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Abstract

Torsion-bending theory in consideration of deformation due to secondary shearing
stress is proposed by the authors and torsional stress on a continuous beam with varible
cross sections is analyzed by the theory. Results of model beam test on a box-beam
having a length of 50 cm, a width of 4 cm and a height of 3 ¢m, are compared with values
calculated by Bornscheuer’s, Grasse’s and the author’s theory, and it was ascertained that
the proposed theory in the present paper has a higher degree of accuracy as compared
with the others.

Influence lines of primary torsional moment, secondary torsional moment, warping
moment, and torsional stress are calculated by this theory and compared with Bred’t and
Bornscheuer’s, thus it was clarified that the torsional stress on continuous concrete beams

takes an intermediate value between Bredt’s and Bornscheuer’s.

1. Introduction

In construction of a concrete girder bridge with a long span, a type of statically
indeterminate box girder with variable crosss sctions has been widely used and owing
to the progress of quality of materials and execution of work, thin-walled box beams
have come into use and dead load has been lightened. Therefore it has become
possible to design a bridge with longer span. In this paper the problem of a tor-
sional stress continuous beam with thin-walled box is discussed on the base of
torsion-bending in consideration of deformation due to secondary shearing stress.
Torsional stresses on fixed beam and simple-fixed beam have been reported in the
previous paper?.

Formerly, the torsion-bending theory was established by Wagner® and system-
atically described by Bornscheuer® and Vlasov?.

Recently the theory in consideration of the deformation due to secondary shear-
ing stress has been presented by Heilig®, Roik® and Grasse”.

In these papers the deformation due to secondary shearing flow was assumed
in the same direction, thus these theories were generally tend to estimate excessive
deformation.

In this paper the secondary deformation is given by the way of “the principle
of virtual work”, taking into account the direction of the secondary shear flow,
thus the deformation has a tendency to be smaller than Heilig’s and Grasse’s. In
order to clarify the differences among the theories by Heilig, Grasse and the author,
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92 Nobolu SAEKI and Yoshio FUJITA

numerical examples are shown in
the figures concerning coefficients
indicating the effect of deformation
due to secondary shearing stress,
and further, model beams made of
acrylic resin is experimentally tested
to verify the theory of torsion-
bending in consideration of the sec-
ondary deformation. Internal forces
of a continuous beam with var-
iable cross section are analyzed by
“Knoten Last” method and influence
lines of m,, m,, and m,, and torsional

Picture 1 Model test beam

stress are discusssed.
2. Notation

T = total torsional moment
m, = primary torsional moment
i, = secondary torsional moment
m,, = warping moment
# = angle of rotation
, = angle of rotation of Saint-venant’s part
V, = displacement in s-direction
W = displacement in z-direction
s = curvilinear coordinate
¢ = warping stress
7 = primary shearing stress
7 = secondary shearing stress
¥ = primary shearing strain
7 = secondary shearing strain
7* = total shearing strain
q, = primary shear flow
d = secondary shear flow
D = shear center
7, = radius from shear center
F = area enclosed by the center line of the cross section
EC,, = sectorial rigidity
GI, = torsional rigidity
I, = torsion constant by Bredt
I, = torsion constant by Saint-venant

I, = torsion constant calculated by Trefftz’s method
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3. Assumption

{a) Preservation of the shape of the cross section.

This means that the function V,(s, z) and 6(s, ) must

be constant in all points of the cross section, namely Fig. 1.
V,= V(2), 0=10(2)

(b) Propotion between stresses and strains.

Coordinate system

The material satisfies Hooke’s law.

ow

c=F P

(c) Thin-walled cross section

It is necessary that primary shear flow be constant in all points of closed cross
section. :

In order to verify the validity of the assumption “Thin-walled”, numerical
. example is calculated by Trefftz’s® method as shown in Table 1 and Fig. 2. It was
noted that the slope of the curves I,/I, are very small in the range of the ratio of
t/h< 0.2, therefore within that range the primary shear flow is almost uniform.

