| Title | Desulfurizing Difluorination Reaction of Benzyl Sulfides Using IF5 |
| :---: | :--- |
| Author(s) | Fukuhara, Tadahito; Hara, Shoji |
| Citation | Synlett, 2009(2), 198-200 <br> https:/doi.org/10.1055/s0028-1087511 <br> Issue Date <br> 2009-01-22 <br> Doc URL <br> http://hdl.handle.net/2115/42569 <br> Typhts <br> © 2009 Georg Thieme V erlag <br> File Information <br> hara 108.pdf |

Instructions for use

# Desulfurizing Difluorination Reaction of Benzyl Sulfides Using IF $_{5}$ 

Tadahito Fukuhara and Shoji Hara*<br>Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Fax: +11-706-6556; E-mail: shara@eng.hokudai.ac.jp
Received: The date will be inserted once the manuscript is accepted.


#### Abstract

A desulfurizing difluorination reaction of benzyl sulfides having a functional group such as an ester, a ketone, a nitrile, or an amide was performed by a reaction with $\mathrm{IF}_{5}$. Consequently, gem-difluoro compounds could be obtained selectively.


Key words: fluorination, desulfurization, hypervalent iodine, oxidation, sulfide

Organofluorine compounds often exhibit unique biological activities, ${ }^{1}$ particularly, $\alpha, \alpha$-difluorocarbonyl compounds which are widely used in various areas of bioorganic and medicinal chemistry. ${ }^{2}$ Several methods have been developed for the synthesis of $\alpha, \alpha$-difluorocarbonyl compounds, such as Pummerer-type fluorination of $\alpha$ thiocarbonyl compounds, ${ }^{3}$ electrophilic fluorination of carbonyl compounds, ${ }^{2 \mathrm{~b}, 4}$ deoxyfluorination of $\alpha$ ketocarbonyl compounds, ${ }^{5}$ and building-block methods. ${ }^{6}$ Pummerer-type difluorination of $\alpha$-thiocarbonyl compounds proceeds under mild conditions. However, the removal of the thio group from the products is difficult. The deoxyfluorination reaction of $\alpha$-ketocarbonyl compounds with (diethylamino)sulfur trifluoride (DAST) or Deoxofluor has been frequently used for the synthesis of $\alpha, \alpha$ difluorocarbonyl compounds. However, when this method is applied to the reaction with $\alpha$-diketones for the synthesis of $\alpha, \alpha$-difluoroketones, it is difficult to distinguish the two carbonyl groups in the substrate, and undesired side reactions can occur, such as the polyfluorination reaction. ${ }^{5 c, d}$

Previously, we reported the novel polyfluorination reaction of aryl alkyl sulfides using $\mathrm{IF}_{5}$ with concomitant migration of the arylthio group. ${ }^{7}$ During the study of fluorination of the sulfides using $\mathrm{IF}_{5}$, we found that in the reaction of benzyl sulfides 1 with $\mathrm{IF}_{5}$, a Pummerer-type fluorination and a desulfurizing fluorination reaction occur successively to give gem-difluoro compounds 2 selectively (Scheme 1).


Scheme 1

The reaction of ethyl 2-methylthio-2-phenyl acetate 1a with $\mathrm{IF}_{5}$ was examined (Table 1). The desulfurizing difluorination reaction of $\mathbf{1 a}$ proceeds at $0{ }^{\circ} \mathrm{C}$-room
temperature in hexane or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and ethyl 2,2-difluoro-2phenylacetate 2a was obtained selectively. On the other hand, the reaction is slower in polar solvents, such as DMF or THF, and even after 18 h , 1a remained unchanged.

