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The framework recently developed for the extraction of a dynamic reaction coordinate to mediate
reactions buried in thermal fluctuation is examined with a model system. Numerical simulations are
carried out for an underdamped Langevin equation with the Müller–Brown potential surface, which
contains three wells and two saddles, and are compared to the prediction by the theory. Reaction
probabilities for specific initial conditions of the system as well as their average over the Boltzmann
distribution are investigated in the position space and in a space spanned by the position coordinates
and the velocities of the system. The nonlinear couplings between the reactive and the nonreactive
modes are shown to have significant effects on the reactivity in the model system. The magnitude
and the direction of the nonlinear effect are different for the two saddles, which is found to be
correctly reproduced by our theory. The whole position-velocity space of the model system is found
to be divided into the two distinct regions: One is of mainly reactive �with reaction probability more
than half� initial conditions and the other, the mainly nonreactive �with reaction probability less than
half� ones. Our theory can actually assign their boundaries as the zero of the statistical average of
the new reaction coordinate as an analytical functional of both the original position coordinates and
velocities of the system �solute�, as well as of the random force and the friction constants from the
environment �solvent�. The result validates the statement in the previous paper that the sign of the
reaction coordinate thus extracted determines the fate of the reaction. Physical interpretation of the
reactivity under thermal fluctuation that is naturally derived, thanks to the analyticity of the
theoretical framework, is also exemplified for the model system. © 2009 American Institute of
Physics. �doi:10.1063/1.3268622�

I. INTRODUCTION

Chemical reactions in condensed phase are subject to the
effect of their environment with thermal fluctuations. The
environment plays a pivotal role both to make the system to
surmount and cross through the “barrier” of the reaction �i.e.,
energy activation�, and also to deactivate the excited system
to settle down in either the product or the reactant by failure
of the reaction �i.e., energy dissipation�. In the pioneering
works by Kramers1 and by Grote and Hynes,2 they repre-
sented condensed phase reactions under thermal fluctuation
in terms of Langevin and generalized Langevin equations.
The reactions are represented as a motion along a single
coordinate, the so-called reaction coordinate, feeling the po-
tential of mean force and the random force with the friction
constant or friction kernel �incorporating the memory effect
on that coordinate� arisen from the surrounding environment.
The system-bath Hamiltonian approach can formally bridge
the descriptions of any Hamiltonian system and the general-
ized Langevin formulation projected onto a chosen
coordinate.3–5 However, the question of what reaction coor-
dinate the system actually follows in a thermally fluctuating
environment still remains. Here, we use the term “reaction

coordinate” as a single one-dimensional coordinate that can
describe the progress of the reaction without referring to the
other coordinates so that it can, in principle, predict the des-
tination of the reaction, that is, reactants or products.

van der Zwan and Hynes5 and later Pollak6 showed in
the harmonic bath Hamiltonian systems that the reaction rate
of the Grote–Hynes formulation with an arbitrarily chosen
reaction coordinate is exactly equivalent to that of the tran-
sition state theory if one chooses a reaction coordinate as an
unstable normal coordinate of the total system �=system
+bath�. This reaction coordinate was decoupled from the
rest, free from the recrossing problem, and can a priori iden-
tify the destination of the reaction at any instant solely by the
value of that reaction coordinate. This indicates that the ap-
propriate coordinate to mediate the reaction may have to in-
volve all the coordinates of the system and the thermal bath
because they are mutually coupled, in general.7

In the previous paper,8 we have presented a formulation
for analyzing nonlinear dynamics of chemical reactions in
the region of saddle in condensed phase. We adopted the
description of the reaction system by multidimensional un-
derdamped Langevin equation without any assumption for
the form of the potential of mean force. The theory explicitly
takes into account nonlinearities of the �reacting� system and
their couplings with the surrounding environment via frictiona�Electronic mail: skawai@es.hokudai.ac.jp.
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constants and fluctuating, stochastic random force. It was
shown that under certain conditions, a coordinate transfor-
mation can be performed to give a new coordinate to mediate
reaction that is decoupled from all the other coordinates, as a
nonlinear functional of the original coordinates and veloci-
ties of the system and the random force with the friction
constants. The sign of the new reaction coordinate in the
region of saddle can predict the fate of the reaction, that is,
whether the trajectory will proceed to the product by over-
coming the barrier or be carried back to the reactant.

In this article, in order to demonstrate the potential of the
theory, we analyze nonlinear reaction dynamics of under-
damped Langevin equation of a model system. We scrutinize
how the theory can provide us with means to address the
question of what determines the destination of the reaction in
a thermally fluctuating environment.

