse
family and a K-versal deformation of h. Moreover, by uniqueness of the K-versal deformations
(see [2, Section 6.5].), H must be P -K-equivalent to Fk(t,x) = t(k+1) +x0 +x1t+ · · ·+xk−1t

k−1

(k = 2, 3, 4). Since the discriminant set of Fk is the cusp ×R2 (if k = 2), the swallowtail ×R (if
k = 3) or an A4-singularity (if k = 4), the map germ of F(γ,A) at p is A-equivalent to the cusp
×R2, the swallowtail ×R or an A4-singularity, for each k = 2, 3, 4.

By summarizing these discussions, we have that under the condition that c36(t0) 6= 0, the
image germ of F(γ,A) at p is diffeomorphic to the cusp ×R2 if and only if H ′′(t0,x0) = 0,
H ′′′(t0,x0) 6= 0 and {`, `′, `′′} is linearly independent at (t0,x0). Similarly, the image germ of
F(γ,A) at p is diffeomorphic to the swallowtail ×R if and only if H ′′(t0,x0) = H ′′′(t0,x0) = 0,
H(4)(t0,x0) 6= 0 and {`, `′, `′′, `′′′} is linearly independent at (t0,x0). Finally, the image germ
of F(γ,A) at p is diffeomorphic to an A4-singularity if and only if H ′′(t0,x0) = H ′′′(t0,x0) =

H(4)(t0,x0) = 0, H(5)(t0,x0) 6= 0 and {`, `′, `′′, `′′′, `(4)} is linearly independent at (t0,x0).

By taking the derivative of H(t,x) = 〈`(t),x− γ(t)〉 with respect to t and using the
derivations of the relations 〈`,γ ′〉 ≡ 0 and 〈`′,a1〉 ≡ 0, we have

H ′′(t0,x0) = −〈γ ′ + sa′1 + r`′, `′〉
H ′′′(t0,x0) = −〈2γ ′ + 2sa′1 + 3r`′, `′′〉 − 〈γ ′′ + sa′′1, `

′〉 .

We can calculate H(4)(0,0) and H(5)(0,0) analogously. The derivatives of ` is calculated as
follows:

`′ = c2a0 + c2a2 + c36a3

`′′ =
(
c22 + c3c36 + c′2

)
a0 − c5c36a1 +

(
c22 − c6c36 + c′2

)
a2 +

(
c2c36 + c′36

)
a3

`′′′ =
(
− c1c5c36 + 3c3c36 − c3c

′
6 + c′3c6

)
a0 +

(
c1c

2
36 − (c2c5 + c′5)c36 − 2c5c

′
36

)
a1

+
(
(−c1c5 − c′6)c36 − 2c6c

′
36

)
a2 +

(
(c22 − c25 + 2c′2 + c23 − c26)c36 + c2c

′
36 + c′′36

)
a3

`′′′′ = α0a0 + α1a1 + α2a2 + α3a3

where,

α0 = c42 + c43 − c23c
2
5 + c33c6 − c3c

2
5c6 − c23c

2
6 − c3c

3
6 + c21c

2
36 − c3c5c

′
1 − c5c6c

′
1

+3c23c
′
2 + 2c3c6c

′
2 − c26c

′
2 + 3(c′2)

2 + c22((2c3 − c6)c36 + 6c′2)
+3c′3c

′
36 − c1(2c36c

′
5 + 3c5c

′
36)

−c2(2c1c5c36 − 3c3c
′
3 + 2c6c

′
3 + 5c6c

′
6 − 4c′′2) + 4c3c

′′
3 + c6c

′′
3 + 3c3c

′′
6 + c′′′2

α1 = −(c33c5) + c35c6 + c5c
3
6 − c22c5c36 + c26c

′
1 + c23(−(c5c6) + c′1)

−3c5c6c
′
2 + 5c1c6c

′
3 − 3c′3c

′
5 + 5c1c6c

′
6 − 3c′5c

′
6 − c2(c36c

′
5 + 2c5c

′
36)

