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Windows for Pre-Emphasis and De-Emphasis
for Block Coding of Images

Hideo KiTajiMA*, Tetsuo SHIMONO**, Tomoaki SHIRAKAWA*,
and Yoshihiko OGAWA*
(Received August 31, 1990)

Abstract

This paper proposes the use of a signal domain window to suppress blockiness that
occasionally degrades the reconstruction of a block-coded signal. Effects of a window and
its inverse window on signal-to-noise ratios, and required bit rates are analyzed. A likely
window is also given. New quantization error measures are also introduced to augment the
conventional Euclidean norm for vectors.

1. Introduction

Given a large array of signal elements to be encoded, we often divide it into small
subarrays. The processing requirements are typically so involved that the original data
array should be divided to be conquered. The statistical model of the signal may not be fully
known to us. To make our life even harder, statistical error measures are not acceptable
under some circumstances. If a particular realization of the quantized signal array is
accompanied with large errors in some of its elements, it will not be accepted even if the
statistically determined norm of errors is small enough. This problem can be attacked by
breaking up the given signal array into small subarrays and fine-tuning the quantizer so that
it can employ the best tactics to handle each of them. We will call this adaptive block
quantization.

While adaptive quantization may be a viable approach to image coding, where each
subarray is a small rectangle array or block of pixels, there emerges a new problem inherent
to block processing. Errors in one block occasionally highlight it so distinctly that the
human observer sees a rectangular object that actually does not exist. This phenomenon is
often referred to as “blockiness.”

To circumvent blockiness Wu et al.®* scrambled pixels in neighboring subblocks, through
regular decimation of pixels, to get a new set of blocks. In® the SCT® has been applied to
overlapping subblocks to yield acceptable performance. Scrambling of DCT coefficients
based on M-sequences has been reported to be effective for suppressing blockiness®,

Some form of smoothing at the block boundaries could wipe out blockiness with possible
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smearing of legitimate edges--:--- an unacceptable side effect. Since the blockiness is caused
by none other than abrupt changes in the quantization noise in the block boundary, it will
certainly be suppressed if the noise changes more smoothly in the block-to-block transition
regions. We can achieve this by gradually chopping off the error magnitudes as we
approach the block boundary and letting them grow gradually as we leave the boundary,
going deep into the adjacent block. This must be attained without any sacrifice to the signal
quality within the blocks.

Assume that a quantizer is fed with an array of analog data and outputs an quantized
array of data with an array of quantization errors whose variances are uniform over the
entire array. With this quantizer we can realize the above-mentioned error graduation by
the use of window-based pre-emphasis on near-boundary elements of the signal array going
into the quantizer and subsequent matched de-emphasis on the array coming out of the
quantizer.

In this paper we propose the use of a signal domain window to suppress blockiness. We
analyze in Section 2 effects of a window and its inverse window on signal-to-noise ratios, and
required bit rates for the windowed signal. New quantization error measures are introduced
to augment the conventional Euclidean norm for vectors. A likely window is proposed and
evaluated in Section 3. Secoion 4 has some concdluding remarks.

2. Signal-to-Noise Ratios and Bit Rates for Windowed Signals

In the following we focus our attention on a one-dimensional problem. The arguments
will be readily extended to cover two-dimensional cases or three-dimensional cases, as
circumstances dictate.

In dealing with a random signal vector, we often find it necessary to express in terms of
a scalar quantity per element signal power. If a like value is known for a noise vector
accompanying the signal, we can compute an average signal-to-noise ratio or SNR based on
them. The conventional per element signal power is defined as the ensemble avaerage of the
square of the Euclidean norm of the signal vector divided by its dimension or the number of
elements. The power measure is widely used since the norm is invariant under an orth-
ogonal, linear transform.

The nathematical tractability of the Euclidean power measure breaks down, however,
when it is used with non-orthogonal linear transforms. We will therefore introduce auxiliar-
y signal-to-noise ratios for windowed signals. Bit rates for windowed signals will also be
analyzed.