Table 1 Solvent Effect in a Desulfurizing Difluorination Reaction ${ }^{\text {a }}$

|  | $\frac{\mathrm{IF}_{5}}{\text { solver }}$ |  |  |
| :---: | :---: | :---: | :---: |
| Solvent | React. time | Temp. ${ }^{\circ} \mathrm{C}$ | Yield (\%) ${ }^{\text {b }}$ |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 2 | 0 | 66 |
| hexane | 2 | 0 | 61 |
| hexane | 2 | rt | 73 |
| THF | 18 | rt | 0 |
| MeCN | 18 | rt | trace |

${ }^{\text {a }} 1.5$ eq of $\mathrm{IF}_{5}$ to 1a was used. ${ }^{\mathrm{b}}$ Isolated yield based on 1a
The present desulfurizing difluorination reaction is applicable to various benzyl sulfides (Table 2). The desulfurization reaction occurs not only in alkyl sulfides (Entries 1-4 and 6-8) but also in aryl sulfides (Entries 5 and 9). As aryl substituents, 1-naphthyl (Entry 6) and bromophenyl group (Entry 7) as well as phenyl group are effective in inducing the desulfurizing difluorination reaction. From the substrates with a functional group such as an ester (Entries 1, 6, and 7), ketone (Entries 2, 4, 5, and 8), nitrile (Entry 3), and amide (Entry 9), the corresponding gem-difluoro compounds (2a-h) could be obtained in good yields.

Both the Pummerer-type fluorination ${ }^{3,8}$ and desulfurizing fluorination ${ }^{8,9}$ of the sulfide are well known, but the desulfurizing difluorination reaction is rare. ${ }^{10}$ Consequently, two fluorine atoms can be introduced into the benzyl position, substituting for one sulfur group and one hydrogen atom.

For the desulfurizing difluorination reaction, the presence of an aryl group is critical. When butyl 2-methylthioacetate 4 was subjected to reaction with $\mathrm{IF}_{5}$, the Pummerer-type difluorination reaction occurs without desulfurization to give butyl $\alpha, \alpha$-difluoro- $\alpha$-(methylthio)acetate 5 selectively. The aryl group must be stabilizing a carbocation generated by the elimination of the sulfur group and accelerating the desulfurizing fluorination step. ${ }^{10}$ On the other hand, the presence of an electron-withdrawing group is not critical. When methyl benzyl sulfide 6 was used for the reaction
with $\mathrm{IF}_{5}$, desulfurizing difluorination reaction occured to give (difluoromethyl)benzene 7 (Scheme 2).



Scheme 2

The reaction possibly proceeds as follows: (1) a fluorine atom is introduced at the $\alpha$-position of the sulfur group via the Pummerer-type fluorination reaction to give a monofluoro sulfide 3. (2) Desulfurizing fluorination occurs to give a difluoro compound 2 . We tried to find the monofluorinated sulfide $\mathbf{3}$ in the reaction mixture, but failed. The second step, the desulfurizing-fluorination step, must be rapid under the conditions and it is difficult to find 3 (Scheme 3).


Scheme 3

In order to confirm the reaction mechanism, monofluorinated intermediate 3a was prepared by the other method. Previously, we reported the oxidative fluorination of the sulfides using $\mathrm{IF}_{5}-\mathrm{Et}_{3} \mathrm{~N}-3 \mathrm{HF}$ which did not cause the desulfurizing reaction. ${ }^{3 \mathrm{c}}$ When 1a was subjected to a reaction with $\mathrm{IF}_{5}-\mathrm{Et}_{3} \mathrm{~N}-3 \mathrm{HF}$ at $0{ }^{\circ} \mathrm{C}$ for 35 min , the consumption of $\mathbf{1 a}$ and formation of a new product could be confirmed by GC. After work up, ${ }^{19}$ F NMR analysis of the
crude mixture showed the formation of $\mathbf{3 a}(-140.19 \mathrm{ppm})^{10 \mathrm{a}}$ and the absence of $\mathbf{2 a}(-104.5 \mathrm{ppm})$. From the crude 3a, 2a was obtained in $70 \%$ yield by the reaction with $\mathrm{IF}_{5}$. This result supports the view that the present desulfurizing difluorination reaction proceeds through the intermediate 3, which was formed by the Pummerer-type fluorination reaction of 1 (Scheme 4).