II. THEORY

We present a brief summary of the theory we developed
in the previous paper.8 Chemical reactions in condensed
phase are described by a multidimensional Langevin equa-
tion,

q̈ = −
�U

�q
− �q̇ + ��t� , �1�

where q is the normal mode position coordinates of the sys-
tem �solute�, U is the potential �of the mean force�, � is the
friction constant, and ��t� describes the random force from
the solvent. Although the theory is applicable to systems of
any dimensions, we illustrate the theory with a specific ex-
ample of the Müller–Brown potential9 �See Sec. III� as U, for
which case we have two position coordinates q= �q1 ,q2�. The
trajectory calculation is performed10 with the random force
sampled according to the fluctuation-dissipation theorem,

���t���0�T� = 2kBT���t� , �2�

where ��0�T is the transpose of the vector ��0�, T is the
temperature, and kB is the Boltzmann constant. The force
from the potential U can be expanded in a Taylor series,

−
�U

�qj
= − kjqj + ��m��2

� j,mq1
m1 . . . qn

mn, �3�

with the expansion coefficients kj and � j,m for the linear and
the nonlinear parts, respectively. Here, �m�=� jmj and ��m��2

sums over combinations of mj satisfying �m��2.
The theory introduces a nonlinear coordinate transforma-

tion that involves both the position �q1 ,q2� and the velocity
�q̇1 , q̇2� to introduce a special coordinate system
y= �y1 ,y2 ,y3 ,y4�. The purpose of the transformation is to
make the equation of motion into the following form:

ẏ1 	 ��1 + c1�t��y1, �4�

ẏ2 	 �2y2 + c2�y,t� , �5�

ẏ3 	 �3y3 + c3�y,t� , �6�

ẏ4 	 �4y4 + c4�y,t� . �7�

Here �1�0 is a positive real value, �2�0 is a negative real,
and �3 and �4 are complex numbers with a negative real part,
conjugate to each other. The coefficient c1�t� depends only
on time and not on the coordinates. The other terms cj�y , t�
�j=2,3 ,4� can take any functional forms. The solution of
Eq. �4� is given by

y1�t� = y1�t0�exp
�
t0

t

��1 + c1�t���dt�� , �8�

where t0 is a certain instant of time �the initial condition�. If
c1�t� does not exceed �1 in magnitude �more precisely, see
Eq. �34� of the previous paper8�, we have y1�t�→ �	 as
t→+	. That is, the motion along y1 is unstable, correspond-
ing to the motion sliding down the barrier of reaction. The
direction �the sign� of this motion along y1 is determined by
the initial sign of y1�t0� and does not change with time. One
can thus predict the fate of the reaction �whether the reaction
system proceeds to the product or goes back to the reactant�
solely by the sign of y1 at any instant when it is in the saddle
region. This is thanks to the fact that the equation of motion
along y1 does not depend on the other coordinates �y2 ,y3 ,y4�
in Eq. �4�.

The detailed procedure for finding the transformation to
make the equation into the form of Eq. �4� is given in the
previous paper.8 The resulting transformation from the origi-
nal coordinates �q , q̇� to y1 is generally expressed in the fol-
lowing form:

y1 = a1q1 + a2q̇1 − S��1, 
̃1��t� + F0����t�

+ ��m��2
wmq1

m1 . . . qn
mnq̇1

mn+1 . . . q̇n
m2n

+ �
�m��1

Fm����t�q1
m1 . . . qn

mnq̇1
mn+1 . . . q̇n

m2n. �9�

All the coefficients depend on the friction constants, while

only S��1 , 
̃1��t�, F0����t�, and Fm����t� include the random
force and are therefore time dependent.

In the previous paper,8 the physical interpretation of each
term appearing in Eq. �9� was also given. Briefly, the first
two terms correspond to linear approximation that reflects
the harmonic part of the potential and friction constant. The

third term S��1 , 
̃1��t� expresses direct environment effect,
that is, the kick by the random force along the reactive nor-
mal mode direction. The terms with the coefficients wm come
from the nonlinearity of the system �here, nonlinearity means
both nonlinear couplings among modes and nonlinearity
along each mode’s coordinate�. The rest terms �with
F0����t� and Fm����t�� are the combined effects of the envi-
ronment and the nonlinearity, in the sense that they arise only
when there exist both the random force and the nonlinearity
in the potential. For example, the terms of F0����t� tell us
how much the vibrational motion along the nonreactive
mode changes the reactivity through nonlinear couplings be-
tween the nonreactive and the reactive modes when the non-
reactive mode is excited by a kick from the environment.
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Those of Fm����t� tell us how much the amplitude of cou-
plings among �q , q̇� depends on the ��t�: The random force
disturbs the position of the system on the potential, resulting
in the change in the coupling strength.

