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Abstract

The asymptotic method applied to ternary solutions is extended to quaternary system.
The configurational partition function is obtained for the system of particles having spin
value 3/2. The method of calculation thereof is based on the assumtion of treating
pairs of neighbors as independent entities.

1. Introduction

Recently statistical thermodynamics of ternary systems has been developed”,
however many actual systems involve more than three components. For instance,
when we try to treat the system of particles having spin of 3/2, the problem of
order-disorder of A and B particles, each of which has spin of 1/2 and ternary
solution together with holes, we must solve the problem of quaternary system.
So far we have not had any advanced method of describing quaternary systems.
In order to study the complex phenomena of multicomponent systems, it is neces-
sary to develop the method of treating quaternary systems.

2. Energy of Configuration

We consider the assembly of particles having a spin value of 3/2 as an example
of quaternary systems, which consists of four states. The number of each state
is denoted by N,, N,, N, and N, correspondiog to spin components —3/2, —1/2,
1/2 and 3/2 (hereafter, each state is referred to as state I, 2, 3 and 4). Apparent-
ly the total number of particles is N=N,+ N,+N,+N,, When we assume that
they have potential energies —N,x,, —N.x,, —Nx, and —N,x, in pure states,
respectively, the the average energies per pair in each state are —2x,/z, —2x,/2,
—2x,/2 and —2x,/z (2 is the coordination number). if we start with particles of
state 1, and 2, and interchange an interior particle of state 1 with an interior
particle of state 2, the total increase of potential energy is 2w,. In this process
we destroy z pairs of state 1 and z pairs of state 2 and create 2z pairs of state 1
and 2. Therefore the average potential energy” of a pair of state I and 2 is ¢,
= —x,/2—%,/2+w,/2. Similarly the average potential energies of another pair
of state 7 and j are obtained by any selection of two from subscripts 1, 2, 3 and
4.

Now we consider a particular configuration in which the number of pairs of
state 1 and 2, 2 and 3, 3 and 1, 1 and 4, 2 and 4, and 3 and 4 are assumed to
be 2X, 2Xs 2Xes 2Xu 2Xu and 22X, respectively. Here the number of pairs of
states 1 and 1, 2 and 2, 3 and 3, and 4 and 4 are (N,—X,,—X;—X)z2/2, (N,— X
—Xo— fm)z/za (A73"X31_X;2_X34)2/2 and (N4"‘/T{41‘X-42"‘X43)3/27 respectively. It
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Table 1
Kind of Pairs Number of pairs Energies of Pairs
1-1 (N =X — X3~ X1,)z2/2 —2x,/z
1-2 X1p2/2 P1e
1-3 X132/2 Pia
1-4 Xuz/f2 B
2-1 X2/2 o
2-2 (Ny— Xy — X — X12)2/2 —2x5/z
2-3 Xo52/2 P
2-4 Xo.2/2 Doy
3-1 X312/2 P
3-2 Xyp2/2 Pz
3-3 (Ny— Xy — Xpp— X302/2 —2xy/2
3-4 X342/2 P
4-1 X,2/2 G
4-2 X222 Paz
4-3 X32/2 D3
4-4 (N— Xy —Xo— Xy3)2/2 —2x4/z

is convenient to display the number of pairs and their energies in the Table 1.
Using this Table, for the particular configuration mentioned above, the total
potential energy E is given by

E=—Nx,— Nyxy— Nyxg— Nyxy + X g5+ Xogtos + X0z, + Xyt + XogWoy + Xggtwgy. (1)
Further the assembly in the magnetic field H has the magnetic energy:
E,=pH@BN,+ Ny— N;—3N,)
in unit 1/2.