−3c5c
′′
3 + c3(c

3
5 + 2c6c

′
1 + c5(c

2
6 − 3c′2) + 5c1c

′
36 − c′′5)− c6c

′′
5 − 3c5c

′′
6

α2 = c42 − c33c6 + c3c
2
5c6 − c23c

2
6 + c25c

2
6 + c3c

3
6 + c46 + c21(c3 + c6)

2 − c3c5c
′
1 − c5c6c

′
1

+c23c
′
2 − 2c3c6c

′
2 − 3c26c

′
2 + 3(c′2)

2 + c22((c3 − 2c6)c36 + 6c′2)− 3c′6c
′
36

−c1(2c36c
′
5 + 3c5c

′
36)

+c2(−2c1c5c36 + 5c3c
′
3 + (2c3 − 3c6)c

′
6 + 4c′′2)− 3c6c

′′
3 − (c3 + 4c6)c

′′
6 + c′′′2

α3 = c32c36 + c22c
′
36 + 3c23(2c

′
3 + c′6) + 3c3(−(c5c

′
5) + c6(c

′
3 − c′6) + c′′2)

−3(c5c6c
′
5 + c25c

′
36 − c′2c

′
36 + c26(c

′
3 + 2c′6)− c6c

′′
2)

+c2(c36(c
2
3 − c25 − c26 + 5c′2) + c′′36) + c′′′36

.
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Now, by using (4.1) and (4.2), we can calculate similarly the fourth derivatives of γ and a1.
From these calculations, we obtain the following.

Proposition 5.3 Suppose that c36(t0) 6= 0.

• The image germ of F(γ,A) at p is diffeomorphic to the 3/2-cusp ×R2 if and only if the
following holds at p,

Ξ1 := sc5 + rc36 + b3 = 0 and
Ξ2 := (b2 + sc1 + rc2)c36 − sc′5 − c′36 + b1c5 − b′3 6= 0.

• The image germ of F(γ,A) at p is diffeomorphic to the swallowtail ×R if and only if the
following holds at p,

Ξ1 = Ξ2 = 0 and
Ξ3 := (sc1 − b1c1)c36 + 2(b2 + sc1)c

′
36 − rc′′36 +

(
(−b2 − sc1)c36 + 2rc′36

)
c2

−rc36c22 + rc′2c36 + 2b1c
′
5 − sc′′5 − b′′3 6= 0.

• The image germ of F(γ,A) at p is diffeomorphic to the A4 singularity if and only if the
following holds at p,

Ξ1 = Ξ2 = Ξ3 = 0 and
Ξ4 := (−c1b′1 − 2b1c

′
1 + b′′2 + sc′′1)c36 + (−3b1c1 + 3b′2 + 3sc′1)c

′
36 + 3(b2 + sc1)c

′′
36 − rc′′′36

+
(
(b1c1 − sc′1 − b′2)c36 − 3(sc1 + b2)c36 + 3rc′′36

)
c2 +

(
sc1 + b2)c36 − 3rc′36

)
c22 + rc36c

3
2

+
(
(−2sc1 − 2b2 − 3rc2)c36 + 3rc′36

)
c′2 + rc36c

′′
2 + b′′1c5 + 3b′1c

′
5 + 3b1c

′′
5 − sc′′′5 − b′′′3 6= 0.

On the other hand, we can consider a singular point p with c36(t0) = 0 as an application of
the criterion in Appendix B. The area density function for F(γ,A) is b3 + sc5 + rc36. A point p
is non-degenerate if and only if b′3 + sc′5 + rc′36 6= 0 or c5 6= 0. Therefore, the null vector field is
given by (−1, b1, b0 + sc1 + rc2). Since the singular set is S = S(F(γ,A)) = {b3 + sc5 + rc36 = 0},
the tangent plane TpS is spanned by v1 = (−c5, b′3 + sc′5 + rc′36, 0) and v2 = (0, 0, 1). Hence
η 6∈ TpS(f) if and only if b′3+sc′5+rc′36−c5b1 6= 0. Therefore the function ψ̃ defined in Appendix
B is ψ̃ = 〈`, a′3〉 = c36. As a summary of these arguments, we can state the following.