Equation �9� above can be calculated only when one
knew the instance of the random force ��t� for all the past
and the future time in advance. In practice, however, what
one may assume a priori is the statistical properties of ��t� as
an ensemble rather than a single instance. In the previous
paper,8 using the statistical properties of random force such
as the fluctuation-dissipation theorem, we also analytically
formulated the ensemble average of the reaction coordinate
y1 over all realizations of ��t�,

�y1� = a1q1 + a2q̇1 + F̄0�kBT�

+ ��m��2
wmq1

m1 . . . qn
mnq̇1

mn+1 . . . q̇n
m2n

+ ��m��1
F̄m�kBT�q1

m1 . . . qn
mnq̇1

mn+1 . . . q̇n
m2n, �10�

where the time-independent coefficients F̄0�kBT� and

F̄m�kBT� are the averages of the corresponding terms in Eq.
�9� and are functions of temperature through Eq. �2�. The
direct environment effect vanishes by taking the average of
��t�.

III. MODEL SYSTEM

As a model system we use the Müller–Brown potential,9

which has often been used as a test system for searching
algorithms of minima and saddle points. The potential U is

expressed in terms of two position coordinates �Q1 ,Q2� by

U�Q1,Q2� = �
i=1

4

Ai exp�ai�Q1 − Q1,i
0 �2 + bi�Q1 − Q1,i

0 ��Q2

− Q2,i
0 � + ci�Q2 − Q2,i

0 �2� , �11�

with A= �A1 ,A2 ,A3 ,A4�= �−200,−100,−170,15�, a= �−1,
−1,−6.5,0.7�, b= �0,0 ,11,0.6�, c= �−10,−10,−6.5,0.7�, Q1

0

= �1,0 ,−0.5,−1�, and Q2
0= �0,0.5,1.5,1�. The contour plot of

the potential is shown in Fig. 1�a�. This system possesses
three minima and two saddle points. The locations, energies,
and normal mode frequencies �without friction� of the sta-
tionary points are summarized in Table I. The normal mode
frequencies at the two saddles �without friction� simply re-
flect the curvatures of the potential. The friction constant is
set to be proportional to unit matrix �ij =30�ij. This value
was regarded as the underdamped case because it is of the
same order with the normal mode frequency of the system.

In the simulation we prepared initial conditions around
the saddle points, and then propagated the trajectory until it
“settles down” in either of the wells. The propagation was
performed by the method proposed by Ermak and
Buckholz10 with the random force sampled according to the
fluctuation-dissipation theorem with time step 10−3. As a cri-
terion for the destination of the reaction, the system was
judged to have settled down in the well when the energy
�defined as the kinetic energy plus the potential� becomes
less than Umin+2kBT after leaving the region of the saddle.
Here Umin is the potential at the bottom of each well and
2kBT the average thermal energy of two degrees of freedom

FIG. 1. �a� Contour plot of Müller–Brown potential. The contours are spaced by 10. Magnifications of the potential surface with configuration space normal
mode coordinates are shown for the regions of �b� saddle 1 and �c� saddle 2. The contours are spaced by 1. The coordinate q1 corresponds to the reactive
direction, and q2 is the nonreactive one. The ridge of the potential is shown by bold orange line. For saddle 1, the ridge almost coincides with the q2 axis.

TABLE I. Name, location, energy, and frequencies of the stationary points.

Name Q1 Q2 Energy

Normal mode frequencies

Reactive Nonreactive

Minimum 1 �0.558 1.442 �147
Minimum 2 0.623 0.028 �108
Minimum 3 �0.050 0.467 �81
Saddle 1 0.212 0.293 �72 27.1 22.6
Saddle 2 �0.822 0.624 �40 27.4 22.1
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system in thermal bath of temperature T. The smallest energy
difference between a saddle and a minimum is that of saddle
1 and minimum 3, which is equal to 9. Therefore, the repre-
sentation of the system having settled down in either of the
wells becomes meaningless unless kBT�9 /2 is satisfied.

We introduce position space normal mode coordinates
�q1 ,q2� which diagonalize the potential at each saddle point.
The directions are shown in Figs. 1�b� and 1�c�. We used the
same symbol for both saddle points, although the directions
are different. Note here that the configuration space normal
mode coordinates q are functions of only the position coor-
dinates, and diagonalize the harmonic part of the potential,
while the normal mode coordinates u in the position-velocity
space defined in Eqs. �7� and �8� in the previous paper are
functions of both the position and the velocity, and diagonal-
ize the 2n�2n matrix consisting of the harmonic potential,
the friction, and the kinetic energy.

IV. RESULTS AND DISCUSSION

A. An illustrative example of reactive and nonreactive
trajectories

Figure 2 shows two examples of trajectories with the
contours of the potential. The green line shows a reactive
trajectory that starts on one side of the barrier, which is here
defined naïvely as q1=0, passes over it and goes to the other
side. The red line is a nonreactive trajectory that crosses the
barrier but is reflected back into its original region.