Table 1.
bxhXt (m) I, In IofIn+Is bXh (m) 1. I
2X2xX04 1.918 1.638 1.071 2X2 2.244 2.249
4X2x0.4 5.795 5.104 1.085 4X2 7.318 7.320
4X1.5x%x04 3.085 2.667 1.070 4X1.5 3.437 3.428
4x1.0X0.2 0.880 0.804 1.063 4x1.0 1.124 1.131

t
2.2
h
2.1F

C.0 0.1 0.2 0.0 0. 0.5
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3.1 Torsion-Bending Theory in Consideration of the s
Deformation due to Secondary Shearing Stress
We obtained primary shearing strain 7, due to primary
shear flow ¢, as shown in Fig. 3,

i oV, oW qs
s = oz + as Gt (1)

Fig. 3. Deformation of

Secondary shear strain 7 due to secondary shear flow § an element

is shown by a dotted line in Fig. 3 and we obtain the folloing,

- oV
T=ar (2)
Displacement V, due to rotation of 4, is
Ve=1p+0, (3)
Substituting these into Eq. (1) and preforming the integration in regard to W, we find
1 d.
W=0;S7'Dds+—é~gquS+ W, (4)

where W, is a constant of integration.
The longitudinal deformation W is defined as follows

W = b, (5)

where

1 d.
¢ = —Srnder“@S%‘;—ﬂao (6)

¢ is called warping function. ¢, is a constant of integration.
The continuity condition

op
S a5 ds=10
must be satisfied, substituting Eq. (6) into the above condition.
We obtain
g _2F
on s (7
L
Substituting this in Eq. (6), we find
2F ( ds
SD:_SdeS+_c—Z§—ST+SDO (8)
5
Warping stress and secondary shearing stress (§+g—gdS)dz
acting at an element are shown in Fig. 4. (c.fgdz)tds i
The equilibrium condition of the element in the ____‘ ds] dz ‘ stds
longitudinal direction is represented as follows
| ga
dot G . ‘ e
7% +T =0 (9 ) Fig. 4. Stresses acting at an element
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By performing the integration.

Il

q qo—Sa’t ds (10)

where ¢, is a constant of integration.
The strains are related with the stresses by Hooke’s law as follows.

aW 1"
0=E—5— = Eyb, (11)
Substituting this into Eq. (10). / o /
q = q—LE0 F, (12)
where
F,= gwdF Fig. 5. Redundant force

The continuity condition of the strain produced by secondary shear flow, that is
4W =0, must be satisfied.
By applying “the principle of virtual work”, as shown in Fig. 5, we obtain

AWzS%’/: dV="%* ((70—E0§’F9,)-%S*=0 (13)
To/£0)" is denoted ¢y, and we find
_ ds /{ ds
flx=SFv7/§7 (14)
Substituting this in Eq. (12)
q=—E0,(F,—qx) (15)

Distribution of the secondary shear flow § has a parabolic form and the additional
unit rotation &' yields due to the shear flow ¢.

Displacement in the direction of s by the angle of rotation 6 is related as
follows.

V =r,8 (16)
From Eq. (1) and Eq. (2), total shearing strain 7* is

vV, aw 8V g*
M= YT T e = Gr (17)

Compatibility condition,

§8W ds=0

as

must be also satisfied.
We obtain

g* = GO;+8) (18)

2F
j

We get primary torsional moment », by performing integration of ¢*r,
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m, = §q*r,) — GO, +8) 1, o (19)
where
4F2 R
Iy= T ds 1(20)

)

Secondary torsional moment #, is as follows

m,= S qrpds (21)
F
From the Eq. (13)
*
S iz ds=0 (22)
1
where
2F
P=ta
§5
The Eq. (21) is therefore equal to
Fx
W, = —E«%”S r(F,,——cix)<7‘p~ ; >ds (23)

Substituting the relation § Gx{rp—F*[t) ds=0 into the above equation, then integra-

ting this by part, and we obtain
P
= —Eﬁ;”[FV,KrD—*t—) ds]+E0§"S ot(@o—)ds
ra

The first term of the right side vanishes, we find

i, = —E0' | gtaF = —Eo;"C, (24)
.
where
szj G dF
”
The torsion costant I, is given as follows
L=IL+1, (25)
Total torsional moment 7 is obtained as follows
T =m,+m,= GL(0,+8)—EC,0," (26)

Calculation of shear center D can be made in the same manner as the torsion-
bending theory.

