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Abstract

A method of calculation was established for studying the dynamic response of a
mechanical system with a play to arbitrary exciting forces. A computer simulation was
carried out on the stationary response of a single degree-of-freedom vibro-impact system
to ergodic stationary random input and a harmonic force superimposed by random input.

The following conclusions were obtained from the study. When the stationary
random force acts on the system with a play, the power spectral density of the dynamic
response is large in the vicinity of the resonance frequency of the vibro-impact system.
The colliding velocities and the time intervals between two adjacent collisions become
smaller, with the decrease of the play. When a harmonic force superimposed by random
force acts on the system, the stationary fundamental and super/sub-impact vibrations are
caused at some probabilities in the system. The contour maps made on these probabilities
show that the stationary impact vibration of each type is caused at high probability in
the system causing a corresponding impact vibration at high stability under the action

of a harmonic force.

1. Introduction

In general, machines and mechanical structures assembled and constructed of
many parts have some play (or clearance), even if the play may be small. These
plays generate complicated impact vibrations in the mechanical systems and render
the accuracy or performance to become inferior and also decreases the lifetime of
machines. However, there are some machines such as pile drivers, vibrating screens,
forging machines and impact dampers that positively utilize the energy of impact
vibrations. Hence these problems have been dealt with for various purposes in
various papers”~®, however, the majority of which have involved only the impact
vibration caused by harmonic or periodic forces. ~

In this paser, the dynamic property of a vibro-impact system with a play was
studied by simulating the stationary response of a single degree-of-freedom system to
stationary random input and harmonic. input superimposed by random noise on a
digital computer. ‘Here the deformation of bodies produced by the collision and the
colliding time intervals were all neglected, because they are usually small. It was
also assumed that there is a proportional relation defined by the restitution coefficient
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between the velocities of the body before and hx
after collisions. : ]

2. Fundamental equations

As shown in Fig. 1, a mass m supported ‘ -
by a linear spring &2 and a viscous damper ¢
is set in a position of statical equilibrium,
maintaining a distance d (a play) from the surface of a wall whose mass is infi-
nitely large. When an exciting force F(#) acts on the mass, the motion of equation

of the mass is written as

Fig. 1. A vibro-impact system

mX +cX +EX = F(0) (1)

where X denotes the displacement of the mass measured from the statical position.
When the mechanical system has a negative play, X is measured from the statical
position of a free mass without a wall.

Eq. (1) can be written as

F+200+x = f(7) (2)

using the dimensionless displacement z=X/X,,(X,, = F/k), dimensionless force f(z)=
F(t)|Fy(F,=reference force), damping ratio {=c/2/mk ({<1) and dimensionless time
r=aw,t(wy=+k[m ). The symbol - used in Eq. (2) denotes the derivative with respect to z.

When the play is small or the

() i wall exciting force attains a certain level,
. ! some impact vibrations occur in the
Sy \//\\/A\/ /(\7\ /\/\\//\ /\ . mechanical system as shown in Fig. 2.

V / If the mass which collides at time 7;_,

Hj~1z0 4jzo

is simultaneously rebounded from the
wall surface at a velocity U, 1, the
displacement after the collision is expressed by

Fig. 2. lmpact vibration of a mass

2(0) = g 7 fo-ate, )

s a0l ) sin V1= (T—TH)} (o)
(r51<e<ay) (3)
where 7(z) is written as

70 = | _fe)ge—ea (4)

using the unit impulse response of the system: g(c)=(1—{) "¢ ™ sin V1 <.
In Eq.(3), 6(=d/X,) expresses dimensionless play and u; ,(=U; /0w, X,) denotes
dimensionless velocity. When the mass collides again at r,; the displacement is
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6= 71%—? e [{5—0@'1—1)} {C sin /1 —C* 2;+41—C* cos V1 —C? zi}

+{uj41+0—7?(r,-_1)} sin/1—C zj]—l—n(z'j) (5)
and the colliding velocity is given by

Uip g = ﬁf e [{5—77(7,-,1)} sin V1— 2;

+{uj,1+0—7}(fj—l)} {C sin ¥1—C% z,—/1—C cos¥1—-C° zj}]—l—p'(rj)

(6)
where z;=1;,—7,, is the time interval between two adjacent collisions. Considering
that z; , and wu; 14, are already known, the colliding time z; is determined by obtain-
ing the smallest positive root satisfying Eq.(5). Although Eq.(5) is a transcendental
equation with respect to z; it is not difficult to calculate the value of z; numerically
by Newton’s method. The colliding velocity u; , at ¢, is calculated by Eq.(6) and
the velocity after the collision u;,, is determined by the relation :

Ujro = —EU; (0<e<1) (7)

where ¢ is the restitution coefficient between the mass and wall. Thus the motion
of the mass colliding repeatedly can be determined numerically.

