Title

A compound-specific n-alkane δ13C and δD approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan

Author(s)

Seki, Osamu; Nakatsuka, Takeshi; Shibata, Hideaki; Kawamura, Kimitaka

Citation

Geochimica et Cosmochimica Acta, 74(2): 599-613

Issue Date

2010-01-15

Doc URL

http://hdl.handle.net/2115/42575

Type

article (author version)

File Information

GCA74-2_599-613.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

Instructions for use

This page contains the metadata and citation information for the research paper titled "A compound-specific n-alkane δ13C and δD approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan" by Seki, Osamu; Nakatsuka, Takeshi; Shibata, Hideaki; Kawamura, Kimitaka. The paper was published in Geochimica et Cosmochimica Acta, 74(2): 599-613, on 2010-01-15. The digital object identifier (DOI) for the paper is http://hdl.handle.net/2115/42575. The file containing the paper is GCA74-2_599-613.pdf.
A compound-specific \(n \)-alkane \(\delta^{13} \)C and \(\delta \)D approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan

Osamu Seki\(^1\)*, Takeshi Nakatsuka\(^1,3\), Hideaki Shibata\(^2\) and Kimitaka Kawamura\(^1\)

\(^1\)Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo, 060-0819, Japan

\(^2\)Field Science Center for Northern Biosphere, Hokkaido University, Nayoro, Hokkaido 096-0071, Japan

\(^3\)Now at Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

*Corresponding author (e-mail: seki@pop.lowtem.hokudai.ac.jp, phone: +81-11-706-5504

Running head: \(\delta^{13} \)C and \(\delta \)D of \(n \)-alkanes in a forested catchment

Index term: stable carbon isotope, hydrogen isotope, \(n \)-alkane, riverine organic matter
Abstract

We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C_{23}-C_{33} n-alkanes ranged from -37.2 to -31.5 ‰, while δD values of these alkanes showed a large degree of variability that ranged from -244 to -180 ‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C v.s. δD diagram of n-alkanes among forest, wetland and lake samples showed that C_{25}-C_{31} n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.
1. Introduction

Biomarkers have increasingly become common tools in the reconstruction of past environmental conditions. Molecular analyses of terrestrial biomarker lipids extracted from ocean, lake and bog sediments have been used for reconstructions of paleovegetation and associated paleoclimate histories (e.g., Bird et al., 1995; Ficken et al., 1998; Yamada and Ishiwatari, 1999; Nott et al., 2000; Xie et al., 2000; Xie et al., 2004; Huang et al., 2001; Seki et al., 2003; Schefub et al., 2005; Shuman et al., 2006; Zheng et al, 2007; Seki et al., 2009). In particular, \(n \)-alkanes have been extensively studied for paleoclimatic purposes. This is because mid- (\(C_{21}-C_{25} \)) and long-chain (\(C_{27}-C_{33} \)) \(n \)-alkanes, a major component of leaf waxes and typical biomarkers of vascular plants (Eglinton and Hamilton, 1967), are resistant to microbial degradation and have been widely found in natural environments including marine and lacustrine sediments.

Molecular distributions and stable carbon isotopic compositions of mid- and long-chain \(n \)-alkanes provide powerful paleoclimate information of terrestrial vegetation and climate (Pancost and Boot, 2004). For instance, average chain length (ACL) and \(P_{aq} \) (% of aquatic plants) of \(n \)-alkanes can be used as conventional proxies of continental temperature (Hinrichs et al., 1998) and source input of aquatic plant derived \(n \)-alkanes (Ficken et al., 2000), respectively. The stable carbon isotopic composition (\(\delta^{13}C \)) of \(n \)-alkanes has been used to infer the changes in C3/C4 vegetation where distributions are directly related to climatic conditions (e.g., Bird et al., 1995; Yamada and Ishiwatari, 1999; Huang et al., 2001; Bendle et al., 2006; Bendle et al, 2007). Moreover, recently developed techniques for measuring hydrogen isotope compositions (\(\delta D \)) of \(n \)-alkanes has potential as a more direct proxy of temperature, precipitation, relative humidity and hydrological cycles of the past (e.g., Xie et al., 2000; Liu and Huang, 2005; Shuman et al., 2006; Hou et al., 2006; Jacob et al., 2007; Seki et al, 2009).

It is generally thought that terrestrial organic components deposited in coastal and lake sediments near river systems are mainly supplied by river inflows (Goñi, 1997; Goñi et al., 1997) whereas atmospheric transport of terrestrial materials is a more important delivery process to pelagic sediments in open ocean and lake center sediments (e.g., Huang et al.,
Terrestrial plant-derived biomarkers deposited in coastal marine and lacustrine sediments integrate information about terrestrial ecosystems in catchment basin in the past, but transport processes of organic matter during fluvial delivery to the sediments are highly variable depending on their phase, that is, suspended or dissolved forms. Due to a lack of understanding on the delivery and sedimentation process, paleoclimate applicability of terrestrial biomarkers in marine and lacustrine sediments is less developed than marine biomarkers (Pancost and Boot, 2004). Therefore, it is important to understand how fluvial organic materials accumulate in a catchment basin and how climate records are imprinted in sedimentary deposits for better application of terrestrial biomarkers in the paleoenvironmental studies of marine and lacustrine sediments.