3. Configurational Partition Function

Let g(N., Ny Nuy Now Xaos Xoos Xars Xoo Xow Xie) be the number of distinguishable
arrangments of N,, N,, N, and NN, particles having states 1, 2, 3 and 4, with the

specified values of X,,, X, X, X X and X,,, which is abbreviated as g({ NV},
§Xi;}) in the following. Then the configurational partition function is given by

:(g}ﬁ)g<{M}, {X,-j})exp<-?,,

In order to obtain the combinatory formula of g(§N;}, {X;;1) we assume that we
may treat pairs of neighbors as independent entities. According to this assumption,
from the Table we have

2

BN, N, Ny, N (V5 )1
2

{0 = X=Xy = X P {(Nem Ko X — Xua)
1
{i= X X=X S} { (05 ) (K2 ) (X5 ) (X 5 ) () (0 2))
3)
where it is assumed that we can distinguish between the two manners of occupation

1-2 and 2-1, 2-3 and 3-2, 3-1 and 1-3, 1-4 and 4--1 2-4 and 4-2, 3-4 and 4-3.
gUNg, $X,;}) has to satisfy the relation :

F{ovn- %, - X - 602

X
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|
3 e AN AKX =y N N (1)
and /({NV:}) is a constant to be selected so that g({N}, {X;;{) may satisfy (4).
Using the formula: (aN)~a®¥(N1)* for large N, we have
N!
(NI_XIZ—XI:K_XM)! (N2~X2,—X23—X24)!
1 22
= Xy = o] Vo= oy KXo X (o Xl Xl X Xl o?) - ©

ZUN, X)) = (N, Noy N, Ny)|

X

4. Mean Values and Dispersions

In order to obtain the asymptotic exprression of the inner rpart of the bracket
of (5), we will start by calculating the following sum with a certain constant ¢
which is given by (18 a) (we have no need of knowing its definite value):

“N,! Np! Ng!' Ny!
WX = . ¢ 1 A2 LY e . .
e D= B N = X XK= X! (V= X Koy~ X!
1

s a a 4 4 4 4 a V . C
(No= Xay = Xy Kool (Ny= Xy, = Ko = Xoa)! (Xl Xl Xl X Xl Xop ¥
The inner part of the blacket (5) is different from w'(}Xj;}) of (6) by a certain
constant, which is derived from multinomial expansions.

We write down four multinomial expansions in variables x, %, u and p as
follows :

X

4 N X“)'{"X:’i’)&, Xg'{‘X“;
(x+y+u+v)‘“=2< 1, ; )( 12 13 x4>< 1 >
NI—XIZ_AIS—/\M X14 X13
% xi\'1~A\'m~4\'l3~A’Hy,\'l._,u,\'mv,\'u, D
N, XNis+ Xog+ Xag) [ X5+ X
x4ty uto)e= < ) 2 > < 12 /2,3 z4> < 23 24)
< J ) E Nl_Xlz‘ng”“sz; Am X23
% xxgZyAvgw‘\';2_,\'23—‘\'24”\'230‘\'24’ (8)
. N Xog+ Xis+ Xag\ (Xis+ Xas
(x4 +u+v“3=2< LR >< B >< v )
J ) N3_A23'—X13_X34 X23 )\34
x X“';ﬂy“’;32&“"3"‘\‘;3“‘\';3“‘\’340"’34 9
and
. N, X+ X+ X0 /X + X
<x+y+lt+v)x\4= Z » 4 » ~, > ( 34 ,“ -4> ( 14 ,, -tl)
<N4_A:;4—A14_/\2 X:m /\14

X x“’hy“’éqz{,‘"&1)“'4—“'54“4":'4'/";4. (10)

Multiplying (7), (8), (9), and (10) side by side, the condition of picking up the
term Of leyNz%NsUN‘i iS

(X,2~X12)+(X13—X13)+(X14—X14):0, (11)

(X1p— Xia) = (Xgg— Xap) — (X — X5,) =0, (12)

(Xag— Xig) + (Xi3— Xig) = (Xpy = X3)= 0 (13)
and

(X14_X£4)+(X24_"X£4> +( Xy — Xiy) =0, (14)

These equations are dependent on each other, since we can derive (11) from (12),
(13) and (14). In other words, we have only three relations for six variables
(X;;—Xi;). Therefore we can choose three values among them arbitrarily. After
we put
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Xio—Xin=k, Xoy—Xo=ky and X,3— X;3=kFk;, 15)
we have, on solving (11)~(14),
X=Xtk thky, Xu=Xp—k +ky and Xopy=Xg—Fk +ky—ks. (16)

(15) and (16) are the conditions of picking up the term of x™y*%"sp™. [, k, and
k, are the poitive or negtive integer, but (15) and (16) must not constitute any
power of (7), (8), (9), and (10) negative when they are put into them. The real
role of k,, k and k, is to bound the changing range of variables X,, X5, Xu, Xio
X, and X,