2.1. Conventional SNR
Let the original random signal vector be given by

X:(Xl, Koy toeere XN) (1)

where x; are zero-mean random variables with variances ¢f. Their sum gives the total
signal power :
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Signal = 3 of (2)
We operate a window function W on x as follows:
Wi{x}=Wx (3)
where
W=diag(w,, Wy, - , W)

with real constants w, yvet to be defined for pre-emphasis operations.
The elements of W{x}have variances

{wi o}, wiof, - wh ok} (4)
the sum of which gives the total signal power in the window domain :
Signaly = é wi o} (5)
Let a quantization noise vector be added to W{x}whose variances are
{0hoiser, Ohoises, = OFoisen} (6)
SNRs for individual signal elements in the window domain are

{

The average signal-to-noise ratio based on the Euclidean norm is given by

o} 0% o}
W%, W%a """ 3 2 W?\J} ( 7 )
OnoiseN

2 2
Onoisel Cnoise2

Signaly

SNR1= Nolsey (8)
where Signaly is as defined in (5) and Noisey is the total noise power given by
N
Noisew = E: OFolse i (9)

To take W{x}back to the original signal domain, we multiply it by W-!, where the
inverse window is readily available :

W-i=diag(wy?, wit, - wi') (10)

The signal vector is accompanied with quantization noise whose variances are given by
g

{Wi? 0hoiser, W% Ohoisezs rov s Wi% Ofoisent (11)

They are summed to give the total noise power in the signal domain :
g p
R N
Noise= % Wi* ofoise i (12)

While the individual SNRs given by (7) are invariant under the inverse window operation,
the Euclid-sense average SNR after the inverse window, denoted as SNR2, generally has a
value different from SNR1. Namely
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Signal

SNR2= Noise

(13)

where Signal is the average signal power defined in (2).

2.2. SNR by Geometric Average
The conventional per element power of the random signal vector (1) is computed through
dividing (3) by the number of elements N :
Py=— 5 o
N E,l o} (14)
It is well known that the above quantity is invariant if the signal vector undergoes a unitary
transform such as DFT, DCT, etc. This feature is utilized in transform signal processing.

A drawback with (14 is that it can not reflect the correlation structure of the signal
vector ; it uses only the trace of the covariance matrix of the signal. We feel that highly
correlated signal elements have a smaller per element signal power than uncorrelated
elements having the same variances.

The power measure has another serious problem when it is used with windows ; it is, in
general, not invariant under such a non-orthogonal transform as (3). In the following we
shall define a new average signal power measure.

Consider a zero-mean source represented by a random vector

u= (ula u29 """ uN) (15)
whose elements are linearly independent and whose covariance matrix is given by
Cy=E{uu®} (16)

Proposition :
The total, real power of u be represented by a power product defined by

PP,=det C, 1
We shall define geometric average, per-element signal power based on the power product by

P,= Y/PP, = “/detCy (18)
Note

det Cu=g for-fx

where f; are characteristic values of C,; B represent the variance power spectrum. In
other words they are the variances or power of the signal elements observed in the KLT
domain. Hence the name “power product.” With the above (1§ can be written as

Pu: N /ﬁl ﬁz ...... ﬂN (19)

Taking the logarithm of P, we get
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1 1
log P, = N~ log[det C,] N log[ B Boree-+ Bl

Namely

1
log Py= —Nw(log Bi+log Bye-eee log By) (20)

We observe that P, in[dB]lis equal to the variance power spectrum components in[dB]
arithmetically averaged in the KL T domaln.

We are now ready to define an average SNR based on the geometric average power.
Assume that the random signal vector x in contaminated by a random noise vector n added
to it. We shall define an average SNR by

Py

SNR3= B (21)

where P, and P, are geometric average power of x and n, respectively. Taking the loga-
rithm of the SNR and using the definitions of P, and P, we get

SNR3[dB] =10 logio SNR3=—logio — c

where C, and C, are the covariance matrices of x and n, respectively. Effects of the window

(22)

on SNR3 will be discussed in the next section.