Scheme 4

Table 2 Desulfurizing Difluorination of Various Benzyl Sulfides with $\mathrm{IF}_{5}{ }^{\text {a }}$

| Entry | ry 1 | Solvent | React time (h) | (h) Product Yie | Yield(\%) ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & \mathrm{Ph}-\mathrm{CH}-\mathrm{COOEt} \\ & \mathrm{MeS} \mathbf{1 a} \end{aligned}$ | hexane | 2 | $\begin{gathered} \mathrm{Ph}-\mathrm{CF}_{2}-\mathrm{COOEt} \\ \mathbf{2 a} \end{gathered}$ | 73 |
| 2 | $\begin{aligned} & \mathrm{Ph}-\mathrm{CH}-\mathrm{COMe} \\ & \mathrm{MeS} \mathbf{1 b} \end{aligned}$ | hexane | 2 | $\begin{gathered} \mathrm{Ph}-\mathrm{CF}_{2}-\mathrm{COMe} \\ \mathbf{2 b} \end{gathered}$ | (81) |
| 3 | $\mathrm{Ph}-\mathrm{CH}-\mathrm{CN}$ <br> MeS 1c | hexane | 2 | $\begin{array}{r} \mathrm{Ph}-\mathrm{CF}_{2}-\mathrm{CN} \\ 2 \mathrm{c} \end{array}$ | (71) |
| 4 | $\begin{aligned} & \mathrm{Ph}-\mathrm{CH}-\mathrm{COPh} \\ & \mathrm{MeS} \text { 1d } \end{aligned}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 0.75 | $\begin{gathered} \mathrm{Ph}-\mathrm{CF}_{2}-\mathrm{COPh} \\ \mathbf{2 d} \end{gathered}$ | 85 |
| $5^{\text {c }}$ | $p^{\mathrm{Ph}-\mathrm{CH}} \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{~S} \quad 1 \mathbf{d}^{\prime} \mathrm{COPh}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 1 | 2d | 73 |
| $6^{d}$ |  | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 0.5 |  | 70 |
| $7^{\text {B }}$ | $\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}-\mathrm{COOEt}$ <br> MeS <br> 1f $o: p=1: 4$ | hexane <br> 4 | $5 \quad \mathrm{~B}$ | $\begin{aligned} & \mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CF}_{2}-\mathrm{COOEt} \\ & \mathbf{2 f} \quad o: p=1: 4 \end{aligned}$ | 74 |
| 8 |  | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 0.4 Ph |  | 76 |
| 9 | $\begin{aligned} & {\mathrm{Ph}-\mathrm{CH}-\mathrm{CONEt}_{2}}_{1}^{\mathrm{P}} \text { 1h } \\ & \text { PhS } \end{aligned}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 1 | $\begin{gathered} \mathrm{Ph}_{-\mathrm{CF}_{2}-\mathrm{CONEt}_{2}}^{\mathbf{2 h}} \end{gathered}$ | 78 |

${ }^{\mathrm{a}}$ If otherwise not mentioned, the reaction was carried out at room temperature using 1.5 eq of $\mathrm{IF}_{5}$. ${ }^{\mathrm{b}}$ Isolated yields based on substrate used. In paretheses, NMR yields. ${ }^{\circ}$ The reaction was carried out at $0^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}}$ The reaction was carried out at $-20^{\circ} \mathrm{C}$.