\(n \)-Alkanes are often useful for deciphering source and transport information on terrestrial organic matter in watershed and aquatic environments (Jaffé et al., 1995; Prahl et al., 1994; Fernandes and Sicre, 2000; Mead et al., 2005; Seki et al., 2006). Positive correlations (\(r^2 > 0.88 \)) between concentrations of \(C_{25} - C_{31} \) \(n \)-alkanes and total organic carbon (TOC) have been reported in the sediments of river basins (Prahl et al., 1994; Fernandes and Sicre, 2000), suggesting that terrestrial plant \(n \)-alkanes are widely representative biomarkers of fluvial organic matter input. Isotopic measurements of organic matter are useful for identifying their sources in natural environments. Because \(\delta^{13}C \) and \(\delta D \) in plants are controlled by independent mechanisms, compound-specific dual isotopic analyses (\(\delta^{13}C - \delta D \)) can provide better source information on biomarkers than single isotopic analyses (Chikaraishi and Naraoka, 2005; Chikaraishi et al., 2005; Kurill et al., 2006). In this study, we applied for the first time the molecular distributions and compound specific stable carbon and hydrogen isotopic compositions of \(n \)-alkanes to study the source and transport of terrestrial plant biomarkers in river water system. Here, we discuss the applicability of this combined approach for identifying sources and transport processes of terrestrial plant biomarkers in a small catchment system.

2. EXPERIMENTAL
2.1. Sampling site

Hokkaido University’s Uryu experimental Forest is located in northern Hokkaido, Japan (about 44°2N, 142°1E; Fig. 1) and is characterized as a cool temperate forest covered with broad- and needle-leaf trees and by many streams, ponds and lakes. The total area of the drainage basin is 3165 ha, total annual rainfall is more than 1000 mm/years and relative humidity is high (> 75 %) throughout the year. This watershed is characterized by the presence of a deep snowpack (about 2 m) for a long period (November to May). Fluvial discharge reaches its maximum in the spring snowmelt season (Ogawa et al., 2006), and the plant-growing season is restricted to a short summer (June to September). A large amount of organic rich particulate material is supplied from the Dorokawa river system to Lake Shumarinai, especially during the snowmelt season. The wetland is a main source of dissolved organic matter (DOM) in stream water and discharge of DOM via streams plays an important role in the carbon cycle of the Dorokawa catchment system (Ogawa et al., 2006).

In the downstream of the Dorokawa river (altitude of 284-310 m), there are several types of wetlands while the upstream area is significantly forested (Xiao-niu and Shibata, 2007). Vegetation in the forest area is characterized by a cool-temperate mixture composed of natural hardwood and conifer species, mainly represented by Sakhalin fir (Abies sachalinensis), Mongolian oak (Quercus crispula), Japanese Manchurian ash (Fraxinus mandshurica var. japonica), Erman’s birch (Betula ermanii), painted maple (Acer mono) and Amur cork-tree (Phellodendron amurense). Deciduous trees dominant at high elevations (the highest at 681 m) while conifer-dominated forests are more developed at low elevations. Deciduous trees are also distributed through the riparian zone. The forest understory is exclusively dominated by dwarf bamboo except for some wetland areas and riparian zones. Site D in Fig. 1 is composed of “spruce swamp forests”, which contain sparse but pure stands of spruce with dense thickets of dwarf bamboos in the understory. This site represents the most extensive type of wetland in the Dorokawa basin. Sites F and E are typical wetland, mostly covered by grasses, herbs and mosses.

Soils and sediments were taken in June and September 2003. Surface soils and soil cores (0-90 cm depth) were collected from three sites in the forested and upland areas (Sites A, B...
Vegetation in all sites is composed of deciduous and coniferous trees. However, deciduous trees dominate over coniferous tree as an overstory at the highest elevation (Site A), while coniferous trees are more important at the mid (Site B) and low elevation sites (Site C). Surface peat and peat cores (0-120 cm depth) (Sites D, E and F) were collected in the lowland wetland area of the catchment. Lake surface sediments (0-5 cm depth) were collected in Lake Shumarinai at the mouth of Dorokawa River (Site G) and at sites distal to the river mouth (Sites H and I). Forest soil and wetland peat cores were cut every 10 cm except for the Site D peat core, which was cut every 30 cm. All the sample sections were freeze-dried and stored at -20 °C before analyses. River waters were seasonally collected at 7 sites (Fig. 1) in the watershed from July 2003 to October 2004 for hydrogen isotopic analysis.

2.2. Separation and determination of n-alkanes

Lipid class compounds were extracted from the dry samples (0.5-7.0 g) with dichloromethane/methanol (95:5) using an accelerated solvent extractor (Dionex: ASE 200) three times at 100°C and 1000 psi (about 69 bar) for 5 min each time. The extracts were concentrated and then saponified with 1.0 M potassium hydroxide/methanol. Neutral components were isolated by extraction with n-hexane/dichloromethane (10:1). Aliphatic hydrocarbons were separated from other fractions on a silica gel column by eluting with n-hexane. Subsequently, the aliphatic hydrocarbon fraction was separated into saturated and unsaturated aliphatic hydrocarbon fractions by silver nitrate-impregnated silica gel (10 wt%) chromatography for compound-specific δD and δ13C measurements of n-alkanes. The saturated fraction was eluted with n-hexane, whereas the unsaturated fraction was subsequently eluted with n-hexane/dichloromethane (2:1).

n-Alkanes were analyzed using a HP6890 GC equipped with an on-column injector, CPSIL-5 CB fused silica capillary column (60 m length, 0.32 mm i.d., film thickness 0.25 µm) and flame ionization detector (FID). The GC oven temperature was programmed from 50 °C to 120 °C at 30 °C/min and then 120 °C to 310 °C at 5 °C/min. Quantification of lipid compounds was achieved by GC/FID using an authentic n-alkane mixture as an external
standard. Each compound was identified by GC/mass spectrometry based on retention times and mass spectra. A Trace GC equipped with an HP-5MS fused silica capillary column (30 m length, 0.32 mm i.d., film thickness 0.25 μm) interfaced directly to a mass spectrometer was used for indentifying organic compounds. The temperature program for the GC/MS analysis was the same as the GC/FID analysis.