In Fig. 3�a�, the same trajectories are plotted in position
�q1� and velocity �q̇1� along the reactive direction. The ve-
locity fluctuates more significantly than the position due to
the random force. The direction of q1 in the configuration
space is shown in Fig. 2. In Fig. 3�a�, we also show the
normal mode coordinates �u1 ,u2� in the position-velocity
space that diagonalize the linear part �see Eqs. �7� and �8� in
the previous paper�. The normal mode coordinate u1 corre-
sponds to the unstable motion sliding down the barrier.

Figure 3�b� shows plots of the two trajectories in the
relative coordinates �x1 ,x2� introduced in Sec. IIB in the pre-
vious paper. The trajectories have become much smoother
than the corresponding plots in Fig. 3�a�. This implies that
the shift of coordinates12–14,19 incorporates the effect of the
random force to some extent. However, the nonreactive tra-
jectory starts at x1�0, crosses the line x1=0, and finally
returns to the left side of the figure. Therefore this line still
does not function as the boundary of reaction when signifi-
cant nonlinearities exist in the potential U.

Figure 3�c� plots the two trajectories in the normal form
�NF� coordinates �y1 ,y2� �see Sec. IIC in the previous paper�.
The coordinates are calculated by partial NF up to the second
order perturbation. It is clearly seen that y1=0 separates cor-
rectly the reactive and the nonreactive trajectories. This
means that the newly introduced reaction coordinate y1 can
tell the reactivity of the system correctly even in the presence
of fluctuating environment and nonlinearity.

B. Reaction probabilities

Figure 4 shows the numerical results of reaction prob-
abilities Preaction, for three different temperatures kBT

FIG. 2. Examples of trajectories with the effects of friction and random
force, shown superimposed with contours of the surface of the potential
U�q�. The configuration space normal mode coordinates �q1 ,q2� are shown.
The friction is chosen to be comparable in size with the harmonic frequen-
cies at the saddle point. The temperature is below the barrier height relative
to the minima. A reactive trajectory is shown by the green line and a non-
reactive trajectory is shown in red. The coordinate q1 corresponds to the
reactive direction and q2 corresponds to the nonreactive �vibrational� mode.
The ridge of the potential is shown by the orange dotted line.

FIG. 3. Examples of trajectories �same as Fig. 2� plotted in three sets of coordinates. �a� Trajectories plotted in the position-velocity space. The normal mode
coordinates �u1 ,u2� in the position-velocity space, which diagonalize the linearized equation of motion, are also shown. �b� Trajectories plotted in relative
coordinates �x1 ,x2� obtained by subtracting the reference trajectory from �u1 ,u2�. The trajectories have become smooth but cross the line x1=0. �c� Trajectories
plotted in normal form coordinates �y1 ,y2� obtained through a nonlinear transformation from �x1 ,x2�. The coordinates are obtained by second order pertur-
bation to normalize the equation of motion for both y1 and y2. The space defined by y1=0 now functions as a boundary that separates the reactive and the
nonreactive trajectories.
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=0,1 ,3, as functions of q1 �i.e., the reactive normal mode in
the coordinate space�. The reaction probability for a surface
of q1=� is given by

Preaction�q1 = ��

=
dqdq̇��q1 − ��P�q, q̇�exp�− E�q, q̇�/kBT�

dqdq̇��q1 − ��exp�− E�q, q̇�/kBT�
.

�12�

We took each surface of constant q1 on which all the other

�q , q̇� are sampled according to the Boltzmann distribution.
Then the trajectory calculation was performed starting from
these initial conditions with different instances of random
forces � satisfying Eq. �2� with the same kBT. P�q , q̇� and
E�q , q̇� denote the reaction probability for a given initial con-
dition �q , q̇� and a sum of the kinetic and the potential ener-
gies, respectively,

E�q, q̇� = �q̇1
2 + q̇2

2�/2 + U�q1,q2� . �13�

Here kBT=0 corresponds to the situation where there is
no random force �Eq. �2�� and no initial excitation along the
nonreactive mode. Therefore Preaction is either 0 or 1. The
positive side �q1�0� is reactive and the negative side �q1

�0� is nonreactive. Therefore the halfway point �Preaction

=1 /2� at q1=0 can be regarded as the boundary between the
reactive and nonreactive initial conditions at zero tempera-
ture. As the temperature increases, Preaction takes intermediate
values between 0 and 1. This results in broadening of the plot
of Preaction in Fig. 4 compared to the steplike behavior at
kBT=0. The major origin of this broadening was found to be

the fluctuation of the direct solvent effect S��1 , 
̃1��t� in Eq.