Synthesis of ethyl 2,2-difluoro-2-phenylacetate (2a): To a $\mathrm{IF}_{5}-5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.975 \mathrm{~g}, 1.5 \mathrm{mmol})$ in a Teflon ${ }^{\mathrm{TM}}$ PFA bottle, a hexane solution ( 4 mL ) of ethyl 2-methylthio-2phenylacetate (1a) ( $210 \mathrm{mg}, 1.0 \mathrm{mmol}$ ) was added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 2 h . Then, the mixture was poured into aqueous $\mathrm{NaHCO}_{3}$ and extracted with ether three times. The combined organic phase was washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and dried over $\mathrm{MgSO}_{4}$. Purification by column chlomatography (silica gel / hexane-ether) gave 2a (144 mg ) in $72 \%$ yield. liquid; IR (liquid film): 2987, 1763, 1267, $1104 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.31(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.52(\mathrm{~m}$, $3 \mathrm{H}), 7.61(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376MHz, $\mathrm{CDCl}_{3}$ ): $\delta-104.49(\mathrm{~s}, 2 \mathrm{~F})\left(\mathrm{lit}^{5 \mathrm{ja}}-103.9\right)$; ${ }^{13} \mathrm{C}$ NMR
(100MHz, $\mathrm{CDCl}_{3}$ ): $\delta 13.82,63.09,113.36\left(\mathrm{t},{ }^{1} J_{\mathrm{c}-\mathrm{F}}=\right.$ 252.9 Hz ), $125.41\left(\mathrm{t},{ }^{3} J_{\mathrm{c}-\mathrm{F}}=6.7 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.61,130.96$ ( $\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{c}-\mathrm{F}}=1.9 \mathrm{~Hz}, 2 \mathrm{C}$ ), $132.81\left(\mathrm{t},{ }^{2} J_{\mathrm{c}-\mathrm{F}}=25.9 \mathrm{~Hz}\right), 164.21$ $\left(\mathrm{t},{ }^{2} J_{\mathrm{c}-\mathrm{F}}=35.5 \mathrm{~Hz}\right)$; $\mathrm{HRMS}(\mathrm{EI})$ Calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{2}$ : $\left(\mathrm{M}^{+}\right)$200.0649. Found: 200.0645.
2,2-Difluoro-1,2-diphenylethanone (2d): liquid; IR (liquid film): 1703, 1450, 1256, $1135 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.43-7.61(\mathrm{~m}, 8 \mathrm{H}), 8.02-8.04$ (m, $2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376MHz, $\mathrm{CDCl}_{3}$ ): $\delta-98.12(\mathrm{~s}, 2 \mathrm{~F})\left\{\mathrm{lit}^{11}\right.$ $-98.0(\mathrm{~s}, 2 \mathrm{~F})\} ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\mathrm{CDCl}_{3}$ ): $\delta 116.88$ (t, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=253.9 \mathrm{~Hz}\right), 125.59\left(\mathrm{t},{ }^{3} J_{\mathrm{c}-\mathrm{F}}=5.8 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.62$ (2C), 128.81 (2C), $130.25\left(\mathrm{t},{ }^{4} J_{\mathrm{c}-\mathrm{F}}=2.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 130.91$, $132.10,133.08\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{c}-\mathrm{F}}=24.9 \mathrm{~Hz}\right), 134.20,188.94\left(\mathrm{t},{ }^{2} J_{\mathrm{c}-}\right.$ $\left.{ }_{\mathrm{F}}=30.7 \mathrm{~Hz}\right)$; $\mathrm{HRMS}(E I)$ Calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}:\left(\mathrm{M}^{+}\right)$ 232.0700. Found: 232.0683.

Ethyl bromophenyl-2,2-difluoroacetate (a mixture of $o$ - and $p$-isomers, ratio; o:p $=1: 4$ ) (2f): liquid; IR (liquid film): $1767,1267,1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 1.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2.4 \mathrm{H}), 1.33(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $0.6 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1.6 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $0.4 \mathrm{H}), 7.34-7.75(\mathrm{~m}, 0.8 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1.6 \mathrm{H})$, 7.60 (d, $J=8.5 \mathrm{~Hz}, 1.6 \mathrm{H}$ ); ${ }^{19} \mathrm{~F}$ NMR (376MHz, $\mathrm{CDCl}_{3}$ ): $\delta-102.51$ (s, 0.4 F ), $-104.73(\mathrm{~s}, 1.6 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (ortho) ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 13.66,63.28,112.68$ $\left(\mathrm{t},{ }^{1} J_{\mathrm{c}-\mathrm{F}}=253.0 \mathrm{~Hz}\right), 120.24\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.8 \mathrm{~Hz}\right), 125.59(\mathrm{t}$, $\left.{ }^{4} J_{\mathrm{C}-\mathrm{F}}=1.9 \mathrm{~Hz}\right), 127.35,127.58\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.6 \mathrm{~Hz}\right), 132.11$, $132.74\left(\mathrm{t},{ }^{2} J_{\mathrm{c}-\mathrm{F}}=24.0 \mathrm{~Hz}\right), 162.92\left(\mathrm{t},{ }^{2} J_{\mathrm{c}-\mathrm{F}}=34.5 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR (para) ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 13.71,63.23,112.92(\mathrm{t}$, $\left.{ }^{1} J_{\mathrm{c}-\mathrm{F}}=252.6 \mathrm{~Hz}\right), 127.11\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5.8 \mathrm{~Hz}, 2 \mathrm{C}\right), 131.74(\mathrm{t}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.8 \mathrm{~Hz}\right), 131.85(2 \mathrm{C}), 133.93,163.63\left(\mathrm{t},{ }^{2} J_{\mathrm{c}-\mathrm{F}}=\right.$ 35.5 Hz ); HRMS(EI) Calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrF}_{2} \mathrm{O}_{2}:\left(\mathrm{M}^{+}\right)$ 277.9754. Found: 277.9757.