3. The stationary response of a vibro-impact system
to random force

The method of calculation mentioned above makes a computer simulation pos-
sible on the dynamic response of the vibro-impact system to arbitrary exciting forces.
Here the stationary response to an ergodic stationary random input is illustrated.
The random input was made by a noise generator of the computer HIDAS 2000
and the motion of the mass was simulated on the digital computer FACOM 230-60.

Fig. 3 shows an example of (a) the stationary random input and (b) the dynamic

(a) Stationary random input

it H

! ‘Hi‘fl %{

2
i

{b} The motion of a mass

TERFFTIHA | LR ya1y HHI
i / I,

Fig. 3. An example of random input and the motion
of a mass (£=0.05, ¢=0.5, 6=0)
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Fig. 4. Autocorrelation function of Fig. 5. Power spectral density of
random input random input

response of the mass to this random input. It may be seen in this example that
the motion of the mass which was at rest at r=0 attained a statistically stationary
vibration rapidly after several collisions. Figs. 4 and 5 present the autocorrelation
function

o;(c%) = lim 1S/ f@) fle+7%) dr (8)

I—c0 T —-7/2

and the power spectral density

S8 = |

of the input respectively. The correlation of the input is considerably small and
the power is distributed over a fairly wide range of frequency, although the input
is not a completely white noise.

Fig. 6 shows the power spectral density of the displacement a(zr) of the mass

o) e ar (=l (9)
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Fig. 6. Power spectral density of the Fig. 7. Probability density of the velocity
displacement of a mass ({= of a mass after collision (£=0.05,

0.05, ¢=0.5) £=0.5)
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measured from the wall surface. The =
spectral density is large in the vicinity of , L a0
the resonance frequency of the vibro- { i
impact system ; however, it becomes small " ~| Rt
at a rapid rate in the range of a higher = e 4oy 6
frequency. With the decrease of the play, :
the frequency having the largest spectral <{| || L2~ Ax_,,_i'}zxﬁy,»mm“é,
density increases and the level of the ‘1’ . _ '
density becomes small. No remarkable
peak values of the spectral density can be o! = § P
seen in the case of §=0.
Fig. 7 presents the probability density N , 1
of the colliding velocities, from which it 2 ! b 5
may be seen that the velocities become Fig. 8. Probability .of the tim.e.intervals
small with the decrease of the play and E‘%tswie:oghacent collisions (L=
that this tendency is more remarkable in R
the system with a negative play. As seen
in Fig. 8, the time intervals between two ) .
collisions show the same tendency with //o
that of the colliding velocities. Fig. 9 shows L
the average values of the colliding veloci- ot //D/QA ' 1o
ties and the time intervals. With the in- // A
crease of the play, these values also in- o .
crease ; however, when the play exceeds a —02 0 0 o408

P
2

o= 0.0

on

7,

critical value, no collisions occur and thus Fig. 9. Average values of the colliding

the colliding velocities become zero. velocities and the time intervals
between adjacent collisions ({=
0.05, ¢=0.5)

4. Periodic impact vibration caused by a harmonic force
and the stability of motion

The stationary impact vibration caused by a harmonic force is studied, prior to
the dynamic response to a harmonic force (sin B;7) superimposed by random force
is discussed. When the mass collides m times (m=1, 2, ---) with the wall in the
time interval z=2nz/B; (n=1, 2, ---) and an impact vibration occurs periodically at
a regular time interval z, the motion is called the (m/n) super/sub-impact vibration.
Here 2 is the number of cycles of the harmonic force acting during a period =z.
Applying Egs.(5)~(7) to each collision caused during z, the following 2m equations
are derived

) j—1
N [{6—~q sin B, (ro+ JZ z,,)} {C sin V1 —2 2;+4/1—C cos/1—2 zJ}
p=l
J=1 .
—{auj_.;_.o—i— B:q cos B, (70+ 2. z,,)} sin V1 —{2 zj]
p=1

= J—gsin B, <f0+ }6 z,)> (10)
p=l
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71—%-{7 e I [—{5—11 sin f; <70 * :)Zizp)} sin 18 2,