Now substituting (15) and (16) into (7), (8), (9), and (10), multiplying them
side by side, and comparing the coefficient of the term x“y"%"p™ of both side,
we have

| - N
I S AD AN SABA! an
together with
P‘—:< N, ) <X12‘|‘X13+X14> <X12+X13>
NI_X12_X13—X14 X14 X13 ’
Q= ( N, > <X;2+X23+X24> <X23+X24>
N2_X£2—X23__X24 Xiz X23
R= < N, > <X53+X13+X34> <X£3+X34>
Ns—Xés_X;:s—XM X;3 X34
and
S— < N, > <Xé4+X{4+Xé4> <X14+X2'4>
N4"'X:;4'_X;4_X;4 X:;4 Xi '

Using f({&}, $X;;1), the abbreviation of the summand on the left hand side of
(17), we have
N1
1/e§'gjyf<{ki}’ {Xij}) =NIN, NN, (17a)
For the sake of clarity, we write out the left hand side expression of (17a) in full
NARARARA

i (Vi = Xrg— Xy — X1l (Ny— X g ey — Xy — Xl (g —Fe)!
1
XXl (X Tl Xoal Xl Xl Kool (No— Koo s — by~ X3 1 oy — Koy
1
% X34! (N4'X34_X14_X24>! <X24_k2)! (X23_kl+k2)!
1

XXl £ ) (Xgy—For ot Tey— o) (18)

The special value of (18) having k,=k,=k,=0 is a part of the total number of
terms xV19¥y o™ and so we have
2 Sk X =c 23 F{0}, { X} (18=)
ki, Xij} {475t
= 20 o' ({Xih). (18b)
{Xi5}
As the right side of (18a) is nothing but (6) and we have the following sum from
(18b) and (17):
NI B
NINSNSND T &

Let us obtain the mean values and dispersions of X;. As it is shown in

o'(Xi;). 19
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appendix 1 that the mean values of X; through o'(X,;), namely through ¢/ (04,
§X:;1) are equal to those through f({k:{, $X;;}), we will calculate the mean values
and dispersions through f({k&;}, {X;;1), because it is easier to handle f({&;}, {X;;1) by
the aid of multinomial formula (7)~(10) than to handle «’(X};) itself. The mean
values throgh f({%}, {Xi;1) is denoted by the bar. First differentiating (7) with
respect to y, multiplying it by (8), (9) and (10) side by side, dividing by (17), using
the condition (15) and (16), and picking up the coefficient of x™ 9" 1"y, we have

X12=N1N2/N (20)
Next starting with differentiating (7) two times with respect to y and using (20),
we have

- X2 __””72 _NINZ{N1N2+(N3j—N4)N} .
oh=Xh—Xp= N¥N—1) R 20
Similarly we have other mean values and dispersions by a cyclic change of N,
N,, N, aad N,. Further we have

5. Asymptotic Expression

The mean values and dispersions are given in the preceding section, and so we
can now obtain the asymptotic expression of the following combinatory formula :

. N NI NI N, - o
O({Xyh) =X (23)
For this purpose we carry out the following transformation:
X=X .
Ifu—‘-wgij - (24)
Then we have
- _ NN,
Am:"}vg(l’*’ﬁlztlz)s (25)
1+ (Ng+ N[N, Ny Ny 12 .
= (L e MO, 2y -

and

other variables are obtained by the cyclic change of N, NV,, NV, and ,. Similarly
we have

2

N, N, N, ‘
Nl‘“Xm"'Xls"‘XM:“ﬁ{l— <Nfﬂ12t12+Nf1813t13+7\7‘:ﬁ14t14\} (27)

and others obtained by the cyclic change of subscripts 1, 2, 3, 4.
When we take the logarithm of both sides of (23), and use Stirling’s formula
and the following expansion:

2
10g(1+l¢)=z¢—?;g,+. »

we have

—log 0({X;;}) = —log ¢+ 3 Jog(27) + log(N,NyN;N, ) — 8 log N

—1—[]]—\[\7}{1_ <§%’812t12+%—?ﬂl3tl3+%‘fﬁx4tl4>}+~~,§—J
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]

}
ﬁlzt12+Nﬁzstza+ N Buits) = (N Butis + 3 2 Bastn + 7 Bacts) |
J+

)|

+

(fs tu+NﬁQSt +NB~J24)

N?