## 1-(3,4-Difluorophenyl)-2,2-difluoro-2-phenylethanone

 (2g): liquid; IR (liquid film): 1713, 1612, $1263 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.84-6.99(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ $7.61(\mathrm{~m}, 5 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376MHz, $\mathrm{CDCl}_{3}$ ): $\delta-100.12$ to $-100.22(\mathrm{~m}, 1 \mathrm{~F}),-100.61(\mathrm{~d}, \mathrm{~J}=$ $14.0 \mathrm{~Hz}, 2 \mathrm{~F}),-102.62$ to $-102.75(\mathrm{~m}, 1 \mathrm{~F})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 105.17\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{c}-\mathrm{F}}=25.9 \mathrm{~Hz}\right), 111.95$ $\left(\mathrm{dd},{ }^{2} J_{\mathrm{c}-\mathrm{F}}=22.0,{ }^{3} J_{\mathrm{c}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 116.10\left(\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=253.9\right.$ $\mathrm{Hz}), 118.73\left(\mathrm{dd},{ }^{2} J_{\mathrm{c}-\mathrm{F}}=12.5,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 125.78(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{c}-\mathrm{F}}=6.5 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.66,130.98\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{c}-\mathrm{F}}=1.9 \mathrm{~Hz}, 2 \mathrm{C}\right)$, $132.00\left(\mathrm{t},{ }^{2} J_{\mathrm{c}-\mathrm{F}}=25.2 \mathrm{~Hz}\right), 132.96-133.16(\mathrm{~m}), 162.24$ (dd, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=264.4,{ }^{2} J_{\mathrm{c}-\mathrm{F}}=12.5 \mathrm{~Hz}$ ), $166.15\left(\mathrm{dd},{ }^{1} J_{\mathrm{c}-\mathrm{F}}=\right.$ $\left.259.7,{ }^{2} J_{\mathrm{C}-\mathrm{F}}=12.5 \mathrm{~Hz}\right), 187.52\left(\mathrm{td},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=34.0,{ }^{4} J_{\mathrm{C}-\mathrm{F}}=\right.$ 2.9 Hz ); HRMS(EI) Calculated for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{O}:\left(\mathrm{M}^{+}\right)$ 268.0511. Found: 268.0518.
## Acknowledgment

We are grateful to Asahi Glass Co., Ltd. for their gift of $\mathrm{IF}_{5}$.