Proposition 5.4 F(γ,A) at p is diffeomorphic to cuspidal cross cap ×R if and only if the fol-
lowing conditions hold:

• b3 + sc5 + rc36 = 0

• c36 = 0

• b′3 + sc′5 + rc′36 6= 0 or c5 6= 0

• c′36 6= 0.

Observe that since flat lightlike planar hypersurfaces are determined up to Lorentzian motion
by functions (c1, c2, c3, c5, c6, b0, b1, b3), the space of flat lightlike planar hypersurfaces FLP can
be defined by the set of these functions FLP = C∞(I,R8) with the Whitney C∞-topology.
Then, as a consequence of the above results, we obtain the following generic classification.
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Theorem 5.5 There exists an open and dense subset O1 ⊂ FLP such that for any a ∈ O1,
the map germ F(γ,A) defined by a at any point is A-equivalent to either a regular point, a cusp
×R2, a swallowtail ×R, an A4-singularity, or a cuspidal cross cap ×R.

Proof. We first define following sets:

Ξi := {(s, t, r) ∈ R× J3(I,R8)× R |Ξi = 0}, (i = 1, . . . , 4)
Ξ5 = {j3a(t) ∈ J3(I,R8) | c36(t) = 0},
Ξ6 = {j3a(t) ∈ J3(I,R8) | c5(t) = 0} and
Ξ7 = {j3a(t) ∈ J3(I,R8) | c′36(t) = 0}.

It is easy to check Ξ5 ∩ Ξ6 and Ξ5 ∩ Ξ7 are both closed submanifolds of J3(I,R8) codimension
2. Next we show that ∩4

i=1Ξi is a codimension 4 submanifold of R × J3(I,R8) × R. Denote
Ξ = (Ξ1, . . . ,Ξ4), then ∩4

i=1Ξi = Ξ−1(0, 0, 0, 0). Hence it is sufficient to prove that (0, 0, 0, 0)
is a regular value of Ξ. We calculate the derivative of Ξ with respect to the coordinates of
R × J3(I,R8) × R corresponding to the zero, first, second and third derivatives of b3. It
coincides with 



1 0 0 0
∗ −1 0 0
∗ ∗ −1 0
∗ ∗ ∗ −1.




This has the maximal rank at any point. So, the image π(∩4
i=1Ξi) by the projection π :

R× J3(I,R8)×R→ J3(I,R8) is a closed semi-algebraic set of codimension 2. Hence it admits
a canonical stratification. By applying the Thom-Mather jet transversality theorem to the
strata Ξ5 ∩ Ξ6 and Ξ5 ∩ Ξ7, we have that there exists an open and dense set O1 such that for
any j3a(t) ∈ O1 is transverse to Ξ5 ∩Ξ6 and Ξ5 ∩Ξ7. Since they have codimensions lesser than
2, the transversality conditions means that there are no intersection points. Therefore O1 has
the desired properties. 2

6 Singularities of lightlike flat spacelike surfaces with

partially parallel normal frame

In this last section, we shall study the generic behavior of the lightlike flat spacelike surfaces
with partially parallel normal frame. By Theorem 3.3, such a surface can be parameterized as

F (s, t) = γ(t) + sa1(t) + r(s, t)`(t), b0 ≡ b2, c1 ≡ c4

where we are using the frame given in (4.1) and (4.2). Here, we consider that a lightlike
flat spacelike surface with partially parallel normal frame is determined by functions α =
(c1, c2, c3, c5, c6, b0, b1, b3, r) ∈ C∞(I × R,R9), where ci and bj are seen as maps ci(s, t) = ci(t),
bj(s, t) = bj(t).