2.3. Stable carbon and hydrogen isotope analyses

Compound-specific δ\(^{13}\)C values of individual \(n\)-alkanes were determined using a gas chromatography-isotope ratio mass spectrometry (GC-IRMS) system, which consists of a HP 6890 GC equipped with a DB-5 fused silica capillary column (30 m × 0.32 mm i.d., film thickness 0.25 μm) and an on-column injector, a combustion interface (Finnigan GC combustion III), and a Finnigan MAT delta Plus mass spectrometer. The GC oven temperature was programmed from 50 °C to 120 °C at 30 °C min\(^{-1}\), then 120 °C to 310 °C at 5 °C min\(^{-1}\).

The separated compounds from the GC were introduced on-line to the ceramic tube combustion reactor (850 °C) that contained thin CuO and Pt wires. The former wire provides oxygen and the latter acts as a catalyst. In duplicate analyses of selected samples, standard deviations for δ\(^{13}\)C of \(n\)-alkanes were found to be within 0.5 ‰ (Table 1). δ\(^{13}\)C values are given in per mil (‰) notation relative to the Peedee Belemnite (PDB). C\(_{21}\) \(n\)-fatty acid methyl ester whose isotopic values were known (δ\(^{13}\)C = -26.2 ‰, δD = -227 ‰) was coinjected with the samples as an internal isotopic standard for stable carbon and hydrogen isotopic measurements of \(n\)-alkanes.

Compound-specific δD values of individual long-chain \(n\)-alkanes were determined using a GC/thermal conversion/IRMS system consisting of a HP 6890 GC connected to a Finnigan MAT delta Plus XL mass spectrometer. Capillary GC column conditions are equivalent to that of compound-specific δ\(^{13}\)C analysis. Pyrolysis (thermal conversion) of \(n\)-alkanes to H\(_2\) was achieved at 1450 °C in a microvolume ceramic tube. A laboratory standard containing C\(_{16}\)-C\(_{30}\) \(n\)-alkanes, varying in concentration over a six-fold range and varying in δD from -248 to -42 ‰, was analyzed daily. Analytical accuracy of the laboratory standard was within 5 ‰. In duplicate analyses of samples, standard deviations for \(n\)-alkane δD measurements were within
A concern during hydrogen isotopic measurements is that the reaction \(\text{H}_2^+ + \text{H}_2 \rightarrow \text{H}_3^+ + \text{H} \) occurs readily in the ion source of the mass spectrometer. \(\text{H}_3^+ \) is not resolved from \(\text{HD}^+ \) by typical IRMS. After correcting for the contribution of \(\text{H}_3^+ \) to the mass-3 beam (Sessions et al., 2001), the D/H ratios of \(n \)-alkanes can be calculated by integrating the mass-2 and mass-3 signals. The \(\text{H}_3^+ \) factor was determined by observing changes in the (mass-3)/(mass-2) ion-current ratio since the pressure of \(\text{H}_2 \) in the ion source chamber was varied by adjustment of the variable-volume inlet.

\(\delta^D \) of river water was measured using an IsoPrime PyrOH system (GV-instruments), in which \(\text{H}_2\text{O} \) is converted to \(\text{H}_2 \) gas by the chromium-reduction method at 1050 °C and introduced into an isotopic ratio mass spectrometer together with the He carrier gas. At the beginning of measurements on a given day, two kinds of standard water were analyzed to determine the SMOW/SLAP scale. Each water sample was measured in triplicate and the standard water also analyzed every 10 samples to account for instrument drift of \(\delta^D \) values. The analytical precision (1s) in triplicate measurements is about 0.5 ‰.

3. RESULTS AND DISCUSSION

3.1. Hydrogen isotopic compositions of stream waters

Figure 2 shows seasonal changes in \(\delta^D \) values of stream waters in Dorokawa catchment sites 1, 4, 6, 10, 13, 16 and 20. The seasonal variations in \(\delta^D \) values are characterized by a maximum in summer to autumn (August to October) and minimum in spring (April and May) when snow starts to melt (Ogawa et al., 2006). Thus, the spring minimum \(\delta^D \) was likely caused by an increased contribution of the melt water, whose \(\delta^D \) values are always lower than that of summer precipitation in boreal regions such as Hokkaido (Dansgaard, 1964). However, the variations are rather small at all sites, ranging from -81 ‰ to -72 with an annual mean \(\delta^D \) value of -75%. Isotopic differences among sites are within 5 ‰ throughout the observation period, which is smaller than the range of seasonal variability. This result indicates that
spatiotemporal differences in the isotopic composition of environmental water are small (~8 ‰) in the Dorokawa catchment basin.

3.2. Concentrations and molecular distributions

Figure 3 shows typical molecular distributions of n-alkanes in surface layer samples at each site in Dorokawa catchment and Lake Shumarinai. As evidenced from ACL (ranging from 27.7 to 30.9; Table 1), the main components of the n-alkanes are medium- and long-chain n-alkanes (from C_{23} to C_{33} n-alkanes) in all sites. All samples show a strong odd to even carbon number predominance. Carbon preference indices (CPI) of n-alkanes (Bray and Evans, 1961) varied between 4.4 and 13.7. These characteristics demonstrate that n-alkanes in the soils, peats and sediments are largely originated from vascular higher plants.

Concentrations of total n-alkanes range from 4.6 to 435.0 µg/g in all samples. In general, concentrations are significantly higher in wetland peats than in the forest soils and lake sediments. Larger amounts of n-alkanes in wetland peat probably reflects to greater preservation of organic matter under anoxic conditions compared to the forested soil where microbial degradation of organic matter occurs largely under aerobic conditions.