—{euj_,.l,o—kﬁfq cos f3; (TO+ ;‘;‘1 z,,)} {«/”1——“@ cos V1—C z;—sin JT;?zj}]
= u; — ;g cos B; <T0+§1 zp> (=1, 2, ---, m) (1)

where ¢=1/¥(1—p%+(2L6,7. Egs.(10) and (11) contain also the 2m unknown quanti-
ties :

m

Toy zl, zZy T zm~17 (lej:'?‘n ﬂ/ﬂf)) u._o, ul—O; B um—lfO (12>
g=

When the positive values of these quantities satisfying Eqs.(10) and (11) are obtained,
the (m/n) impact vibration is determined. For the impact vibration to be caused for
practical purposes, in addition to Egs.(10) and (11), the conditions demand that the
mass should not pass through the wall surface. Thus ‘

Q,:J(T)z(j (]:15 2> T 772) <13)
must be satisfied.

When the small disturbances 4z, and 4u{?, , are caused on the j—1th col-
liding time 7{®; and the velocity u%,_, of the gth periodic motion, the small dis-

turbances
dr . (@) dr (@)
(ATJ ) _ 1’_(7“)(T§%)) ( Tji-1 ) (14)
U1 ‘Au‘;_l_o

are caused on the jth collision. 7' is a 2x2 matrix whose elements T are

(j) l N .,e—v_izi._ s 42
Tll = — ~/1-——C2~ 1, {0]‘71 sSin N/l“c Z;
ety o(W1—C cos V1—C z,—Lsin /1= zj)}
‘ 1 e
TP = =8 uy, ¢sin V1=0 2,
) 1 e % . e
T = m# Ujo [03;1{@ sin 41— 2
+1t;0(W1—C* cos /1—C* z;+sin VTLMCsz)} 15)
ety {@(x/l—cz cos V1—C; 2;—LsinV1—0% =)
—u; osin V1—C zj}]
" 1 e ST
T22 == e VT:—CT Z‘j—o 6{61 sSin '\/1"-C Zj
+u; o (W1—C cos V1 =L z;+Lsin 41 -0 zj)}
where
. ; 2,
f; = 6—sin {ﬁf<z-0+ 2 Zy+tan”! —“C‘%"» (16)
p=1 1~_18f

After m collisions are caused during a period of vibration, the resulting disturbances

will be
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Ar (a) ATO (@)
e — @ 17
(Aum = 0) (AI/L 0) ( )

17(:1) = 11(”3) Tﬁ,‘fll 17§q> (18)
Taking the small disturbances as 4tV =7"1", 4u® =T and eliminating 7' and
U from the equations obtained by substituting 4§ and 4u$?; in Eq.(17), the charac-

teristic equation on the stability of the periodic motion is written in the form
TH___X”I' 7112

=0 19
TZI TZZ e Zm ( )

where T';; are the elements of the matrix 7. Expansion of Eq.(19) gives the quad-
ratic equation with respect to A™

Xz'm,_bmegtzemzm_ke—Z(zSZm _— O (20)
where
by = T {2T T cos 4T 2t (14212 sin T
1 \/1_C2 e ) U_y S
1 1 0, 0, v
e L (R e LRI e

1 2 i =%
b (14 L) 2 i A i )

Uy U

To have the small disturbances decrease gradually with every collision, the
value of 1 must be

| 2] L (22)
and in this case the motion of the vibro-impact system is dynamically stable. When
the values of |1| are small, the disturbances decrease at a rapid rate. In contrast,
when the values of || approach unity, the disturbances do not easily die out. For
[2] <1, the condition
| &ss | €262 <L 1 (e %P (23)
must be satisfied.

L

i

s s
ey

ajEine
s ik

L

Pt 4

oo
s

Fig. 10. An example of a harmonic force superimposed by random
input and the motion of a mass ({=0.05, e=0.5, =0; f(r)=
sin (1.1 )47 (c), rms,=0.29)
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5. The stationary response to a harmonic force
superimposed by random. force

Fig. 10 shows an example of the dynamic behavior of the mass to a harmonic
input (sin f;7) superimposed by random noise (rms;=0.29). The power spectral
density of the input is concentrated in the vicinity of the exciting frequency f,=1.1
of the harmonic force as seen in Fig. 11. However, as shown in Fig. 12, the
power of the displacement a(z) of the mass is distributed over a wider range than that
of the input and has a tendency to move to a lower frequency with the decrease
of the play.