## References

(1) (a) Welch, J. T. Tetrahedron 1987, 43, 3123. (b) Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry; Wiley: New York, 1991. (c) Resnati, G. Tetrahedron 1993, 49, 9385. (d) Hiyama, T. In Organofluorine Compounds, Chapter 5; Springer: Berlin, 2000.
(2) (a) Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619. (b) Konas, D. W.; Coward, J. K. Org. Lett. 1999, 1, 2105. (c) Dubowchik, G. M.; Vrudhula, V. M.; Dasgupta, B.; Ditta, J.; Chen, T.; Sheriff, S.; Sipman, K.; Witmer, M.; Tredup, J.; Vyas, D. M.; Verdoorn, T. A.; Bollini, S.; Vinitsky, A. Org. Lett. 2001, 3, 3987.
(3) (a) Greaney, M. F.; Motherwell, W. B. Tetrahedron Lett. 2000, 41, 4463. (b) Motherwell, W. B.; Greaney, M. F.; Edmunds, J. J.; Steed, J. W. J. Chem. Soc., Perkin Trans. 1, 2002, 2816. (c) Ayuba, S.; Yoneda, N.; Fukuhara, T.; Hara, S. Bull. Chem. Soc. Jpn. 2002, 75, 1597. As for the review, see: (d) Dawood, K. M. Tetrahedron 2004, 60, 1435. (e) Fuchigami, T.; Tajima, T. J.Fluorine Chem. 2005, 126, 181.
(4) (a) Differding, E.; Rüegg, G. M.; Lang, R. W. Tetrahedron Lett. 1991, 32, 1779. (b) Kotoris, C. C.; Chen, M.-J.; Taylor, S. D. J. Org. Chem. 1998, 63, 8052. (c) Pravst, I.; Zupan, M.; Stavber, S. Synthesis 2005, 3140.
(5) (a) Middleton, W. J.; Bingham, E. M. J. Org. Chem. 1980, 45, 2883. (b) Hägele, G.; Haas, A. J. Fluorine Chem. 1996, 76, 15. (c) Lai, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J. Org. Chem. 1999, 64, 7048. (d) Singh, R. P.; Shreeve, J. M. Org. Lett. 2001, 3, 2713. (e) Singh, R. P.; Shreeve, J. M. J. Org. Chem. 2001, 66, 6263. (f) Singh, R. P.; Shreeve, J. M. J. Org. Chem. 2003, 68, 6063.
(6) (a) Murakami, S.; Kim, S.; Ishii, H.; Fuchigami, T. Synlett 2004, 815. (b) Murakami, S.; Ishii, H.; Tajima, T.; Fuchigami, T. Tetrahedron

2006, 62, 3761. (c) Guo, Y.; Shreeve, J. M. Chem. Commun. 2007, 3583. (d) Nicolaou, K. C.; Estrada, A. A.; Freestone, G. C.; Lee, S. H.; Alvarez-Mico, X. Tetrahedron 2007, 63, 6088. (e) Boyer, N.; Gloznec, P.; Nanteuil, G. D.; Jubault, P.; Quirion, J.-C. Tetrahedron 2007, 63, 12532. As for the review, see: (f) Amii, H.; Uneyama, K. In Fluorine-Containing Synthons, Soloshonok, V. A. Ed.; American Chemical Society:Washington, DC, 2005, 455. (g) Sato, K.; Omote, M.; Ando, A.; Kumadaki, I. In Fluorine-Containing Synthons, Soloshonok, V. A. Ed. American Chemical Society: Washington, DC, 2005, 476. (h) Uneyama, K. Organofluorine Chemistry; Blackwell, Oxford, 2006, 223. (i) Wang, X.-J.; Zhang, F.; Liu, J.-T. Tetrahedron 2008, 64, 1731.
(7) (a) Ayuba, S.; Fukuhara, T.; Hara, S. Org. Lett. 2003, 5, 2873. (b) Ayuba, S.; Hiramatsu, C.; Fukuhara, T.; Hara, S. Tetrahedron 2004, 60, 11445.
(8) Hiyama, T. In Organofluorine Compounds, Springer: Berlin, 2000; Chapter 2, and references are cited therein.
(9) (a) Kanie, K.; Tanaka, Y.; Suzuki, K.; Kuroboshi, M.; Hiyama, T. Bull. Chem. Soc. Jpn. 2000, 73, 471. (b) Reddy, V. P.; Alleti, R.; Perambuduru, M. K.; Welz-Biermann, U.; Buchholz, H.; Prakash, G. K. S. Chem. Commun. 2005, 654. (c) Cohen, O.; Rozen, S. Tetrahedron 2008, 64, 5362.
(10) (a) Brigaud, T.; Laurent, E. Tetrahedron Lett. 1990, 31, 2287. (b) Furuta, S.; Kuroboshi, M.; Hiyama, T. Tetrahedron Lett. 1995, 36, 8243.
(11) Rozen, S.; Brand, M. J. Org. Chem. 1986, 51, 222.

Desulfurizing Difluorination Reaction of Benzyl Sulfides
Using $\mathrm{IF}_{5}$

$\mathrm{W}=\mathrm{COOR}^{\prime}, \mathrm{COR}$ ', CN, CONR ${ }_{2}$