2.3. Bit Rate Analysis
We begin our discussion with rate analysis for the conventional, windowless case. If
quantization of the signal vector x is done in the KLT domain, the average required number
of bits will be
1 X Ay
R(dl, dg, """ dN) _— 2 logz —— (23)
2 j=1 dx
where A, and d; are the variances of the transform-domain signal elements and quantization

noise elements. Since det C, and det C, can be written respectively as

det Cx = /11 /1.2 """ /lN
det Cn == d] dz """ dN

where we have made a reasonable assumption that the quantizer generates uncorrelated
noise. The above relations follow readily from the orthogonality of the KLT matrix. With
the above relations put into the right-hand side of R, we get

dot C,
det C,

with SNR3 replacing the sequence of arguments in the leftmost R ; the rate achieves the SNR

R(di, day oo dN):R<SNR3>=%-Iog2 (24)

given by (21).
With the window

W:diag(wl, Wa, rore WN)

the windowed signal (3) has the covariance matrix
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Co=WC, W (25)
with its determinant
det Cy=wiwi------ wi-det Cy (26)

Let quantization be done through the KLT performed on (3). We denote the covariance
matrix of the quantization noise vector in the window domain by C,,. We set

det Cpy =w? Wlyeereer wiedet C, 27

so that we can obtain the same overall SNR3 2.
The average number of bits required to attain the same SNR3 is given by
Rw (SNR3) :é— logz W Wheeree- wi det C, -2 logz %‘
as seen from (24). Thus the introduction of the window W presents no burden on the bit rate
to achieve the same SNR3.
With the inverse window W™! the signal power product is brought back to det C,, and the

2 2. z

noise power product (27) is converted to C,. Hence the overall SNR is invariant under the
inverse window if the average SNR is measured in terms of the geometric average. Also
remark that the SNR in (22) is directly linked to the required bit rate given in (28) :

SNR[dB]=20log,, 2°R(SNR3) =Z6R(SNR3) (29)

3. A Candidate Window and its Performance

The window should be designed so that artifacts generated in the block boundary regions
are reduced to accepteable levels for the human observer. An ideal approach would come
from the full understanding of the human visual system. We shall, however, abopt an ad hoc
window here for simplicity.

3.1. A Candidate Window

It can be shown that the inverse, de-emphasis window having a constant slope in the
transition region can suppress the maximum leap in errors in the transition region below an
acceptable level. We submit without derivation the matching pre-emphasis window :

p-1/2 .
- 1
i-1/2 ° <P

W= 1, p<i<N-p+1 (30)

p-1/2 .
———, N- N
Nit1/z° N PHisi<
In the above p is a positive integer chosen to satisfy
€m 1
P27, T

where e, is the peak error and A, the permissible maximum leap in the signal domain
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quantization errors. p defines the depth of the transition region in which errors are made to
change gradually.

3.2. Statistical Performance of the Window

In the preceding subsection a candidate window was proposed. While its performance
in the worst case is as stated there, we are also interested its average performance.

Let the covariance matrix of the quantization noise vector be

Co=diag(o;, 0%y, - o20) (3D

where quantization is so be done in the KL'T domain. Then back in the window domain, the
noise will have the covariance matrix

Cow=T"'C, T (32)

where T represents the forward KLT. Nothing that T=U"'with U=the characteristic
matrix of Cy(as defined in (25)), we can show that window-domain noise variances are

0Zoise 1 = (Cow) u= 0% Uiy + o5 ufy+---oo oy uln (33)
where
w= (U)Y

The elements in (33 represent the variances of noise elements in the window domain. If
multiplied by the inverse window function, they yield signal domain noise variances given by
a, i.e.,

ori=wi (Caw)

Signal domain noise variances are compared in Fig. 1 for windowed and window-less
cases. The results have been obtained through assuming

N=16
(Co)y=p", p=0.95 p=4

for the window. SNRs by various definitions are compared in Table 1.

0.16 7
014 /o--"“G‘“O‘°"°”<>"-<>\\<> Window-less Windowed
012 / AN SNRI 11.8dB 15.4 dB
I 4
2 orelo o |07 Mindowrless SNR2 118 dB 9.6 dB
S O Windowed SNR3 3.0 dB 3.0dB
0.04
0.02 / Table 1. Average SNRs.

0 + —
123456 786 31011121314151¢6
Place in the Vector

Fig.1 MSE distribution for the window-less and windowed
signal vectors. ’
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We observe that the window suppresses quantization errors near both ends at the cost of
higher mean-squared errors for the inside elements.

4. Conclusion

We have discussed effects of windows for block-based image coding. For ease of
notation and discussion, only one-dimensional cases have been considered. The extension to
two-dimensional and three-dimensional cases will be obvious. Since the window deforms
the covariance matrix of an input signal, the popular DCT, which may simulate the KLT for
the input signal, will be useless in the window domain. As the reader may have found,
further work must be done for selecting appropriate windows for actual application of the
theory.
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