Fig. 13 show the probability density of the ratio of the time interval between
adjacent collisions z; to the period z. With the increase of the play, a large
probability density appears at 2;/z=1. This means that the fundamental (1/1) impact
vibration is easily caused in the vibro-impact system with a large play. When the
play is small, two symmetric curves with respect to %,/z=1/2 (chain line in Fig. 13)
appear in the range of z,/z<<1. This suggests the existence of the (2/1) super-impact
vibration which is caused when the mass collides twice during the action of a one
cycle harmonic force. In contrast, the impact vibrations appearing at z,/z=2, 3, -,
although they are not seen in Fig. 13, mean the (1/2, 1/3, ---) sub-impact vibrations
caused in the system whose mass collides one time during the action of two,
three, --- cycle harmonic force.

As shown in Fig. 14, the colliding velocities are distributed in slightly narrow
range for the system with a large play in which the fundamental impact vibration
are apt to occur. In contrast, the distribution of the velocities becomes wider in
the system with a small play in which the sub-impact vibration occurs.

The curves on the 1/8—4§ planes
shown in Fig. 15 present the contour lines ..
on the probability at which the impact vi-
brations of three types mentioned above =
are caused in the vibro-impact system under
the action of a harmonic force superim-
posed by random force. The numbers
written on each curve express the value

o =
I e X/\:OJ L/,\W\/\L P L

i L B I o 1 2 3 I3
Fig. 11. Power spectral density of Fig. 12. Power spectral density of the
a harmonic force superim- displacement of a mass ({=
posed by random force (f(c) 0.05, ¢=0.5; f(z)=sin (¢/L.1)+

=sin. (1.1 ¢)+7r(c), rms,=0.29) 1 (z), rms,=0.29)
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Fig. 13. Probability density of the time Fig. 14. Probability density of the velo-
intervals between adjacent col- cities of a mass after collision
lisions ({=0.05, ¢=0.5; f(r)=sin (£=0.05, ¢=0.5; f(c)=sin (¢/L.1)}+
(z/1.1) 47 (c), rmes-=0.29) 7(z), rms,.=0.29)

of the probability as a percentage. By superimposing the three contour maps shown
in Fig. 15, it is found that the dense contour lines overlap in small domains where
the impact vibrations of two types occur simultaneously.

The curves shown in Fig. 16 present the 1/8-6 domain where the periodic
impact vibrations are caused by a harmonic force alone (sin 7). The stable periodic
impact vibration can be caused only in the system having the play and the fre-
quency within the bold lines. In the domain outside the bold lines, no periodic
impact vibrations can be caused or the vibrations are unstable. In fact, there are
no solutions satisfying Egs.(10), (11) and (13) in the domains D, V, X and the con-
ditions on the stability (Eq.(22)) are not satisfied in the domain U. The thin lines
drawn inside the domains causing the stable vibration show the contour lines on
the stability of the motion. The numbers written on each line indicate the degree
of stability defined by

S =100(1—2) (%) (24)

When comparing Figs. 15 and 16, it is found that the domains of the corre-
sponding impact vibration are similar to each other and hence the stationary impact
vibration is caused at a high probability in the system causing the periodic vibration
at high stability under the action of a harmonic forces.
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Fig. 15. Contour maps on the probability of the impact vibrations
(£=0.05, e=0.5; f(r)=sin frr+7(z), rms,=0.29)

6. Conclusions

A computer simulation was carried out on the dynamic response of a single
degree-of-freedom system with a play to random input and a harmonic input
superimposed by random noise. From the results, the following conclusions were
obtained. .

(1) The power spectral density of the dynamic response to stationary random
force is large in the vicinity of the resonance frequency of the vibro-impact system
when a play is large. With the decrease of the play, the level of the density
become small.

(2) The colliding velocities become small with the decrease of the play. This
tendency is remarkable in the system with a negative play.

(3) The time intervals between adjacent collisions show the same tendency
with that of the colliding velocities.

(4) When a harmonic force superimposed by random force acts on a vibro-
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Fig. 16. Parameter domains causing the stable impact vibrations under
the action of a harmonic force ({=0.05, e=0.5; f(r)=sinfsc)

impact system, the fundamental impact vibration is caused in the system with a
large play. With the decrease of the play, the super-impact vibration appears and
the distribution of the colliding velocities becomes considerably wide.

(3)
motions occur that the stationary impact vibrations are caused at high probability
in the system causing periodic vibrations at high stability under the action of a

harmonic force.

It is found from the contour maps on the probability at which the periodic
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