�9� for the ensemble of 
̃1�t�. In nonzero temperature, the
halfway point Preaction=1 /2 can also be regarded as a bound-
ary of reaction that divides the space �one dimension in this
case� into a “mainly reactive” �Preaction�1 /2� region and a
“mainly nonreactive” �Preaction�1 /2� one. The boundary is
slightly shifted to the negative-q1 direction for saddle 1 �Fig.
4�a�� and significantly to the positive-q1 direction for saddle
2 �Fig. 4�b��. It implies that the normal mode picture q1

cannot provide us insights about the fate of the reaction �ex-
cept at zero temperature�: In order to identify the location of
the reaction boundary that divides the space into mainly re-
active and mainly nonreactive regions, one cannot assign
without trajectory calculations �unless one has information of
y1 in Sec. II�.

Next we show the results of normal form calculations
formulated in the previous paper which was applied to the
Müller–Brown system. Normal form calculations have been
performed up to the second order of perturbation. In Fig. 5,
the surface q1=0 is taken and the reaction probability on the
surface is plotted against the averaged normal form reaction
coordinate y1. The reaction probability for a surface of �y1�
= is given by

Preaction��y1� = ;q1 = 0� =
dqdq̇��q1����y1� − �P�q, q̇�exp�− E�q, q̇�/kBT�

dqdq̇��q1����y1� − �exp�− E�q, q̇�/kBT�
. �14�

FIG. 4. Reaction probabilities as functions of the normal mode reaction
coordinate q1 for �a� saddle 1 and �b� saddle 2 of the Müller–Brown poten-
tial surface. Average is taken for the other coordinates �Boltzmann distribu-
tion� and the random force �Gaussian distribution given by dissipation-
fluctuation theorem�. The temperatures are kBT=0 �diamond�, 1 �circle�, and
3 �square�.

224506-5 Dynamic pathways to mediate reactions J. Chem. Phys. 131, 224506 �2009�
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Here �y1� is calculated as a function of �q , q̇� by Eq. �10�. In
the sampling by the Boltzmann distribution in Eq. �14�, the
initial conditions for �q , q̇� except q1 are “restricted” �or
highly populated� near zero in the region of the saddle point
except at very high temperature T because the energy of the
system E in the Boltzmann factor increases as the size of
these variables increases. However, since q1 is along the un-
stable direction of the potential, the Boltzmann factor in-
creases the statistical weight for large �q1� so that expansions
such as Eq. �3� cannot be validated. Since our interest in the
present paper is the dynamics in the saddle region, we have
posed the condition q1=0 into Eq. �14� in order to perform
the sampling in the saddle region. Note also that the condi-
tion �y1�= makes no restriction on the �q1� to small values
�e.g., y1=0 forms the unstable manifold emanating from the
saddle region; see also Fig. 3�. In Fig. 5, we take the same
simulation data for q1=0 as used in the numerical simulation
of Fig. 4. One can see that as the order of the perturbation
increases, the halfway point Preaction=1 /2 comes closer to the

origin �y1�=0. This shows that the normal form theory cor-
rectly gives the location of the boundary of reaction between
the mainly reactive region and the mainly nonreactive region
even in the presence of thermal fluctuation.

Normal form theory presented in this paper is capable of
providing physical insights into the observed behavior of re-
action probabilities, as analytical expressions for the reaction
coordinate are available. Explicit expressions for the aver-
aged normal form reaction coordinate �y1� are obtained up to
the second order,

�y1
�2�� = 11.887q1 + 0.258q̇1 + 0.007kBT

+ �2��m��3
wmq1

m1q2
m2q̇1

m3q̇2
m4�30 terms�

+ 0.008kBTq1 + 0.002kBTq̇1 − 0.033kBTq2

+ 0.005kBTq̇2 �15�

for saddle 1 and

�y1
�2�� = 12.041q1 + 0.260q̇1 − 0.020kBT

+ �2��m��3
wmq1

m1q2
m2q̇1

m3q̇2
m4�30 terms�

+ 0.087kBTq1 + 0.002kBTq̇1 + 0.015kBTq2

− 0.001kBTq̇2 �16�

for saddle 2, where the terms are aligned in the same order as
Eq. �10�. �The full expressions of �y1� including the numeri-
cal values of wm and also the normal form reaction coordi-
nate y1 before taking the ensemble average of random force
are available online in supplementary material of this
paper11�. In the right hand side of each equation, the first two
terms linear in q1 and q̇1 with constant coefficients come
from the linear approximation �Eq. �8� in the previous pa-
per�. The third term originating from F0����t� makes the shift
of the coordinate origin observed in Fig. 4 �see below�. The
last four terms linear �at least up to second order� in q and q̇
with temperature-dependent coefficients originate from the
environment-mediated coupling effect of Fm����t�: The force
from the environment ���t� ,�� disturbs the position of the
system on the landscape of potential U, resulting in the
change in the coupling strength.