X

N)

N;{l—<” ! Byyts Nﬂzﬁzs“‘“ ""ﬁ34t34>
1
9

+

N,
X letm N BZ&jZZ% +N 1834Z54> 13312(31 N ﬁzsl‘zs +N 1@343(34) :}

[V
-y
[
- &

w Vst Yttt ) 1]
[ IB““‘ NB‘*J“*Nﬁ‘*J“) ¥ NPt + NB“ZL“*N%’“”

X

_2
ZzZ

+2

=

[P0+ Bt + 5 | Bt — ) ]
o[ Mot 1 gt )[Rt L 2]
+2[N?\Z[Vx (14 Buta) + o | Bartar — ;ﬁglﬁn}
+2[N]1<77V4(1+ﬁ14t14) éj[gut“ })ﬁiti}
+ Z[NAZ/W(I + Bast o) + ; ] [504524 ﬂf‘tm}
e [ ?\jfv4<l + Paitus) + ; J[ﬁ“t“ 534*11 : (28)

As N,—oo in (28), #;; remain finite. In fact, in order to obtain the unique limit-
ing values, we put N,=¢h, N,=mh, Ny,=nh, I/,=kh and let } tend to infinity.
When we neglect terms having higher orders of §; than the second order, we
have
3
~lim log o({ Xi;}) =log| - {(2mpt AN 2 a1 2y

Ni—reo

A+ Agpthy + Auale+ Asifis+ Ageliy + 2ust 10l 15 + 204t 158 10+ 245:F 5T 5y
+ 2456t 15t 5s + 24108 15l ay + 24158 19853+ 2A14E 14f0g + 2A15E 00l 04 + 22 E sl 5

+2134t12t14+2135t12t24+2'{36t12t34+214;t14t24+224Lt14t34+2156t24t34‘ (29)
where the limiting value 4,,, the coefficient of ¢} is given by
w(1\’z+1\fa){ (N, +Ny) } .
M= U, Y (30)

and other 4;’s are obtained by the cyclic change of subscripts, and 4,, the coeffi-
cient of £, is given by
1/2 1/2
b= Nzﬁfzj“{lﬁNKﬁVJZ‘*)N} {H(‘Nf{sz@N} (31)
and other 2;;’s are obtained by the cyclic change of subscripts. In addition 2,,=
Aw=A=0, which are inserted formally. A4, can be represented by fractions such
as N/, however it is noted that we must treat them as constans when we derive
chemical potentials and other thermodynamical quantities.
Rewriting (29) with X;; we have the asymptotic expression of (23):
NS
X = o, NN 3 P

- ) (32)



7 Configurational Partition Function of Quaternary Systems 133

together with

(1\23 ZXzs) +12 (/\13 s 1.3) +233<X12_2X12)2+24 (XM XM)A
O3 (4T} [t} o}y
+Z;,;, 4 _2 ¢ _1_/-{6 (X&4 X34) Zx‘ng /le )&13 X
ou a3, (2P (¥
A A13 Xu /‘(M 13_‘X13 X24"A24
Oy3 T4 BT T4
X /\/13 X34 )134 Xl& Al& Xz3‘/\"3

J3 T34 Jy3 T3

Xlz'“Xlz X23‘“X23 9 Am—)&m X23—X:).3

D=2,

+ 220

+ 2

+22

+24

T2 CEE 014 T23
b s - i
X23—/\23 X24_/\24 + 225 Ny — Xna A34—)X34
Ta3 Tog T2y T34
W 2 W
X12 Xlz X14 )114+91 X12"X12 X24"')124
24A3;5
[T 04 12 Tgy
- W X7
/\12_X12 X34'_/\34 4922 XM'XM Xﬂ_/\%
2A45
Tyg T34 ’ T4 24
kv e Vs ¥ 4 4
X14’/\14 /\34—)&34 +922 X24_X24 )X34_/\34
L .

