A method for on-site analysis of water quality based on simplified test

Yoshihiro Mihara, Shunitz Tanaka

Laboratory of Environmental Remediation, Graduate School of Environmental Science, Hokkaido University, Japan.

Introduction

Along with the rapid growth of population and economics, and dramatically increase in water demand by industry, agriculture and domestic use causes the risk of water resources through increased demand and pollution. To understand the characteristics of water quality in land water, it is necessary to know the various physical and chemical parameters. In this study, we report the collecting method of the sample and data for analysis of water quality using the ion selective pack test, the multiple water quality checkers and electrochemical analysis.

Land use and water quality relationships

Analysis of the water quality change using land use indicators

[e.g. River Rhone, Switzerland]

Electrochemical analysis for detecting metal ions

The characteristic of a electrochemical analysis is to provide real-time reliable information about the chemical composition of its surrounding environment.

Applications: on-site metal analysis such as mercury, arsenic, lead.

Gold mining site at River Cikaniki Java, Indonesia.

The technical approach for monitoring

To improve the monitoring system and reliability assurance using on site analysis based on simplified test:

- Use a low noxious chemical reagent.
- Reduction of the operation steps or preparations.
- Enhance the educational course for collaborating with citizen and experts who make activities more efficient.

Summary

Simplified on-site analysis are expected to play an increasing role in environmental monitoring. The change of land use, pervious areas and high activity will directly cause a change in water quality. This report surveyed important advances in electrochemical on-site analysis technology, including ion selective pack test, multiple water quality checkers and electrochemical analysis for on-site field testing for water quality and water management. Such devices should allow one to evaluate the measurement of numerous pollutants from the laboratory to the field, and to perform them rapidly, inexpensively, and reliably. With the introduction of education and training for the general public, the sustainable development of water management can be effective to the substantial contribution.

Acknowledgments: Global COE Program "Establishment of Center for Integrated Field Environmental Science" financial support is gratefully acknowledged.