S ox dF g oy dF
F pl

Yp="FF ", Ip=
S 2dF j S dF
ras F
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4. Determination of Additional unit Rotation

Zero points of the secondary shear flow are de- A s Su A

noted by S, S, S, -+, as shown in Fig. 6. WA= B/t
Secondary torsional moment is divided into two \ /
parts, One is a positive part of ¢ and the other is a 52 53
negative part of 7, We obtain Fig. 6. Secondary shear flow ¢
W, = S (77',,ds+g qrpds = M, + M, (27)
(+) )

We define that the angle of rotation corresponding to #, and %, are 6, and 6,

respectively.
The internal work by #, and m, are m,8; and ®,0; and internal work are as

follows correspondingly

1 7 1 7’
G S<+) ;s G S(») ;o
The external work must be equal to the internal work, we obtain
~ Eg;)’ 72
0;::_" (;@ g 71 dk
1 Jn 2
244 — (28)
B — — Lo, fé—d
= TGO, Vot ¢
where
R 15 )
q, = Eo7 2= gl

P, = S Jr7pds, @D, = S 627'nd5
(+) (=)

Symbols of (+) and (—) represent a positive and a negative part of ¢ respectively.
The resultant unit rotation due to 8; and &; is denoted by "
Additional angle yieding by the unit rotation 8; and &;

§'=0,+6 (29)
by the reciprocal law we obtain

7_7—7’1192/7—7—7_7/1291 =0

we find
o E 1 [ g KZ3 >,
G = — G 910, (S(H P —S(_) P Is | = —a,0; (30)
where
_E 1 H i )
“E G 0,+0, <S(+> ¢ ds_S(-) ;9 81

Substituting this in Eq. (26). We obtain the following fundamental differential equa-
tion for torsion-bending.
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GLO,—EC,0)' =T (32)
where
a=agi-,  Cu=C.l+d (33)

In case of a box cross section with constant thickness the coefficient is reduced to

Y 0.4{(1+B) (L + 48+ £5/2—2¢ 3 /(L + 287"} {1+ 1/3- 4/ h*(1 + B*)}

(1= {1—FI2+ 3 901+ 261) o4
where '
B=hlb
The coefhcient « has a limit value where the cross section is square.
lim o= 0.4 (1+4/3-£/h%) (35)

-1
The values of coefficient a calculated by Eq. (33) in the case of 7=1.0, F'=9 m® are

shown in Fig. 7 and compared with Grasse’s. Fig. 8 shows the values of «a in the
case of different thicknesses, when the area of cross section is constant.

100~

[+

1.5%
1 1.52 3 4 5678910 A SR .
1/5 0.1 0.2 0.3 0.k 0.5 0.6 0.7 0.8 0.9 1.0
Fig. 7. Fig. 8.

5. Model beam test

In order to ascertain the theory of torsion-bending in consideration of the
secondary deformation, a model beam is tested and the strain yielded by the warping
moment is measured by a electric strain gauge. A maximum strain occurs locally
at the warped point and loading point, thus the strain is measured at the fixed end
of the cantilever.
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5.1 Test procedure

The material is acrylic resin and
the dimension of the box beam is 50
cm in length, 4cm in width and 3 cm
in height and details of the cross
section are shown in Fig. 9. The fixed
end is hardened by bolts. As the ma-
terial is sensitive to temperature, the

test is performend in a constant tem-
perature room (19.5°C).

The Modulus of elasticity and
shear modulus are determined by defor-
mation due to vertical load and tor-
sional load as shown in Fig. 9.

E = 36600 kg/cm?
G = 14400 kg/em?