A number of studies have reported that the molecular distributions of n-alkanes significantly depend on plant species and the environments where plants grow (Cranwell, 1973; Rieley et al., 1991; Ficken et al., 2000; Nott et al., 2000; Baas et al., 2000; Bi et al., 2005; Sachse et al., 2006; Nichols et al., 2006; Rommerskirchen et al., 2006). Previous studies have shown that molecular distributions of n-alkanes in non-emergent (submerged and floating) aquatic plants are characterized by a predominance of medium-chain lengths such as C_{23} and C_{25}, while those of terrestrial plants are dominated by long-chain homologues ($>C_{29}$) (Ficken et al., 2000). Emergent aquatic plants have n-alkane distributions midway between non-emergent and terrestrial plants. Based on modern plant-leaf wax data, Ficken et al. (2000) defined a new proxy; that is, $P_{aq} = (C_{23}+C_{25})/(C_{23}+C_{25}+C_{29}+C_{31})$, which approximates the proportion of submerged and floating aquatic macrophyte inputs relative to emergent and terrestrial plant inputs to lake sediments. It has also been reported that *Sphagnum* species
show molecular distributions similar to submerged plants, being characterized by a
dominance of C_{23} and/or C_{25} n-alkanes (Ficken et al., 1998; Baas et al., 2000; Nott et al. 2000;
Nichols et al., 2006). Several studies have reported that n-alkane distributions of trees, shrubs,
and emergent water plants tend to show large proportions of the C_{27} n-alkane (Rieley et al.,
1991; Ficken et al., 2000; Bi et al., 2005; Sachse et al., 2006), whereas those of C_{3} grasses are
generally dominated by the C_{31} n-alkane (Cranwell, 1973; Bi et al., 2005; Rommerskirchen et
al., 2006).

In general, n-alkane distributions in all forested soils (Sites A, B and C) are characterized
by a peak at C_{29} or C_{31}. P_{aq} and C_{27}/C_{31} ratios in forest soils range from 0.13 to 0.4 and from
0.2 to 1.25, respectively. These characteristics are typical of terrestrial tree leaf waxes,
suggesting they represent an important source of n-alkanes in soils. In contrast, wetland
samples (Sites D, E and F) showed variable molecular distributions, being different from
forest soil samples. For instance, samples from Sites D and F are characterized by a
pronounced C_{31} peak and relatively low C_{27}/C_{31} ratio (0.07-0.28). The low C_{27}/C_{31} ratios at
Sites D and F are consistent with the wetland vegetations dominated by C_{3} grass (Cranwell,
1973; Bi et al., 2005; Rommerskirchen et al., 2006). Molecular distributions at Site E that are
remarkably different from the other sites (Fig. 3), are characterized by relatively high P_{aq}
values (0.22-0.44) and a bimodal distribution with two peaks at C_{25} and C_{31}, suggesting a
significant input of submerged plants or Sphagnum species as well as grasses. Given that
Sphagnum species are one of the main vegetation types in wetland Site E, the C_{23} and C_{25}
n-alkanes could be derived from Sphagnum species. These results suggest that molecular
distributions of n-alkanes in surface soil samples presented here generally reflect main
vegetation types at each site. On the other hand, molecular distributions of n-alkanes in lake
sediments (Sites G, H and I) are characterized by relatively low ACL values (<29) and high
C_{27}/C_{31} ratios (0.87-1.62) compared to other sites. The high C_{27}/C_{31} ratio suggests a greater
contribution from tree leaf-derived waxes rather than grasses and aquatic plants.

The molecular distributions and concentrations of n-alkanes also vary significantly with
depth in both forest and wetland samples (Fig. 4). In forested soils, some profiles seem to
have a relationship with depth. In particular, remarkable changes with depth are observed in
concentrations and the C_{27}/C_{31} ratios of n-alkanes that are relatively high in surface soils, but decreased substantially with depth at all sites (Fig. 4a and 4d). CPI and ACL values also show increases with depth at Sites B and C. In contrast to forested soils, concentrations and molecular distributions in wetland samples do not show any increase or decrease with depth except for Site E where CPI, C_{27}/C_{31} and P_{aq} show a decreasing trend with depth.

Down core profiles of n-alkanes at Sites A-C and E possibly result from alternation of n-alkanes during early diagenesis and/or changes in vegetation in the past. In the forest area, the decreases in concentration down the soil profiles are apparently a result of the degradation of n-alkanes during early diagenesis. Similar depth profiles have been reported in three types of soil collected from British uplands (Huang et al., 1996). Decreasing ACL and C_{27}/C_{31} with depth is probably largely due to preferential degradation of low molecular weight n-alkanes in the soils rather than changes in vegetation in the past. In a study of Scandinavian peat, it has been found that, in parallel with humification, the major n-alkane homologue changed from C_{25} and C_{27} to C_{31}, suggesting selective removal of shorter chain n-alkanes in the humification process (Lehtonen and Ketola, 1993). In contrast, the down-core profile of molecular distributions in the wetland sites (D and F) largely reflects changes in input of vegetation in the past rather than diagenetic alternation, given the greater preservation potential of organic matter in wetlands due to anoxic conditions. The large amounts of n-alkanes at all depths in the wetland cores suggest that, although the wetland area is smaller than the forested area, it represents an important reservoir of n-alkanes in the catchment area.

3.3. Compound-specific stable carbon and hydrogen isotopic compositions

The stable carbon isotopic signature of terrestrial plants largely depends on carbon fixation pathway, but is also controlled by plant physiology. Bulk C_3 plant tissues have lower isotopic values ($\delta^{13}C \approx -25 \%e$ to $-28 \%e$) while that of C_4 plants have higher values ($\delta^{13}C \approx -10 \%e$ to $-14 \%e$) (Smith and Epstein, 1971). Concentrations of atmospheric CO$_2$, which decreases with elevation, also influence the $\delta^{13}C$ of terrestrial plants. However, since altitude differences among the sampling sites are small (~400 m) in this study, the effect is negligible. Studies of numerous plants taken from the local area have shown that the $\delta^{13}C$ of alkyl lipids...
in C₃ and C₄ plant are generally ~8 ‰ and ~12 ‰ lighter than those of bulk tissues, respectively (Collister et al., 1994; Chikaraishi and Naraoka, 2003). It has also been reported that δ¹³C values are lower in C₃ angiosperms (-38 ~ -32 ‰) than in C₃ gymnosperms (-32 ~ -29 ‰) at single sites (Chikaraishi and Naraoka, 2003; Pedentchouk et al., 2008), reflecting a difference in plant physiology such as stomatal conductance for CO₂ between the two species.