We define the space of lightlike flat spacelike surfaces with partially parallel normal frame as
LFSP := C∞(I ×R,R9) with the Whitney C∞-topology. In order to study these surfaces, we
try to find a special curve on the surface along which the singularities are located. Such curves
are usually called the striction curves of the surface. A point (s, t) is said to be noncylindrical
if c5 + rsc36 6= 0 holds. Let us assume that any (s, t) is noncylindrical. A curve (s(t), t) is the
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striction curve of F if b3(t)+s(t)c5(t)+r(s(t), t)c36(t) = 0 holds. Now we study the singularities
of F . A point (s, t) is a singular point of F if and only if

Ξ̂1 := b3 + sc5 + rc36 = 0, Ξ̂2 := b0 + sc1 + r′ + rc2 − b1rs = 0. (6.1)

So we have that the singular points are located on the striction curve. It follows from the same
arguments as those in Whitney [28] that the map germ F at (s, t) is A-equivalent to the cross
cap in R4 if and only if (6.1) and

Fs, b1Fss − F ′s, −b21Fss + F ′′

are linearly independent, where, ′ = ∂/∂t. Here, the cross cap in R4 is the map germ defined
by (x, y, z) 7→ (x2, xy, y, z) at the origin. By a straightforward calculation, the above condition
is equivalent to

Ξ̂3 := det



rs b1rss − rst − c1 − rsc2 w1

1 0 b′1
0 −c5 − rsc36 w2


 6= 0, (6.2)

where,

w1(t, s) = b′0 + b1c1 + b0c2 + s(c′1 + c1c2) + r′′ + 2r′c2 + r(c′2 + c22)− b21rss

w2(t, s) = b1(rsc36 + c5) + b′3 + sc′5 + r′c36 + rc′36
.

We have the following lemma.

Lemma 6.1 There is an open and dense subset O2 ⊂ LFSP such that for any α ∈ O2,
the lightlike flat spacelike surface with partially parallel normal frame determined by α is non-
singular at each cylindrical point.

Proof. We define a map NC : J3(I × R,R9) → R3 by

NC(j3(α(s, t)) = (c5 + rsc36, Ξ̂1, Ξ̂2).

Since (0, 0, 0) is a regular value, NC−1(0, 0, 0) is a submanifold of J3(I×R,R9) with codimension
3. By using the same method as in the proof of Theorem 5.5, we reach the desired conclusion.
2

Theorem 6.2 There exists an open and dense subset O3 such that for any α1 ∈ O3, the map
germ of the lightlike flat spacelike surfaces with partially parallel normal frame determined by
α1 at any one of its points is either A-equivalent to a regular point, or to the cross cap in R4.

Proof. We define a map Ξ̂ : J3(I × R,R9) \NC−1(0, 0, 0) → R4 by

Ξ̂(j3(α(s, t)) = (Ξ̂1, Ξ̂2, Ξ̂3).

We calculate the derivative of Ξ̂ with respect to the coordinates of J3(I×R,R9) corresponding
to b3, b0 and b′0, where b′0 means the first derivative of b0 with respect to t. The Jacobi matrix
is given by 


1 ∗ ∗
0 1 ∗
0 0 −(c5 + rsc36)


 . (6.3)
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In fact, since Ξ̂1 is equal to b3 + sc5 + rc36, the derivative of Ξ̂1 with respect to the coordinates
corresponding to b3 is equal to 1. Furthermore, since Ξ̂3 is given in (6.2), its derivative with
respect to the coordinates corresponding to b′0 is equal to −(c5 + rsc36). Moreover Ξ̂1 and Ξ̂2

have no terms in b′0, and thus we have the third row of (6.3).

This matrix has maximal rank at any point. Hence NC−1(0, 0, 0) ∪ Ξ̂−1(0, 0, 0) is a closed
algebraic set in J3(I × R,R9). By using the same method as in the proof of Theorem 5.5, we
arrive to the desired conclusion. 2

We say that a lightlike flat spacelike surface with partially parallel normal frame is a cylinder
if c5 +rsc36 ≡ 0. Such a surface seems to have the same type geometrical properties as cylinders
in R3. The investigation of this surface is left for a future work.

