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Abstract

The natural frequencies and the mode shapes of out-of-plane vibrations of elastic
arcs are calculated numerically on the basis of the Timoshenko beam theory and other
specialized theories in which either or both of the rotatory inertia and shear deforma-
tion are not taken into account, and of the equations in which one or two of the
displacements of arcs are restrained to be zero. The results are compared with one
another, and the characters of out-of-plane vibrations governed by these various type

equations are studied.
1. Introduction

The vibration theory of a beam has great importance in many engineering applica-
tions such as in the design of machines and structures. Therefore, a considerable
number of papers are available on the out-of-plane vibration of arcs or curved beams,
as well as straight beams. The fundamental equations of arcs or curved beams have
been presented together with the solution to them in the book of Love.? Takahashi,?
Vorterra and Morell,®¥ Chang and Volterra,” and Suzuki, Aida and Takahashi® studied
the free vibration of arcs and curved beams on the basis of the classical beam theory
in which the rotatory inertia and shear deformation are not taken into account.
Recently, Rao,” Kirkhope,® Suzuki and Takahashi,” and Davis, Henshell and Warbur-
ton!® have analyzed uniform rings and curved beams, and Irie, Yamada and Takahashi
142 have studied analytically the vibration of arcs and curved beams of variable cross-
sections. These recent studies have been based upon the Timoshenko beam theory in
which both of the rotatory inertia and shear deformation are taken into account.

This paper presents an analysis of various types of out-of-plane vibration of uni-
form arcs governed by the Timoshenko beam theory, by the specialized theories in
which either or both of the rotatory inertia and shear deformation are not taken into
account, and by the equations in which one or two of the displacements of arcs are
restrained to be zero. Although the vibrations of arcs arising from the assumption
that any of the displacements which are restrained to be zero are artificial and would
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24 Toshihiro Irie, Gen Yamada and Katsuaki Tanaka 2

not occur except in specialized situations, they would have some meanings to clarify
the dynamic characters of arcs.

For this purpose, the equations of each type out-of-plane vibration of an arc are
written in a matrix differential equation of the first-order by use of the transfer
matrix of the arc. The transfer matrix is conveniently expressed as the series type
solution to the equation, and the frequency equation of each vibration is derived by the
boundary conditions. The natural frequencies (the eigenvalues of vibration) and the
mode shapes of various types of out-of-plane vibration are calculated numerically by
the respective frequency equation, and are compared with one another for studying the

dynamical characters.
2. Timoshenko Equations and Specialized Equations of Qut-of-Plane Vibrations

We consider a uniform arc of a radius of curvature of the neutral axis R. With
the angular co-ordinate denoted by # and with the opening angle by «, the X-, Y-
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Fig. 1 Circular arc

and Z-axes are taken in radial, transverse and tangential directions, respectively, as
shown in Fig. 1.
(TM) Timoshenko Equations

On the assumption that the shear center of the cross-section coincides with the
centroid, the Timoshenko equations of free out-of-plane vibration of the arc are

written as
d *
R20+p‘4w v'=0 (1)
M * N
C;’Edg+T v+ olxwto= 0 (2)
ar” | Mi (3)

Rdl9+ R +n0]ZQ) ¢=10
where p is the mass per unit volume, A is the cross-sectional area, Ix and J;, respec-
tively, are the second moment and polar moment of area of the arc, and @ is the
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circular frequency. The bending moment M §, the torsional moment T* and the shear-
ing force @5, respectively, are given by

Qv=xGA(p+42) (6

in terms of the transverse deflection v*, the angle of rotation @ due to pure bending
and the angle of torsion ¢. Here, the variables @, v*, ¢, M§, Q% and T* are taken
to be of positive sign in the X-, Y- and Z-axes. The quantity £ is Young’s modulus,
G is the shear modulus and C, is the St. Venant torsional constant of the cross-section.
The parameter » is the numerical factor depending upon the shape of cross-section,
which is 0.85 for rectangular cross-section and 0.89 for circular cross-section for an
arc of Poisson’s ratio v=0.3."
The boundary conditions of the arc are written as

Mi=T*=Q%=0 at free end

v*=M:=T*=0 at hinged end 7

vi=¢g=@p=0 at clamped end

For simplicity of the analysis, the following dimensionless variables are introduced:

_ 1 s R PR, R* .
v=p?" ( My, T):E[‘;(MX ), QY:E_IX’QY (8)
._ AR? .  AR? _GCy
Sx= Ix SY= Iy’ ﬂ—E[x (9)
and
_PAR'@*?
A2—~TIX— (10

The quantities s, and sy are the slenderness ratios, x4 is the rigidity ratio of the arc
and A denotes a frequency parameter.