The δD values of plant biomolecules primarily reflect the environmental water that the plants uptake. δD in environmental water depends on climatic conditions (temperature, evaporation and precipitation) and varies significantly from -300 to 0 ‰ depending on the global and local hydrological cycles, and thus biomolecules of plants have almost the same range of δD as meteoric water (Ehleringer and Rundel, 1989). The δD values of plant biomolecules are secondarily influenced by kinetic isotopic fractionation during biosynthesis. Because biosynthesis of n-alkane discriminates against deuterium relative to hydrogen (Sternberg et al., 1984; Sessions et al., 1999), n-alkanes in aquatic plants show lower δD values than their host water by 155-160‰ (Sessions et al., 1999; Huang et al., 2004; Sachse et al., 2004). Hydrogen isotopic fractionation between environmental water and n-alkanes (εₙ-alkane/water) is calculated by the following equation: εₙ-alkane/water = (δₙ-alkane + 1)/(δ_water + 1) - 1.

The C₂₃-C₃₅ n-alkane δ¹³C values in all sites ranged from -38 to -31 ‰ and most samples fell in the range expected for C₃ angiosperm leaf wax (Chikaraishi and Naraoka, 2003; Pedentchouk et al., 2008) (Table 2). This indicates that the main source of long-chain n-alkanes in the soil samples is C₃ angiosperms rather than C₄ gymnosperms. This may suggest that the n-alkane content of angiosperm leaf wax is much greater than that of gymnosperms.

Depth profiles at Site B and C showed that the C₂₅-C₃₁ n-alkanes are gradually enriched in ¹³C with depth by up to 3 ‰ (Fig. 5). A similar phenomenon has been reported in other soils, in which no changes in vegetation types (C₃ vs C₄) were found in the past (Huang et al., 1996; Ficken et al., 1998). A 1.3 ‰ change in isotopic enrichment can be explained by recent depletion of atmospheric δ¹³C due to fossil fuel burning (Keeling et al., 1984). Another 1.7 ‰ may be explained by early diagenesis associated with heterotrophic reworking (Huang et al., 1996; Ficken et al., 1998; Chikaraishi and Naraoka, 2006) or changed vegetation in the past.
On the other hand, δ13C enrichment with increasing depth has not been observed in wetland sites. This suggests that δ13C variations of peat core sequences largely reflect changes in δ13C of source plants in the past. Although molecular distributions showed distinct differences between forest and wetland samples, no clear difference was observed in δ13C profiles. A one-way analysis of variance (ANOVA) shows there is no significant difference between δ13C values of C\textsubscript{25}-C\textsubscript{33} n-alkanes in forest and wetland (P = 0.559). This indicates that the δ13C approach is not sensitive enough to differentiate the sources of organic matter in the catchments.

The δD values of C\textsubscript{25}-C\textsubscript{33} n-alkanes in the catchment show a wide range from -186 to -245 ‰ and are depleted in deuterium relative to environmental waters (-80 ~ -72 ‰) (Table 3 and Fig. 6). The most striking feature of the n-alkane δD values is deuterium enrichment in the forest samples (-214 ~ -186 ‰) compared to the wetland samples (-250 ~ -210 ‰). In fact, the one-way ANOVA shows there is a significant difference between δD values of C\textsubscript{25}-C\textsubscript{33} n-alkanes in forest and wetland samples (P = <0.0001). This indicates that δD analysis can potentially differentiate n-alkanes between forest soils and wetland peats. The δD values of C\textsubscript{25}-C\textsubscript{31} n-alkanes in sediment Sites H and I are -204 to -196 ‰ and fall within the range of forest soils. However, the δD values (-219 ~ -214 ‰) in Site G, which is surrounded by wetland, are rather consistent with the wetland samples. In contrast to the δ13C profile, enrichment or depletion in deuterium is independent of the n-alkane carbon number (Table 3).

Similarly, increasing or decreasing trends with depth are not apparent in the δD profile of the n-alkanes at soil Site C (Fig. 6).

These considerations suggest that early diagenesis does not significantly alter the δD values of n-alkanes in the soil and peat. In fact, a strong propensity for n-alkane δD values to retain their original isotopic compositions has been suggested by some studies (Yang and Huang 2003; Dawson et al., 2004). For example, Yang and Huang (2003) compared the δD compositions of individual n-alkanes in the sediment matrix from compressional leaf fossils in a Miocene (15-20 Ma) paleo-lake deposit. Distinctive δD patterns of leaf fossils and sediments indicate that leaf lipids retain their original isotopic compositions. Comparison of δD values for n-alkanes in turbidites (Late Carboniferous to the Late Permian) taken from
different climatic locations revealed distinctive latitudinal patterns of δD values with up to
70‰ difference between tropical and high latitudinal sites, suggesting that their indigenous
δD signatures have been preserved for 260–280 million years (Dawson et al., 2004).

3.4. Cause of different δD values of n-alkanes between forest and wetland

Environmental waters cannot be a major cause for the large variability of n-alkane δD
values in the Dorokawa watershed, because regional isotopic variations in river waters are
much smaller than the observed differences in the δD values of forest and wetland n-alkanes.
Although factors controlling lipid δD values in terrestrial plants are not fully understood,
possible factors that may control n-alkane δD values, based on previous studies, are either (1)
differences in δD values of leaf and/or soil waters that reflect micro-climatic gradients or (2)
ecological differences of terrestrial plants.