To begin, let us briefly look into the “structure” of these
expressions. As first indicated by Van der Zwan and Hynes,5

the coordinate to mediate the reaction involves all the coor-
dinates and velocities of the system and the thermal bath.
The appearance of q2 and q̇2 is the effect of nonlinear cou-
plings because they mean that the excitation along the non-
reactive mode influences the reaction. There are only linear
terms in q and q̇ for the environment-mediated coupling ef-

fect �F̄m�kBT��, while the polynomial with the coefficients
wm is cubic. This is due to the truncation in Eqs. �15� and
�16� at the second order perturbation �O��2��. Note that the

order assignment is such that the element S�� j , 
̃ j��t� is of
O��� �see Eqs. �11� and �12� in the previous paper�. We have
temperature-dependent coefficients in the third term and the

last four terms, corresponding to F̄0�kBT� and F̄m�kBT� in Eq.
�10�, respectively. They arise from convolutions or products
of S�� ,
 j��t� such as �S��3 ,S��1 ,
i�S��2 ,
 j��� and

FIG. 5. Reaction probabilities as functions of the averaged normal form
reaction coordinate �y1� for �a� saddle 1 and �b� saddle 2 of the Müller–
Brown potential surface. The temperatures is kBT=3. Plots for zeroth, first,
and second order perturbations are shown in diamond, circle, and square,
respectively.
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�S��1 ,
i�S��2 ,
 j��. The numbers �i are combinations of � j as
in Eq. �26� of the previous paper.8 Before taking the en-
semble average of ��t�, F0����t� and Fm����t� contain 355
and 612 terms, respectively.11 It was also found that the more
the friction constant � increases, the more the contributions
of velocities q̇ in y1 and �y1� tends to decrease in magnitude
�see the supplementary material available online of this
paper11�. This provides us with the firm basis to address the
questions of what size of frictions make the effect of moment
of inertia negligible.

Let us turn to the following question: “What is the pri-
mary driving force to make the reaction boundary Preaction

=1 /2 migrate?” In Fig. 4 it was found that the direction of
the migration of the boundary is to q1�0 for saddle 1 and
q1�0 for saddle 2. The amount of the shift is larger for
saddle 2 than that for saddle 1, and it increases when tem-
perature T increases. In fact, simple observation of the third
term in Eqs. �15� and �16� already tells some feature of the
shift, because it increases with temperature, has opposite
sign for the two saddles and its absolute value is larger for
saddle 2 than saddle 1. The interpretation for the shift for the
case of �q2 , q̇1 , q̇2� �t=0= �0,0 ,0� is given as follows: From
Eqs. �15� and �16�,

�y1
�2�� = 0.007kBT + �11.887 + 0.008kBT�q1 + O�q1

2�

for saddle 1 and

�y1
�2�� = − 0.020kBT + �12.041 + 0.087kBT�q1 + O�q1

2�

for saddle 2. This implies that in the vicinity of q1=0, �y1�
	 F̄0+ �a1+ F̄m��q1 �F̄m� is the coefficient of q1 in
environment-mediated coupling terms�. Then, q1 at the reac-
tion boundary of Preaction=1 /2, where �y1�=0 is given by

q1	−F̄0 /a1 since a1 arises from the linear approximation

which is much larger than the F̄m�. Namely, the primary driv-
ing force to shift the reaction boundary outward from q1=0

mainly originates from F̄0. The sign of F̄0 depends on the
nonlinear couplings between the reactive q1 and nonreactive
mode q2 in the region of the saddle.

By comparing the term F̄0�kBT� with the corresponding
terms F0����t� before taking the average,11 we can see that
this term comes from terms of the following types:

S��1,
1�S��2,
1�, S�S��1,
1�S��2,
1�� ,

S��1,
2�S��2,
2�, S�S��1,
2�S��2,
2�� , �17�

with �1 ,�2 being some constants. Note that terms like

�S��1 ,
1�S��2 ,
2�� do not contribute to F̄0�kBT� because in
this paper, we use uniform friction �12=0. The contribution
can be evaluated quantitatively for each term. For saddle 2,
we have found that 77% of contribution is from 
2, whereas
76% is from 
1 for saddle 1. Since 
2 is the random force
along the direction of the nonreactive mode, the interpreta-
tion for saddle 2 is as follows: The nonreactive mode vibra-
tion is first excited by the kick from the solvent. The ridge of
the potential surface around saddle 2 �Fig. 1�c�� has a curved
shape toward the positive direction of q1. Hence, as the non-
reactive vibrational mode is excited, the effective position of

the barrier along the reactive direction shifts toward the posi-
tive side.