Equations (1)-(6) can be written in a matrix differential equation

— E 1
v 0 0 1 0 (1) <l
¢ 0 0 1 0 " 0 ¢
d)e)_| 0 -1 0 —1 0 0 @
o\ x| | 0 0 A% 0 1 —1 ||Mx an
X
| | o '—A2<S_12'+;1§> o —10 o ||T
X Y.
Qy) L—A* 0 0 0 0 Qv
Equation (11) is also written as
0 =(0)((0))
o' =7 TR a2
by using the state vector [z2(8)|= {v ¢ ¢ My T Q,i" and the cross-symmetric coeffi-

cient matrix [M] given in (11).
(NI) Equations without Rotatory Inertia Taken into Account
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Table 1 Beam theories and specialized vibrations
e T T T T
]Pure rotatmnaﬂ |—Pur‘e torsmnal_‘ [ Pure bendi ng_]

| vibration (PR) | vibration (PT) | vibration (PB) |

! |
| »=¥=0__j | v=¢=0_ j | __¢=v¥=0_ _,
~ /4_‘ A —\\ AR
| >‘/ | ~ 7
N
| \\ | % \l
______ Jzi] _.x___._.l..__./_1 AJ_________,_I
Bendingless | : Torsionless g_ Rotationless
| vibration (BL) | | vibration (L) 4 | vibration (RL)|
L__230 | __¥=0__ _$=0_
-~ L | E/T —
\\ | v
N | /
Timoshenko
beam theory
(M)
Beam theory Beam theory
without rotatory without shear
inertia (NI) deformation (NS)

Bernoulli-Euler
beam theory
(BE)

When the rotatory inertia of the arc is not taken into account, the equations of
out-of-plane vibration are given by (11) in which the element M.; of the matrix [M]
is taken as zero.

(NS) Equations without Shear Deformation Taken into Account

In this case, the equations of vibration are given by (11D, in which the element
M, is taken as zero.

(BE) Bernoulli-Euler Equations (Classical Beam Theory)

In the classical beam theory in which both of the rotatory inertia and shear defor-
mation are not taken into account, the equations of vibration are also given by (11) in
which both of the elements M, and M,; are taken as zero.

We consider other equations in which one or two of the deflection and the angles
of rotation and torsion are restrained to be zero. Table 1 shows the relations among
the Timoshenko equations and other specialized equations mentioned here.

(BL) Bendingless Vibration

When the transverse deflection v is restrained to be zero, the shearing force is
expressed as @,=(xG/E)s% ¢ and other variables are governed by the equation which
is obtained by removing the variables v and @, from (11).

(TL) Torsionless Vibration
When the angle of torsion ¢ in zero, the torsional moment is expressed as T =
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—ue and other variables are governed by the equation obtained by removing the
variables ¢ and T.
(RL) Rotationless Vibration

When the angle of rotation ¢ is zero, the bending moment is expressed as My =
— ¢ and other variables are governed by the four independent equations

A e
SU1) Hrthd) -0

(PR) Pure Rotational Vibration

When both of the deflection and the angle of torsion are restrained to be zero, the
torsional moment and shearing force, respectively, are written as T =—up, Q,=
(kG /E)si @ and other variables are governed by

it (R i =0 as)
(PT) Pure Torsional Vibration
When the deflection and the angle of rotation are zero, the bending moment and
shearing force, respectively, are My=—¢, Q=0 and other variables are governed by
(14).
(PB) Pure Bending Vibration
When the angles of rotation and torsion are zero, the bending moment and torsion-

al moment are also zero, and other variables are govemned by (13).
3. Frequency Equations and Eigenvalues of Vibration

Here, the solutions to the above-mentioned equations are obtained by using the
transfer matrix approach, from which the frequency equations of the arc are derived
for each vibration.

3. 1 Frequency Equations of the TM-, NI-, NS- and BE-Vibration
The state vector (z(#)! of (11) can be expressed as
{2()}=({T(D)N=(0)}  (6>0) (16)
by using the transfer matrix [7(8)] of the arc. The substitution of (16) into (12)
yields

Liren=0n176) an
The transfer matrix can be conveniently expressed as the power series type solution to
7,

(T(D)])=exp((M}0) =] +—11!—{M]H+§1!~[M]292+ +ni![M}"6"+ (18)

Numerical difficulty arises in the calculation of [ 7(4)] given by (18) if the opening
angle « is too large. However, it can be overcome by subdividing the arc into five to
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ten small elements at the most and calculating the transfer matrices for each element.
The entire structure matrix is obtained by assembling the matrices of these elements.
The substitution of (16) into a given set of the boundary conditions (7) yields the
frequency equation of the arc with only the elements of the matrix [ 7 (a)] necessary
for the calculation. For example, the frequency equation of a clamped-clamped arc is
written as
T Tis T Mx
Tos  Tas  Tie T =0 19
Tee  Tos  Tse(@) {Qr(0)
3. 2 Frequency Equations of the BL- and TL-Vibrations
The frequency equations of the BL- and TL-vibrations are expressed by the parti-
tioned matrix equations obtained by removing more unnecessary elements from (19),
though the elements of the matrix [M] and hence the elements of the matrix [T («)]
have different values depending upon the type of vibration.
3. 3 FEigenvalues of the RL-, PR-, PT- and PB-Vibrations
The eigenvalues of the RL- and PB-vibrations are determined by