[T O34 T4 T34

+ 25

+ 2234

+ 223

+ 244 (33)
Now we can obtain the asymptotic expression of g({/Nii, {X;;}) (3). Recalling
that g($ N, {X;;}) is different from o'($1X;;}) (6) by a certain constant and
o'($X;;1) is connected with w({X;,) by (23), where we see that there is a constant
difference betveen o'({X;;{) and w({ 1), in addition A({NN;}) is a constant which
is to be selected to satisfy (4), we know that the essential part of g({N:}, {Xi;1)
is [exp(— @) aside from various constants and therefore we have

. N ,
SN}, {Aij}):Nl”!‘N;!”N;;! A eXP("';‘ m> (34)

where ¢, is a constant determined so that the integration of exp(—%»df) may

satisfy (4):

together with £=j4|, defining the following matrix (see Appendix 2):

/ An ke A s A A \
i Aot Aze Ass Am A As |
‘ gt Ase A Au Ay A |
| A A A A A Ay g )
DA Ase A A A Asg |
\ oo Aoz Aoz Ase ey Aes /

Using (34), we have the partition function having an integration form :

:S‘S'S'?Sgg({]vi}, {XiiHexp (—Egy{z’”> {dx i} . (36)

—co

The integration of (36) can be obtained by elementary calculus in principle, but
we can carry it out easily as follows. Rewriting (36) with ¢,;, we can pull out

(35)

exp{ — (X gty + Xogtvay + Xg w0y, + X 41015+ Xog0 + Xy )k T — E[RT } (87)
from the sign of the integration and then remaining terms in the exponent are
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- 'g[xuﬁx‘F Aooliy+ Aaathy+ gty + Aostiy + Aoctas + 2A0st 12l13 + 2A0ul 15t 14

+ 2958 ot as + 22008 15830 -+ 2A 108 15E a5+ 24058 1o 95+ 2l 1ilaa + 24, Lasty
+ 22 Lastss + 2haul ol 1o+ 2Aast it os + 2ael ot sy + 2A4sF 1aBaa 2208 Ly

+ 205 toatss + 2010710+ 2osT s+ 205 700 T 20147 14+ 2o+ 2haarna] (38)
where
=%z W — T Wi - T2 Wos — 7 Wy
Twe=2 V=727 s Te="7" 7T V= or

5 W .
ru=pp and 1= R @9

The integration of (36) is given by the following formula® :
C,, e S‘exp<— Z X,-jxixj>exp<2 Z /iix;)ﬂ dx,:exp(z a;,‘ﬁ,‘ﬁj)
e iJ i i [
together with
2={4;t, A'={ay}
and
C}I:gxlllz/(ﬂ:l/z)n .
For writing down the result of the integration correctly, it is convenient to display
the inverse matrix having y,; in place of f,; at the fringe of it:
Tos Tis Tie Tie Tar T
Taz / Ay A Ay A As A \,1
7"135" Aoy Ang s Am Aos Aus ‘
Tio! As Az Asg Ase Agz Az |
| 1 (40)
T A A A Au A A |
7'24! st Asa Az Asa Ass Ase ’
Tae \ A Az Ass A Aes Ao /
Thus we have, bringing (37) together,

QcZN BARANCA exp{ — (Xyow 5+ Xogtway + Xy sy + Xygt014+ Xpa sy
RUVADIARA

- 2z ‘ .
+ Xoswyg) [RT— E,[RT texp 1:7{‘% 1785+ cast i+ gl g7 hs F @t

+ ageT 3+ 20017 957 15+ 20317 93712 T 2041 T 257 10 + 205, T 957 24 + 2 T 287 34
+ 2a597 157 19T 2097 157 14 T 20597 137 24 T 2607 137 30 + 20487 137 14

F 20257 107 24 T 2ea¥ 12731+ 20547 147 24+ 20sa¥ 14T 31 T 25T 24T34}] (41)

where «;;’s are elements of the inverse matrix. For instance, introducing the
fraction ¢,=N;/N, they are given by

<l +S%Z;%> <l ‘o}{)
ay =2 5’_7;;* ay=2 P ey : st @2
<1 + ~‘—~f> <1 +4 *) <1 + =2 4)
D3 PaPs P1¢3
Pat @y
Aoy =2 <1 i 200, ) and ag;=2 ! (42)
=L 2= & ifs N2
<l +£§,f_?4) <1 + 9"1&"4) <1 +M>
P3P P3Py (on