A Generating families

Here we give a quick survey on the theory of Legendrian singularities mainly developed by
Arnol’d-Zakalyukin [1,29]. Let F : (Rk ×Rn,0) −→ (R,0) be a function germ. We say that F
is a Morse family if the map germ

∆∗F =

(
F,
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn,0) −→ (R× Rk,0)

is submersive, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × Rn,0). In this case we have a
smooth (n− 1)-dimensional submanifold

Σ∗(F ) =
{

(q, x) ∈ (Rk × Rn,0)
∣∣∣ F (q, x) =

∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}

and the map germ LF : (Σ∗(F ),0) −→ PT ∗Rn defined by

LF (q, x) =

(
x,

[
∂F

∂x1

(q, x) : · · · : ∂F
∂xn

(q, x)

])

is a Legendrian immersion. Then we have the following fundamental theorem in the theory of
Legendrian singularities ( [1] §20.7 [29], Page 27).

Proposition A.1 All Legendrian submanifold germs in PT ∗Rn are constructed by the above
method.

We call F a generating family of LF , and the corresponding wave front is W (LF ) =
πn(Σ∗(F )), where πn : Rk × Rn −→ Rn is the canonical projection.

We now introduce an equivalence relation among Legendrian immersion germs. Let i :
(L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂ (PT ∗Rn, p′) be Legendrian immersion germs. Then
we say that i and i′ are Legendrian equivalent if there exists a contact diffeomorphism germ
H : (PT ∗Rn, p) −→ (PT ∗Rn, p′) such that H preserves the fibers of π and H(L) = L′. A
Legendrian immersion germ into PT ∗Rn at a point is said to be Legendrian stable if for every
map with the given germ there is a neighborhood in the space of Legendrian immersions (in
the Whitney C∞ topology) and a neighborhood of the original point such that each Legendrian
immersion belonging to the first neighborhood has in the second neighborhood a point at which
its germ is Legendrian equivalent to the original germ.
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Since the Legendrian lift i : (L, p) ⊂ (PT ∗Rn, p) is uniquely determined by the regular part
of the wave front W (i), we have the following simple but significant property of Legendrian
immersion germs:

Proposition A.2 Let i : (L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂ (PT ∗Rn, p′) be Legendrian
immersion germs such that regular sets of π ◦ i and π ◦ i′ are dense. Then i, i′ are Legendrian
equivalent if and only if their wave front sets, W (i) and W (i′), are diffeomorphic as set germs.
Here π : PT ∗Rn −→ Rn is the canonical projection of the projective cotangent bundle.

This result was firstly pointed out by Zakalyukin ( [30], Assertion 1.1). In his original
assertion, he assumed that the representatives of π ◦ i and π ◦ i′ are proper. However, we
remark that we can get rid of such an assumption. The assumption in the above proposition
is a generic condition for i, i′. In particular, if i and i′ are Legendrian stable, then they satisfy
the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families. We
denote by En the local ring of function germs (Rn,0) −→ R with the unique maximal ideal
Mn = {h ∈ En | h(0) = 0 }. Let F,G : (Rk×Rn,0) −→ (R,0) be function germs. We say that F
andG are P -K-equivalent if there exists a diffeomorphism germ Ψ : (Rk×Rn,0) −→ (Rk×Rn,0)
of the form Ψ(x, u) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk×Rn,0) such that Ψ∗(〈F 〉Ek+n

) = 〈G〉Ek+n
.

Here Ψ∗ : Ek+n −→ Ek+n is the pull back R-algebra isomorphism defined by Ψ∗(h) = h ◦Ψ .

Let F : (Rk×Rn,0) −→ (R,0) be a function germ. We say that F is a K-versal deformation
of f = F |Rk × {0} if

Ek = Te(K)(f) +

〈
∂F

∂x1

|Rk × {0}, . . . , ∂F
∂xn

|Rk × {0}
〉

R
, (A.1)

where

Te(K)(f) =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉

Ek

.