It is expected that relative humidity is higher in the wetland than in the forested area and
the degree of evaporation at soil and leaf surfaces is larger in the forested area than the
wetland, leading to δD enrichment of leaf water in forest plants compared to wetland grasses.
This interpretation is supported by the observational results that δD values of terrestrial plant
lipids, which are exposed to significant evaporation, are ~30 ‰ heavier than that of aquatic
plants, which are protected from deuterium enrichment of leaf water (Chikaraishi et al., 2003;
Huang et al., 2004; Sachse et al., 2004).

In addition to the difference in humidity, differences in plant life form or plant
physiology may contribute to the observed isotopic variations. The results of leaf wax
n-alkane δD measurements from various types of terrestrial plants collected within the same
climatic conditions showed a large variability in lipid δD values among plant types
(Chikaraishi et al., 2003; Liu et al., 2006; Hou et al., 2007). Interestingly, significant higher
δD values for tree leaf wax n-alkanes were reported compared to those for grasses and herbs
(Liu et al., 2006; Hou et al., 2007). This isotopic difference has been interpreted as a result of
the ecological differences of terrestrial plants, probably leading to different degrees of
evapotranspiration. Hence, the observed difference in δD between wetland and forest sites
may be caused by different plant types (tree vs grass) as suggested by previous studies.
Assuming that δD of environmental water is $-75 \%e$ in all sites, apparent hydrogen isotopic fractionation between environmental water and n-alkanes is -146 to $-123 \%e$ in the forest surface soils and -179 to $-143 \%e$ in the wetland surface peats. The apparent hydrogen isotopic fractionations in forest samples are lower than the $\epsilon_{\text{water-alkane}}$ ($160 \%e$) between n-alkanes and algae uptake water (Huang et al., 2004; Sachse et al., 2006). This suggests that there exists an enrichment of environmental water δD by 15~$40 \%e$ due to the evapotranspiration at the interface between air and soil or plant leaf, or there is smaller biosynthetic fractionation in forest trees than wetland grasses. On the other hand, relatively high apparent hydrogen isotopic fractionations in the wetland peat suggest that no or less isotopic enrichment ($<15 \%e$) exists under high relative humidity condition in wetlands or larger biosynthetic fractionation occurs in wetland plants.

3.5. Delivery processes and sources of sedimentary organic matter in Lake Shumarinai

In order to infer sources of n-alkanes in lacustrine sediments, we compared molecular distributions of the forest and wetland soils to those of lacustrine sediments. Figure 7 displays a P_{aq} v.s. C_{27}/C_{31} diagram for all the samples studied. In the diagram, the sediment Site G is plot in the same area as forest soil n-alkanes (Sites A and C), implying a greater contribution of forest soil derived n-alkanes to the sediments. However, the location of Sites H and I in the P_{aq} v.s. C_{27}/C_{31} diagram apparently deviates from all the forest and wetland samples. This deviation may be ascribed to a limited number of soil samples in the Dokokawa catchment. In general, the chemical composition of soils is heterogeneous. Hence our dataset may be insufficient to capture all of the potential soil inputs from the catchment to the lake and suggests the existence of a significant soil reservoir with higher C_{27}/C_{31} values somewhere in the catchment.

To further assess the sources of sedimentary n-alkanes, we plot $\delta^{13}C$ and δD values of C_{25}-C_{31} odd n-alkanes (Fig. 8). Based on the $\delta^{13}C$ v.s. δD diagram, we can discriminate the sources of individual n-alkanes in the lake sediments. In contrast to the molecular distribution approach, hydrogen isotopic analyses allows source discrimination. All the n-alkanes from Sites H and I plot in the same area as forest soil n-alkanes (Sites A to C) while n-alkane from...
Sedimentary Site G is plot in the group of wetland Sites D to F or on the mixing line between forest and wetland. Thus, based on the δ^{13}C v.s. δD diagram, it is suggested that C_{25}-C_{31} odd n-alkanes in Sites H and I could be mainly derived from upstream forest soils. Sedimentary C_{25}-C_{31} odd n-alkanes in Site G may be largely contributed from wetland soil in the lower reaches of the Dorokawa stream system or be associated with both forest and wetland inputs.

Therefore, considering the result of compound-specific hydrogen isotopic analyses, we speculate that the difference in the molecular distributions between lake sediments is due to limited number of soil samples in the catchment area. In fact, the high C_{27}/C_{31} ratio in offshore sediments (Sites H and I) suggests that tree leaf wax is a plausible source, being consistent with the δD values that clearly exhibit an input of forest tree derived n-alkanes in offshore sites. The similar molecular distribution of Site G to forested soil samples suggests a possible contribution from several sources to Site G. As shown in Fig. 3, wetland samples show variable molecular distributions and a mixture of sources may yield molecular distribution similar to the forest samples. The discrepancy between the isotopic and molecular distribution approaches highlights the need for compound-specific isotopic analysis to confirm source evaluation of biomarkers, although molecular distributions could be useful as conventional source estimates of organic compounds.

Our results suggests that delivery processes for long-chain n-alkanes are spatially different along a transect of the sampling sites of lacustrine sediments. What mechanisms could cause such a spatial distribution of n-alkane sources in lacustrine sediments? One possible explanation is that hydrodynamic sorting of different source materials during transport (Keil et al., 1994). This mechanism may be invoked in Lake Shumarinai, i.e. the particulate materials transported from forest area to the lake largely consist of fine clay minerals and thus are preferentially transported long distances, while coarse organic particles containing plant debris from the wetland rapidly sink and are deposited in estuaries. A similar process was recognized in the Mississippi River system in North America (Goñi et al., 1997; Goñi et al., 1998). They suggested a preferential transport of fluvial organic matter that originated from grassland soils in the Mississippi River drainage basin to the offshore in the Gulf of Mexico.
Alternatively, it is also possible that relatively high C$_{27}$/C$_{31}$ ratios in offshore sites can be ascribed to a large atmospheric input of tree leaf waxes to local offshore sites (Gagosian and Peltzer, 1986; Kawamura et al., 2003). Because n-alkanes are a major component of epicuticular waxes, which cover leaf surfaces, n-alkanes in leaf surfaces can easily be ablated by wind and dust. It is generally accepted that plant wax n-alkanes can be transported in the atmosphere to offshore regions. In the forested site, it is expected that ablated waxes will accumulate in the air, suggesting atmospheric input may be important in addition to fluvial delivery. However, aerosol samples were not collected in the study area and thus it is difficult to evaluate the importance of organic aerosol input to the lake sediments. In order to further assess the delivery processes of n-alkanes deposited in the Lake Shumarinai sediments, further work including the study of leaf waxes and organic aerosols are needed.