Due to the order assignment in the theory �see Eqs. �11�
and �12� in the previous paper�, all the terms in Eq. �17� are
assigned O���. Therefore the shift of the origin for the case
of �q2 , q̇1 , q̇2� �t=0= �0,0 ,0� is accounted for by the first order
perturbation. In fact, the increase in the order to the second
order does not improve the situation very much �see Figs.
5�a� and 5�b��. The initial condition of �q2 , q̇1 , q̇2� �t=0

= �0,0 ,0� is of course one example and the physical interpre-
tation of which terms dominate a shift �whenever it exists� in
q1 depends on the initial condition.

One of the striking consequences of our theory is this:
such “two-step” scenario of direct nonreactive mode excita-
tion by the solvent followed by interaction of the nonreactive
mode with the reactive mode can be called “combined ef-
fect” of the solvent and the nonlinearity inside the solute. By
the direct excitation of the nonreactive mode, we mean the
transition state trajectory �Eq. �11� in the previous paper�
introduced by Bartch et al.12–14 In their theory, however, the
coupling among the normal modes were ignored so that the
motion along the normal mode reactive coordinate was inde-
pendent of the nonreactive modes. Under the existence of
coupling, however, the excitation of the nonreactive mode
can affect the reaction through the nonlinear coupling be-
tween the reactive and the nonreactive modes. Our theory
here is capable of handling such general nonlinear cases.

We have stated that the coefficient c1�t� appearing in the
equation of motion of y1 �Eq. �4�� must not exceed �1 in
magnitude in order that the sign of y1 determines the fate of
the reaction. Here we check the condition in the present nu-
merical example by calculating the mean and variance of
c1�t�. For saddle 1 and kBT=3, it gives

�1 = 15.988, �c1�t�� = − 2.594,

��c1�t� − �c1�t���2�1/2 = 4.778, �18�

and for saddle 2 with the same temperature,

�1 = 16.239, �c1�t�� = − 0.449,

��c1�t� − �c1�t���2�1/2 = 5.560. �19�

Thus it is confirmed that c1�t� is smaller than �1 at least on
average.

C. Dynamical dividing surfaces buried in a thermal
fluctuation

Figure 6 shows the reaction probability at saddle 2 as a
function of nonreactive normal mode coordinates �q2 , q̇2� �t=0

by the gradation of color. There the initial conditions for the
reactive mode is fixed to q1 �t=0=0, and q̇1 �t=0=0.1, 0.3, and
0.5, for �a�, �b�, and �c�, respectively. The dependence of the
reaction probability on the nonreactive mode, seen as the
nonuniformity in the plot, is a consequence of the nonlinear
coupling between the reactive and the nonreactive modes.
Although the probability is not 0 or 1 due to the stochastic
nature of the random force, we can still find a distinction
between mainly reactive region �that with lighter colors�, and
mainly nonreactive region �with darker colors�.

224506-7 Dynamic pathways to mediate reactions J. Chem. Phys. 131, 224506 �2009�

Downloaded 13 Jan 2010 to 133.87.26.227. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



The purple line in Fig. 6 is given by �y1�=0 from the
second order normal form calculation, which can be obtained
as an analytical function of q and q̇ of the system without
performing any trajectory calculation. For q̇1 �t=0=0.1, the
mainly reactive region is small centered around the origin.
As q̇1 increases, the region becomes larger and the probabil-
ity at the center also increases. In all the cases, the line given
by �y1�=0 correctly separates the mainly reactive and the
mainly nonreactive regions.

In Fig. 7, we further add one dimension of the plot, i.e.,
q̇1. The other coordinate, q1, takes the same value as Fig. 6.
Three semitransparent surfaces show the section of the sur-
face �y1�=0 for kBT=0,1 ,3. The yellow horizontal plane is
given by q̇1=0.3 and therefore corresponds to the plot in Fig.
6�b�. Basically, the system has more reaction probability for
larger positive value of the velocity q̇1 along the reactive
mode. Thus the upper part of the figure is more reactive than
the lower. However, the border between the mainly reactive
and the mainly nonreactive regions shows dependence on q2,
q̇2, and the temperature.