(See [20].) The main result in the theory ( [1], §20.8 and [29], Theorem 2) is the following:

Theorem A.3 Let F,G : (Rk × Rn,0) −→ (R, 0) be Morse families. Then

(1) ΦF and ΦG are Legendrian equivalent if and only if F, G are P -K-equivalent, and

(2) ΦF is Legendrian stable if and only if F is a K-versal deformation of F | Rk × {0}.

Since F and G are function germs on the common space germ (Rk × Rn,0), we do not
need the notion of stably P -K-equivalences under this situation (cf. [29], Page 27). As a
consequence of the uniqueness of the K-versal deformation of a function germ, we have the
following classification result of Legendrian stable germs (cf. [10]). Given a map germ f :
(Rn,0) −→ (Rp,0), the local ring of f is defined by Q(f) = En/f

∗(Mp)En.

Proposition A.4 Let F and G : (Rk × Rn,0) −→ (R, 0) be Morse families. Suppose that LF

and LG are Legendrian stable. The the following conditions are equivalent.

(1) (W (LF ),0) and (W (LG),0) are diffeomorphic as germs.

(2) LF and LG are Legendrian equivalent.

(3) Q(f) and Q(g) are isomorphic as R-algebras,
where f = F |Rk × {0}, g = G|Rk × {0}.
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B Criteria for the cuspidal cross cap ×Rk
In this section, we describe a criteria to characterize the cuspidal cross cap ×Rk. A useful
criterion for the cuspidal cross cap has been given in [6]. The cuspidal cross cap ×Rk is the
k-dimensional suspension of cuspidal cross cap. This is a map germ at origin defined by

fccr : (u, v,w) 7→ (u, v2, uv3,w), w = (w1, . . . , wk).

Let U ⊂ Rk+2 be a domain. We can identify the projective cotangent bundle PT ∗Rk+3 with
its canonical contact structure with the projective tangent bundle PTRk+3 = Rk+3 × P k+2. A
smooth map f : U → Rk+3 is said to be a frontal if there exists a non-zero vector field ν of Rk+3

along f such that L := (f, [ν]) : U → Rk+3 × P k+2 is an isotropic map. That is, the pull-back
of the canonical contact form α of PTRk+3 vanishes on U . Since this condition is equivalent to
asking that ν be perpendicular to df , we call ν a normal vector of f . An area density function
of a frontal f is

λ(u, v,w) = det(fu, fv, fw1 , . . . , fwk
, ν).

A singular point p ∈ U of f is non-degenerate if dλ(p) 6= 0. Suppose that p is a non-degenerate
singular point of f . Then, in a small enough neighborhood of p, the set of singular points S(f)
is a submanifold of codimension 1, and there exists a non-zero vector field η satisfying that for
any q ∈ S(f), dfq(ηq) = 0. We call this vector field a null vector field.

Theorem B.1 The germ of a frontal f : U → Rk+3 at a singular point p is A-equivalent to the
cuspidal cross cap ×Rk if and only if p is non-degenerate, η is transverse to S(f) at p and it
satisfies the following condition: For any linearly independent tangent vector field (u1, . . . , uk+1)
of S(f), the function ψ on S(f) given by

ψ = det(fu1 , . . . , fuk+1
, Df

ην, ν) (B.1)

satisfies that ψ(p) = 0 and dψ(p) 6= 0. Here, Df is the canonical covariant derivative along
f induced by the canonical connection on Rk+3, and fui

means the directional derivative uif ,
(1 ≤ i ≤ k + 1).

In order to prove this theorem we shall follow a method introduced in [6]. We start with
the following key lemma.

Lemma B.2 The conditions of Theorem B.1 do not depend on the choice of coordinates in
both U and Rk+3, neither on the representative ν, or on the choice of η.