5. CONCLUSIONS

Multi-proxy approaches including C$_{27}$/C$_{31}$ and P$_{aq}$ together with the stable carbon and hydrogen isotopic composition of n-alkanes were for the first time applied to geochemical samples in the Dorokawa watershed system, northern Japan, to assess sources and delivery process of terrestrial organic matter. Molecular distributions and stable carbon and hydrogen isotopic compositions in soils reflect in situ vegetation in Dorokawa drainage basin. Based on the molecular distributions, n-alkanes in forest soils are largely suggested to originate from tree leaves while those in wetland soils are mostly derived from wetland grass and moss. Stable carbon isotopic compositions of n-alkanes showed greater contributions of C$_3$ angiosperms as a source of n-alkanes in soils of the Dorokawa catchment. Hydrogen isotopic compositions of n-alkanes discriminate forest- and wetland soil-derived n-alkanes, which showed higher and lower values, respectively. A δ^{13}C vs. δD diagram clearly indicates that C$_{25}$-C$_{31}$ n-alkanes preserved in offshore sediments are largely derived from forest plants rather than wetland vegetation. This study demonstrates that the hydrogen isotopic composition of organic compounds provides a useful tool for inferring their source and delivery processes in a natural catchment system dominated by C$_3$ plants.
ACKNOWLEDGEMENT

This research is in part supported by the 21st-Century Center of Excellence Program funded by Ministry of Education Culture, Sports, Science and Technology. We thank James Bendle and Jeff Seewald for critical comments and corrections on previous versions of this manuscript. We also acknowledge the reviewers for critical comments on previous versions of this manuscript.

REFERENCES

Kawamura, K., Ishimura, Y. and Yamazaki, K. (2003) Four year observations of terrestrial...

Sachse, D., Radke, J. and Gleixner, G. (2006) dD values of individual n-alkanes from...
terrestrial plants along a climatic gradient – Implications for the sedimentary biomarker

hydrology during the past 20,000 years. Nature 437, 1003-1006.

Sediment core profiles of long-chain n-alkanes in the Sea of Okhotsk: Enhanced transport
of terrestrial organic matter from the last deglaciation to the early Holocene. Geophys. Res.

source and transport of organic matter in the western Sea of Okhotsk: Stable carbon

ratios of plant-wax n-alkanes in a peat bog deposited in northeast China during the last 16

contributions in hydrogen isotope ratio monitoring mass spectrometry. Anal. Chem. 73,
192-199.

25, 2992-3002.

Smith, B.N. and Epstein S. (1971) Two categories of 13C/12C ratios for higher plants. Plant
Physiol. 47, 380-384.

and cellulose nitrate from CAM, C3 and C4 plants. Phytochem. 23, 2475-2477.

Xie, S., Nott, C. J., Avsejs, L. A., Volders, F., Maddy, D., Chambers, F. M., Gledhill, A., Carter,

Molecular and isotopic stratigraphy in an ombrotrophic mire of paleoclimate

nutrient fluxes in a cool-temperate forest watershed in northern Hokkaido, Japan. J. Forest.
Res. 18, 249-254.

in the Japan Sea sediments: implications for paleoenvironmental changes over the past 85

lacustrine sediments and plant fossils at Clarkia, northern Idaho, USA. Org. Geochem. 34,
413-423.

Geochem. 38, 1927-1940.
Table 1 Concentration and molecular distribution of n-alkanes in Dorokawa catchment