_ . nx %G
A—SX? E (20)
those of the RL- and PT-vibrations are
_ 1+(n7r/a)_2/:
A_s"\/ 1+ (Iv/ 1) 2D
and those of the PR-vibration are
2
A:SX\/<%Z-> +/x,+<£EQ>s?< @2

which are derived from the solutions to (13,14,15), respectively. The number #» of

these equations takes the specified values depending upon the boundary conditions. For

example,
n=1, 2, 3, for clamped-clamped arcs
n=1/2, 3/2, 5/2,--- for free-clamped arcs (23)
n=1, 2, 3,-- for hinged-hinged arcs

The number # takes n=40,1,2,--- only for the RL- and PT-vibrations of hinged-hinged

arcs.
4., Numerical Calculation and Discussion

In this section, the natural frequencies (the eigenvalues of vibration) and the mode
shapes of various types of out-of-plane vibration are calculated numerically for clamp-
ed-clamped, free-clamped and hinged-hinged arcs of uniform circular cross-section.
With the opening angle taken as «=12(°, all the figures show conveniently eigenvalues
A =A/sx versus the ratio 1/sy (=1/sy), since the dynamical characters are most affect-

ed by the slenderness ratio sy or sy among the parameters of arcs.
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Fig. 2 Eigenvalues A1 of out-of-plane vibration
of clamped-clamped arcs: v=0.3, x=
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Fig. 2 shows the first four eigenvalues A of the TM-, NI-, NS~ and BE-vibrations
of clamped-clamped arcs. The eigenvalues of these vibrations become larger in that
order for the TM-, NI-, NS~ and BE-vibrations according to whether the rotatory
inertia or shear deformation is taken into account or not. The eigenvalues of the NI-
vibration are comparatively near to those of the TM-one, and the values of the NS~
vibration are near to those of the BE-one. The difference among these eigenvalues is
large in higher modes, and becomes larger with an increase of the ratio 1/sx and hence
with a decrease of the slenderness ratio sx. In clamped-clamped arcs, torsion type
vibrations ((T)-vibrations) with the frequencies A¢y, Az, --- in which the angle of
torsion is dominant among the displacements of arc arise besides the bending type
vibrations in which the transverse deflection is dominant.!’® The eigenvalues of the
arcs become larger monotonically with a decrease of the ratio sy, except for the TM
(T)Y-and NI(T)-vibrations.

Fig. 3 shows the eigenvalues A of the other six type vibrations of clamped-clamped
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vibration of clamped-clamped

arcs: v=03, x =089, a=120 % =089, &=120"
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arcs in which one or two of the deflection and the angles of rotation and torsion are
restrained to be zero. The eigenvalues of the RL-, PT- and PB-vibrations are con-
stant without being affected by the variation of the ratio 1/sy, as seen in (20) and
(21). While, the values of the BlL-vibration become slightly smaller and those of the
TL-vibration become larger monotonically, with an increase of the ratio 1/sy. Though
the values of the PR-vibration are very large, they become smaller with an increase of
the ratio.

In Fig. 4, the eigenvalues A of the TM~- and TM (T)-vibrations based upon the
Timoshenko theory are compared with those of the RL-, PT- and TL-vibrations for
clamped-clamped arcs. The values of the bending type vibration (TM-vibration) are
smaller than those of the TL-vibration, and the values of the torsion type vibration
(TM(T)~-vibration) are also slightly smaller than those of the RL~ or PT-vibration.
However, the differences between them become extremely small with a decrease of the
ratio 1/sy.

Fig. 5 shows the eigenvalues A and the mode shapes of various types of out-of -
plane vibration of a clamped-clamped arc. In clamped-clamped arcs, the transverse
deflection and the angle of torsion are symmetrical and the angle of rotation is anti-
symmetrical with respect to the midpoint in the first and third modes. While, the
angle of rotation is symmetrical and other displacements are antisymmetrical in the
second and fourth modes. The figures of the second row show the mode shapes of the
TM(T)-vibration in which the angle of torsion is dominant among the displacements.

Fig. 6 show the eigenvalues A of the TM-, NI-, NS- and BE-vibrations of free-
clamped and hinged-hinged arcs. In general, the eigenvalues of these arcs are smaller
than those of clamped-clamped arcs, and the eigenvalues of the fourth mode change in
a wave-like manner with the variation of the ratio 1/sx. Torsion type vibrations do
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not arise in free-clamped and hinged-hinged arcs. The out-of-plane vibrations of arcs
with other boundary conditions are similar to those of free~clamped or hinged-hinged
arcs in character, though there are differences to some extent among the eigenvalues
of vibration.

The numerical computations presented here were carried out on a HITAC M-200H

computer of the Hokkaido University Computing Center.
5. Conclusions

The various types of out-of-plane vibration of arcs governed by the Timoshenko
beam equations and other specialized equations were studied by the transfer matrix
method.

The equations of out-of-plane vibration of an arc have been expressed in a matrix
differential equation of the first-order, being given a series type solution, from which
the frequency equation was derived by the boundary conditions.

The eigenvalues of vibration and the mode shapes of clamped-clamped, free-clamp-
ed and hinged-hinged arcs were calculated numerically, from which the dynamic char-

acters of arcs were studied.
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