Proof. The non-degeneracy and transversality conditions do not depend on the coordinates.
One can easily check that these conditions do not depend on scalar multiplications by non-
zero functions to ψ. Hence they do not depend on the choice of representative of ν, neither
on the choice of η. Next, we prove that it does not depend on the choice of the vector fields
(u1, . . . , uk+1) too. Assume that (v1, . . . , vk+1) is another vector field satisfying these conditions.
Then by the non-degeneracy, for all q ∈ S(f), we have

〈
fu1(q), . . . , fuk+1

(q)
〉

= Tqf(S(f)),

fvi
(q) =

∑k+1
j=1 aij(q)fuj

(q) (1 ≤ i ≤ k + 1). And hence we get,

det(fv1(q), . . . , fvk+1
(q), Df

ην, ν) = det
(
(aij(q))1≤i,j≤k+1

)
ψ(q).

So, the conditions do not depend on the choice of the vector field. Since the conditions of
Theorem B.1 do not use the coordinates in the source, we have that they do not depend on
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these coordinates. Now, we only need to prove that these conditions do not depend on the
choice of coordinates in the target. Since they do not depend on the choice of coordinates
on U , neither on the choice of η, we may assume that the coordinates (u, v,w) on U satisfy
that S(f) = {v = 0}, η = ∂v, and the vector field (u1, . . . , uk+1) is given by ∂u, ∂w1, . . . , ∂wk.
Moreover, we can assume that the representative ν satisfies |ν| = 1. Under this assumption,
we have

ψ = det(fu, fw1 , . . . , fwk
, νv, ν).

Consider a diffeomorphism Ω̃ of Rk+3 and denote its differential by Ω̃∗. If we denote f̃ = Ω̃ ◦ f ,
then

ν̃ = tΩ̃∗(f)−1ν

gives the normal vector of f̃ , where we consider Ω̃∗ as a GL(3,R)-valued function. For notation
simplification, Ω∗ denotes the matrix valued function Ω̃∗(f). Since

(tΩ−1
∗ ν)v = (tΩ−1

∗ )vν + tΩ−1
∗ νv

and ∂v is the null vector field on S(f), (tΩ−1
∗ ν)v = tΩ−1

∗ νv on S(f). Therefore the function ψ̃
of f̃ defined by (B.1) is

ψ̃ = det(Ω∗fu,Ω∗fw1 , . . . ,Ω∗fwk
, tΩ−1

∗ νv,
tΩ−1

∗ ν).

It is sufficient to prove that ψ(p) = 0 (respectively, ψ(p) = 0 and dψ(p) 6= 0) implies

ψ̃(p) = 0 (respectively, ψ̃(p) = 0 and dψ̃i(p) 6= 0) . We have that 〈fu, νv〉 = 〈fv, νu〉 = 0 and
〈fwi

, νv〉 = 〈fv, νwi
〉 = 0 for any i = 1, . . . , k on S(f). Moreover, since we assume |ν| = 1, we

have 〈ν, νv〉 = 0. Thus, ψ(p) = 0 implies that νv(p) = 0, in particular ψ̃(p) = 0 holds.

Next, we assume that ψ(p) = 0 and dψ(p) 6= 0. Since νv(p) = 0, we can assume

ψu(p) = det(fu, fw1 , . . . , fwk
, νuv, ν)(p) 6= 0

by permutating the coordinates if necessary. This implies that νuv 6∈ 〈fu, fw1 , . . . , fwk
, ν〉R at p.

In particular, νuv 6∈ 〈ν〉R, and we have tΩ−1
∗ νuv 6∈ 〈tΩ−1

∗ ν〉R at p.

On the other hand, 〈fu, νv〉 = 〈fwi
, νv〉 = 0 holds on S(f) for i = 1, . . . , k. By taking the

derivative of these formulae and applying νv(p) = 0, we get

〈fu, νuv〉 (p) = 〈fwi
, νuv〉 (p) = 0 (B.2)

Hence we have

〈
tΩ−1

∗ νuv,Ω∗fu

〉
(p) =

〈
νuv,Ω

−1
∗ Ω∗fu

〉
(p) = 〈νuv, fu〉 (p) = 0,

〈
tΩ−1

∗ νuv,Ω∗fwi

〉
(p) = 0.