5.2 Test results

In Fig. 10 the strain given by this
test is compared with the strain theo-

deflection

10.01 0.2 {em)

-7
07~
cm

cm

retically given by Bornscheuer, Grasse ey 1.0 2030 4o
and the author. The values have a P
variation of about+10x 107® due to the 7 1
influences of temperature and vibration e /, 7 *
by loading, but this value falls between V7 &
Bornscheuer’s and Grasse’s values and 0 / &
corresponds well with the author’s, =~ 1/ TS 100
therefore it is clear that the theory is -0.64 T hornotneuer 120
more exact than anothers. eene Experinent o
v -0.8 » . 160
6. Analysis of continuous beam a no¢
with variable cross section < Figs 10. . Test results

A simple beam with a torsional load is assumed to have a statically determinate
principal system and the internal forces of a continuous beam are analyzed by
determination of redundant forces at the end of a simple beam.

6.1 Principal system

The moment of a beam with variable cross sections are given by the “Knoten
Last” method®. We define the notation m as follows.

m = GI,6; (36)
Substituting this into Eq. (32), we obtain
m'—RBm+2T=0 (37)

where
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i=+/GIJEC,

We assume that the distribution of torsional moment m has a parabolic form
and we divide a beam into (7z+1) part and each part is applied to Eq. (37).
We find

M1 (1 — 77+, (2 + 107, — 1, (1 =77, 41) = A2 K, (°T) (38)
where
= 1242%412, dz=1I/n+1

We can denote the Eg. (38) in a matrix form.

—(r—ry) (24+1071) —1—r) 0 my | =[dzK,(#T)

O '—‘(1_7.1> (2+ 10 7‘2) ”“(1‘_7‘3) 5 Asz(]lz T)

0 C—rn) 24105 —Oer)| L] | A=K @T)
(39)

The number of equations is n and that of the unknown is (n+2), therefore
two boundary conditions are necessary. Boundary conditions of simple beams are
as follows

my=ml =0 (40)

we transform by the Knoten Last method
(1+57) me—(1—r)my = AzK (8 T) (41)
(I—r)m,—(1+57,4) My = 42K, (B T) (42)

In order to determine the distribution of total moment 7, a beam is subjected to
T=1 as shown in Fig. 11, then the right side of the Eq. (38) becomes

A=K (BT )= 0.5(7ry+ 67 —7r,)
A=K (BT = r; 4+ 107+ 754, (43)
MK, RTY=0.5(—1; 3+67,,+77))

e Where 7 represents an arbitrary point considered and j

Fig. 11. is the point which is subjected to a concentrated load. Eq.
; (41) can also be applied to the case of Fig. 12. and then the
T — solution of Eq. (38) in the both cases as shown in Fig. 11
Fig. 12. and 12 are called m, and my, respectively. The total tor-
T sional moments are denoted by 7; and 7, as shown in
T Fig. 13.
Fig. 13.

To satisfy condition that angle of rotation must be zero
on the both ends of the beam.
we obtain

Mp

z m z
TlSOT;deJ“ TZS G dz =10 (44)
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we find

— L omy /l My
Tz— "‘SO GI, dz SO GI, CZZ (45)

where my., corresponds to the case of loading 7'=1 over the beam.

Substituting the Eq. (45) into the right side of Eq. (38), we obtain the solution
by matrix-analysis.
From Eq. (32) we find

m'’ = B(m—T)
and primary torsional moment is
m, = m—aym'’ (46)

secondary torsional moment 7, becomes

W, =T —m, (47)
we difine the warping moment m,, as follows
M, = — EC, 07 (48)
we obtain from Eq. (32)
My — ANy = 0 (49)

The slope of warping moment is discontinuous at the point of concentrated
load, therefore an additional load, ., left —#2, right, must be considered.
we assume that ., is of a parabolic form and transform Eq. (49) in a matrix form.