By such plots, one can visually capture the physical in-
terpretations given in the preceding paragraphs. Here the
physical origins of the shapes of the surfaces are schemati-
cally superimposed in Fig. 7. All the three surfaces are
curved in contrast to a plane of q̇1=const, implying that re-
activities at each temperature depend on the nonreactive
mode �q2 , q̇2�. This curved shape is interpreted as it primarily
arises from the intrinsic nonlinear couplings of the system
�i.e., the terms with wm� because the dependence of reactivity
exists even at kBT=0. The surface shifts upward in the direc-
tion of q̇1 as the temperature increases. The shift along q̇1 can
be explained in a similar way with that along q1 given in Sec.
IV B. Note that the shift exists even at �q2 , q̇2�=0 and we fix
q1=0 in Fig. 7. In this case, at least from small q̇1, we have

�y1�	 F̄0�kBT�+a2q̇1. The reaction boundary �y1�=0 can then

be given by q̇1	−F̄0�kBT� /a2. Thus the primary reason for
the shift of the boundary surface with the temperature is the

temperature dependence of F̄0�kBT�, whose physical origin is
the effect of the random force from the environment com-
bined with the nonlinearity of the system, as has been ex-
plained in Sec. IV B. If the nonreactive mode �q2 , q̇2� has
nonzero values, the position of the reaction boundary

changes due to the terms with wm and F̄m�kBT� in Eq. �10�.
Then, due to the temperature dependence of F̄m�kBT�, the
shape �i.e., gradients, curvature, etc.� of the surface also
changes with temperature rather than a parallel translation. In
other words, the extent of the nonlinear couplings among the
modes �q , q̇� depend on the temperature, and therefore the
change in the shape of the boundary surface can be inter-
preted as the environment-mediated coupling.

V. SUMMARY AND OUTLOOK

We demonstrated the potential of the framework we de-
veloped recently for the analyses of condensed phase chemi-
cal reactions. We used the Müller–Brown potential,9 which
has distinct two saddles with three minima, as an illustrative
example. Along the same direction recently established in
many degrees of freedom, Hamiltonian systems that extract a
new reaction coordinate decoupled from the other �nonreac-
tive� coordinates from the phase space �one can see several

FIG. 6. Reaction probability as a function of nonreactive mode coordinates �q2 , q̇2� at t=0 obtained from numerical simulations with kBT=1 at saddle 2. The
initial values for the reactive mode are fixed to q1 �t=0=0 and q̇1 �t=0=0.1, 0.3, and 0.5, for �a�, �b�, and �c�, respectively. Purple line is given by �y1�=0
calculated by second order normal form. It is seen that the line locates the boundary between the mainly reactive and the mainly nonreactive regions.

FIG. 7. Surfaces obtained by �y1�=0 on the three-dimensional section of
q1 �t=0=0 at saddle 2. Blue, purple, and red semitransparent surfaces are
�y1�=0 for kBT=0,1 ,3, respectively. The yellow plane shows the plane
given by q̇1=0.3 corresponding to panel �b� of Fig. 6. Physical interpreta-
tions for the shapes of the surfaces are also shown.
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reviews7,15–21 and books22,23�, our theory extracts a reaction
coordinate �called y1 in this paper� at least in the region of
rank-one saddle, decoupled from the other �nonreactive� co-
ordinates, from the reaction system even when it is embed-
ded in a thermally fluctuating environment. The numerical
simulations showed that reactive and nonreactive trajectories
are separated by the boundary y1=0, in which the nonlinear-
ity and the solvent effects are explicitly taken into account.
Even though taking the statistics of the fluctuating random
force disables the unique determination of the fate of the
reaction to some extent, the average position of the boundary
��y1�=0� remains robustly to provide a dynamical structure
to separate the mainly reactive and mainly nonreactive re-
gions in the position-velocity space of the system.

The analytical expression of y1 in terms of the positions
and the velocities before transformation provides a way of
analyzing the physical origin of the reactivity. In particular,
the numerical simulation in this paper showed an example of
combined effects of the solvent and the nonlinearity: “effec-
tive barrier shift” that was caused by the vibrational excita-
tion of the nonreactive mode by the kick from the environ-
ment, followed by the nonlinear interaction between the
nonreactive and the reactive modes.

In the preceding paper, we discussed the possible reso-
nance mechanism to break down the existence of y1, which
makes reaction totally unpredictable �i.e., the birth of “full
stochasticity” in reactions�. In the model system with chosen
temperatures and friction constants in this paper, we have not
met such situation up to the order we considered.

Given, for instance, any specific value or a distribution
of initial conditions in the barrier region �e.g., Ref. 24�, our
framework enables us to analytically calculate the probabil-
ity distributions of y1 �hence the reaction probability�. For
example, the linear shift �type �ii� in our classification� is
zero on average but contributes to the fluctuation, whereas
the terms second order in the random force �type �iv�� has
nonzero average. These physical insights can help us to un-
derstand what type of specific, initial distribution should be
prepared in the region of saddle, so as to lead us to a desired
product. We believe that our theory can provide us with
physical insights to control chemical reactions in a fluctuat-
ing media, although several things remain to be considered
such as quantum effects.20,25 It is also expected to shed light

on the mechanism of why biological �nonlinear� systems can
robustly perform their functions under unpredictable, sto-
chastic thermal fluctuation.
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