From (41), by use of (20), (21) (39) and (42), we have the free energy of mixing :
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FNET=¢, log ¢, +¢; log ¢s+¢slog s+ ¢, log s+ pH(3e, + @y — 3 —2¢,) [T
T (9102105 + P 2P31s3 + 93013, + PP 4+ P2 Wy + @3003,) [RT

mes(ue G e (0 ) et 5 00 00
—otei(1e 5 ) (4 5 L) et (145,10 s
—><01<Pw¢3<1—~w; )Lt 9y 1§0)893<1‘—"“’1 )“’,;;g‘;;? 20,00 917

—mw >1T<>”< ) TS

(1 >”< >kT<<,a>,T (19)

Appendix 1

When we differentiate (7) with respect to y, multiply it by (8), (9) and (10)
side by side, divided by (17) side by side, and use the the conditions (11), (12),
(13), we have at the right hand side

E Xl?f({k} ‘{Xu})
Zf{kx {Xu}

This is to be equal to the coefficient of the term x™y
expansion of the left side obtained at that time:

xMyNe-1y NopNe (A. D)

Vo=l ¥3Vs in the multinomial

N(x+y+ut+v)¥?

NN NS NN - (A.2)
Thus we have
X, =200 (A.3)

Similarly others are obtained by changing subscripts cyclically.
On the other hand, taking the logarithm of (17) and differentiating it with
respect to X;; and k;, making them zero, we have

X o Xs—k)=AB,
Xig( Xy — k)= AC,
X14(X,4+k +hky)=AD,
Xosl Xog ks + )= BC, (A&.4.2)
Xos(Xps—hRe)=BD,
XXy —k +hy—ky)=CD,
(Xig+ k) Xog— ko +R)( Xy — R+ ky— k)= (X, + &, + k) BC, 1
(Xia—Fhy+ o) ( Xy — Ry + Ry — Ry = (X3 — k,)C (A.4.b)
and (Xis— k) ( Xy —ky+hlo—k)=(X 1+ R, +k,)C, [
where we put as follows:
=(Ny = Xp— Xy3— X)),
=(Ny— X oty — Xyg— X)),
N‘; Xg&’i*kl ] X13+kd'—X34)

=(
and =(Ny— Xgs— X1o— X) .
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When we slove these simultaneous equations, we have
NN,

Xyy= N (A.5)
and others changed subsclipts cyclically and
k=0 i1=1,2,3 (A.6)
If we substitute (A.6) into (A.4.a), we have
L=V, —Xpp— X — X14)<N Xig— Xop— Xoy)
13—(N Xip= X 3= X, ) (N3~ X 5— ng Xs)
1 (Nl X 1\13 )(N4__X14 X24 4)
\‘? (N3— Xlz—z‘m 4)(N3—X13 Xoy— X34)
X5= (V= Xig— Xos— Xo ) (N, — Xy — X — Xs)
and é—(Nd /\1.5"/\23 Xa4)(N4 AM‘AzL—XM)- (A-6>

These simultaneous equations are also derived from (18b). Apparently from these
we obtain

< NN,
X,y == (A.5)

and so on. Thus if we take the most probable value as the mean value, we have

20 Xig f({Ri, { Xish) _c 20 Xis f({0}, {Xis})
20 SR, {X55}) ¢ 25 F{0}, { X))

(A7)

Appendix 2

The determinant of matrix A is given explicitly by

W=(--;)G(l+(’01+€D"><1+%+m (1+S03+§D4)<1+$92+S03)<1+991+905>

204 030, | 0109 0194 (PN
2 {5+ @3)? 192 0103 0 D3Py PPy
L0 (940 a0 P59 0 @195
y <l+sgl+<,ﬂz>i ?9, 0205 (Pt 2?20, 019, 0
P4 ; 0 Pu04 P20y (01 + @) @1, P10,
| PuPs 0 104 0102 (Pt el 00,
| ©u 0194 0 193 ©aps (@3t @y)?
_ <%>6<Hs&;p+so4> <1+@z+§04> <l+903+904> <1 +s02+903>
Z 2P s, 1Py PPy
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Some of the minor determinants are
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Thus the determinant of inverse matrix 47' is given by
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1 1—p 1—5— 4 L
20, 20, 20,0, 20,
1 1 1 P+ @3
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P23 P3P P1P32 P19
%”*"Ps)ﬁl( @1“‘@2)‘1«3 2052002002~
X {14t 1+ =" 2 201 !
< 0r0, 0105 (2P eipdeiol)
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