—~(1—7) (2+107r) —(1—) 0 Muo | =[ O
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : L7y
N .\\\ \.\\ Ny 14 ay
0 (1—7'71_1) (2+ 10 7ﬁn) _(1""7—71——1) Moy nt1 0

(50)

where j represents the point of load the two boundary conditions of a simple beam
are as follows

X
Moy = My s = 0 (51) P\F (l//’i

6.2 Analysis of cotinuous beam

Fig. 14. Redundant warping moment
Two boundary conditions are necessary in

the case of acting a redundant warping moment as shown in Fig. 14.
(1+57y) mg—(1—ry) ;=0 (52)
—0.57.1 M, —(1—3 ) My 4 (L4 3.57,00) My = — A2Gl, N VO O

Substituting this into matrix (38)
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- - - — -

[ (1+57r) —(1—7n) 0 my, | = 0
‘“(1_7'0) (2‘*‘107"1) “‘(1_ ) : .

_(1 — rn—»l) (2 + 10 rn) _<l - rn) - A (JIz 241
—0.57,1 —(1—37,) (1+357) ] 71 L zEC,MJrl

(53)

denoting above solution of m,.; on the first span by ml,, similar to the case of
second span by ., and the solution of m,, in the case of simply supported beam
by 6{, we get a redundant force.

ik
waal 2
m7L+1+m1L+1

Xi= (54)

Influence lines of internal moment can be calculated,

Sy corresponds to the influence line of a simple beam, in the case of calculating for
m,, internal force Sy can be obtained from Eq. (48) and in case of m,. we obtain
as follows

M (2+10r) —(1—r) O 0 NV me |= 0
‘_(1_7'1) (2+1072) _(l"‘rg) M M
_(1 o 7‘71.—-2) (2 + 107‘71./1) “‘(1—7'71) O

L _(1 __—7‘71,‘1) (2 +10 rn)_ L”T’w n_ L_l Va1 )

(56)

7. Numerical example

The general view of the continuous girder bridge with three spans is shown in
Fig. 15. As the greatest difference between the author’s theory and theories of
other workers appears at an intermediate support, then the comparison may be shown
only at this point. The condition of loading is determined to result in maximum
shearing stress. The line load of 5t/m and uniform load of 0.35t/m? are applied as

I |2 Table 2.
% ¢ : I I; mt Cw mb «
T K -t I
—— T o 1 2 1| o2 1 2

375 | 016 | 048
423 | 017 | 0581
4.06 | 023 | 051

l

Case 1 40 156 | 106 | 1.02
Case 2 50 172 | 134 | 114
Case 8 60 267 | 164 | 1.56

—2.20-=t

Fig. 15. General view (case 1)
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T
P-5%/m
. l p=0.35t/m2
i ] Case 1 ! kg/cn?
3.5 ™

Fig. 16. Live load

Author
N , Bornscheier
s\ R4 ————— simple torsion

Fig. 17. Influence line of m. (at point 2)

Fig. 18. Influence line of 7 (at point 2)

i~ eeceuw.. 3iuple torsion
N T Bornscheuer
Author

~
t
i
i

Fig. 19. Influence line of m. (at point 2)

shown in Fig. 16. Fig. 17, Fig. 18 and Fig. 19 show influence lines of m, #, and
m,, in a comparison of the theories. Distributions of the shearing stresses on the
continuous beam having a different span are shown in Fig. 20.

8. Conclusion

The following conclusions have been drawn

(1) With regard to the magnitude of the coefficient « indicating the effect of
the deformation of secondary shearing stress, there is a large differece between the
author’s theory and Grasse’s. The coefficient derived by Grasse is so large that the
warping resistance C, is negligible, but in the author’s theory, the maximum value
is in practice from 0.4 to 1.5.

(2) With regard to test results, it is ascertained that the proposed thory is
more exact than Bornscheuer’s and Grasse’s.

(8) As to influence lines, there is some difference between the present theory
and other’s on the simply supported end, but large differences appear at the inter-
mediate support. The influence lines by the proposed theory take an intermediate



104 Noboru SAEKI and Yoshio FUJITA 14

value between Bornscheuer’s and simple torsion theory.

{(2) Resultant shearing stresses calculated by this theory for a continuous con-
crete girder bridge are in practice from 20% to 40% less than those by Bornscheuer,
and two times more than those of simple torsion.
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