Clearly, 〈
tΩ−1

∗ ν,Ω∗fu

〉
= 0,

〈
tΩ−1

∗ ν,Ω∗fwi

〉
= 0 at p

hold, and we have

tΩ−1
∗ ν, tΩ−1

∗ νuv ∈
(〈Ω∗fu,Ω∗fw1 , . . . ,Ω∗fwk

〉R
)⊥

at p.

Therefore, tΩ−1
∗ νuv 6∈ 〈tΩ−1

∗ ν〉R implies that

∂ψ̃

∂u
(p) = det(Ω∗fu,Ω∗fw1 , . . . ,Ω∗fwk

, tΩ−1
∗ νuv,

tΩ−1
∗ ν)(p) 6= 0.
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This completes the proof. 2

We finally give the proof of Theorem B.1: Let us assume that a singular point p of a frontal
f satisfies the condition of the Theorem. Since p is of rank k+1, by Lemma B.2 we may assume
that

f = (g1(u, v,w), g2(u, v,w), u,w).

By an appropriate coordinate change in the target, we can write

f = (vg1(u, v,w), vg2(u, v,w), u,w).

We may also assume that the singular set is {v = 0} and that the null vector field is ∂v. Then
we can put

f = (v2g̃1(u, v,w), v2g̃2(u, v,w), u,w).

Since dλ(p) 6= 0, it follows that g̃1(p) 6= 0. By applying now the coordinate change u =
u
√
|g̃1|, v = v,w = w, we may assume that

f = (v2, v2h(u, v,w), u,w).

By decomposing h into an odd function and an even function with respect to v, and using a
coordinate change in the target, we may assume that

f = (v2, v3h(u, v2,w), u,w).

By the assumption of the theorem, and transposing the coordinates u,w if necessary, we have
that hu(p) 6= 0. By applying now the coordinate change U = h(u, v2,w), V = v,W = w, we
get that f is A-equivalent to

(V 2, UV 3, ĥ(U, V,W ),W ).

Since u = ĥ(h(u, v2,w), v,w), we have that ĥ is an even function with respect to V , namely
f̂(U, V,W ) = h̃(U, V 2,W ). Moreover, it is clear that h̃U(p) 6= 0. By considering the inverse
(diffeomorphism) of

(x, y, z,w) 7→ (x, y, h̃(z, x,w),w),

we obtain that f is A-equivalent to

(v2, uv3, u,w).

This completes the proof. 2

Remark B.3 Since η is the null vector field, the derivative D can be chosen to be an arbitrary
linear connection on Rk+3. Moreover, for any vector field ξ along f |S(f) satisfying that ξ ∈ ν⊥
and that ξ is transverse to f∗(TS(f)), we define a function ψ̃ :=

〈
Df

ηξ, ν
〉
. Then, there is a

non-zero function α such that ψ = αψ̃. This also holds if 〈 , 〉 is a pseudo inner product.

Proof. For any ξ, we can find tangential vector fields (u1, . . . , uk+1) and functions a(6= 0), bi
(1 ≤ i ≤ k + 1) such that

ξ = a(fu1 ∧ · · · ∧ fuk+1
∧ ν) +

k+1∑
i=1

bifui
.
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Since 〈ξ, ν〉 = 0 and η is null direction, we have
〈
Df

ηξ, ν
〉

+
〈
ξ,Df

ην
〉

= 0. Hence

ψ̃ = − 〈
ξ,Df

ην
〉

= −a 〈
fu1 ∧ · · · ∧ fuk+1

∧ ν,Df
ην

〉
= −aψ.

This completes the proof. The last part of the remark is obvious, for pseudo inner products are
non-degenerate symmetric bilinear forms, so we can follow the discussion given in this section.
2
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