<table>
<thead>
<tr>
<th>Site</th>
<th>Depth (cm)</th>
<th>Conc. (µg/g)</th>
<th>Molecular distribution</th>
<th>P_{aq}^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site A-1 (forest)</td>
<td>0-5 cm</td>
<td>28.8</td>
<td>6.2</td>
<td>29.1</td>
</tr>
<tr>
<td>Site A-2 (forest)</td>
<td>0-5 cm</td>
<td>50.7</td>
<td>8.5</td>
<td>29.9</td>
</tr>
<tr>
<td>Site A-3 (forest)</td>
<td>0-10 cm</td>
<td>173.5</td>
<td>9.8</td>
<td>29.7</td>
</tr>
<tr>
<td>Site A-3 (forest)</td>
<td>10-20 cm</td>
<td>24.1</td>
<td>5.9</td>
<td>30.3</td>
</tr>
<tr>
<td>Site A-3 (forest)</td>
<td>20-30 cm</td>
<td>7.0</td>
<td>5.5</td>
<td>29.2</td>
</tr>
<tr>
<td>Site A-3 (forest)</td>
<td>50-60 cm</td>
<td>7.5</td>
<td>5.0</td>
<td>28.8</td>
</tr>
<tr>
<td>Site A-3 (forest)</td>
<td>80-90 cm</td>
<td>0.5</td>
<td>7.0</td>
<td>29.5</td>
</tr>
<tr>
<td>Site B-1 (forest)</td>
<td>0-5 cm</td>
<td>23.7</td>
<td>6.1</td>
<td>28.7</td>
</tr>
<tr>
<td>Site B-2 (forest)</td>
<td>0-5 cm</td>
<td>28.4</td>
<td>5.7</td>
<td>30.8</td>
</tr>
<tr>
<td>Site B-3 (forest)</td>
<td>0-10 cm</td>
<td>20.1</td>
<td>5.7</td>
<td>28.8</td>
</tr>
<tr>
<td>Site B-3 (forest)</td>
<td>40-50 cm</td>
<td>5.4</td>
<td>6.2</td>
<td>28.9</td>
</tr>
<tr>
<td>Site B-3 (forest)</td>
<td>80-90 cm</td>
<td>8.4</td>
<td>8.4</td>
<td>28.9</td>
</tr>
<tr>
<td>Site C-1 (forest)</td>
<td>0-5 cm</td>
<td>21.5</td>
<td>4.4</td>
<td>28.3</td>
</tr>
<tr>
<td>Site C-2 (forest)</td>
<td>0-5 cm</td>
<td>30.4</td>
<td>6.5</td>
<td>28.4</td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>0-10 cm</td>
<td>25.1</td>
<td>5.1</td>
<td>27.7</td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>10-20 cm</td>
<td>22.9</td>
<td>4.7</td>
<td>28.7</td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>20-30 cm</td>
<td>12.7</td>
<td>4.8</td>
<td>28.6</td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>30-40 cm</td>
<td>4.1</td>
<td>5.0</td>
<td>28.4</td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>40-50 cm</td>
<td>7.0</td>
<td>6.7</td>
<td>28.6</td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>50-60 cm</td>
<td>7.3</td>
<td>7.0</td>
<td>29.1</td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>60-70 cm</td>
<td>6.5</td>
<td>7.6</td>
<td>29.2</td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>70-80 cm</td>
<td>4.6</td>
<td>7.7</td>
<td>29.1</td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>80-90 cm</td>
<td>4.8</td>
<td>8.7</td>
<td>29.3</td>
</tr>
<tr>
<td>Site D (wetland)</td>
<td>0-30 cm</td>
<td>57.4</td>
<td>6.9</td>
<td>29.9</td>
</tr>
<tr>
<td>Site D (wetland)</td>
<td>30-60 cm</td>
<td>204.2</td>
<td>8.9</td>
<td>30.5</td>
</tr>
<tr>
<td>Site D (wetland)</td>
<td>60-90 cm</td>
<td>90.7</td>
<td>8.4</td>
<td>30.3</td>
</tr>
<tr>
<td>Site D (wetland)</td>
<td>90-120 cm</td>
<td>428.9</td>
<td>7.1</td>
<td>30.1</td>
</tr>
<tr>
<td>Site D (wetland)</td>
<td>120-150 cm</td>
<td>215.5</td>
<td>5.1</td>
<td>29.8</td>
</tr>
<tr>
<td>Site E-1 (wetland)</td>
<td>0-10 cm</td>
<td>142.1</td>
<td>6.6</td>
<td>28.1</td>
</tr>
<tr>
<td>Site E-1 (wetland)</td>
<td>10-20 cm</td>
<td>51.6</td>
<td>6.0</td>
<td>28.4</td>
</tr>
<tr>
<td>Site E-1 (wetland)</td>
<td>20-30 cm</td>
<td>224.4</td>
<td>6.3</td>
<td>28.5</td>
</tr>
<tr>
<td>Site E-1 (wetland)</td>
<td>30-40 cm</td>
<td>138.8</td>
<td>5.4</td>
<td>28.1</td>
</tr>
<tr>
<td>Site E-1 (wetland)</td>
<td>40-50 cm</td>
<td>12.1</td>
<td>4.6</td>
<td>28.4</td>
</tr>
<tr>
<td>Site E-2 (wetland)</td>
<td>0-10 cm</td>
<td>276.5</td>
<td>7.7</td>
<td>29.7</td>
</tr>
<tr>
<td>Site E-2 (wetland)</td>
<td>40-50 cm</td>
<td>237.7</td>
<td>6.2</td>
<td>28.6</td>
</tr>
<tr>
<td>Site F-1 (wetland)</td>
<td>0-10 cm</td>
<td>123.2</td>
<td>7.5</td>
<td>30.0</td>
</tr>
<tr>
<td>Site F-1 (wetland)</td>
<td>10-20 cm</td>
<td>455.0</td>
<td>8.0</td>
<td>30.9</td>
</tr>
<tr>
<td>Site F-1 (wetland)</td>
<td>20-30 cm</td>
<td>103.2</td>
<td>7.8</td>
<td>30.2</td>
</tr>
<tr>
<td>Site F-1 (wetland)</td>
<td>70-80 cm</td>
<td>24.3</td>
<td>6.1</td>
<td>31.7</td>
</tr>
<tr>
<td>Site F-1 (wetland)</td>
<td>110-120 cm</td>
<td>71.7</td>
<td>7.7</td>
<td>30.8</td>
</tr>
<tr>
<td>Site F-1 (wetland)</td>
<td>0-10 cm</td>
<td>67.7</td>
<td>8.3</td>
<td>30.6</td>
</tr>
<tr>
<td>Site G (estuary)</td>
<td>0-5 cm</td>
<td>30.4</td>
<td>7.9</td>
<td>28.8</td>
</tr>
<tr>
<td>Site H (lake)</td>
<td>0-5 cm</td>
<td>35.8</td>
<td>7.3</td>
<td>28.3</td>
</tr>
<tr>
<td>Site I (lake)</td>
<td>0-5 cm</td>
<td>10.4</td>
<td>7.4</td>
<td>27.9</td>
</tr>
</tbody>
</table>

(a) CPI, carbon preference index, = \(\frac{2 \times \text{C}_{30-35} \times \text{C}_{27-31} \times \text{C}_{23-26} \times \text{C}_{21-24}}{\sum \text{C}_{21-35} \times \text{C}_{21-35}} \).

(b) ACL, average chain length, = \(\frac{2 \times \text{C}_{21-24} + 2 \times \text{C}_{25-28} + 2 \times \text{C}_{29-32} + 2 \times \text{C}_{33-35}}{\sum \text{C}_{21-35} \times \text{C}_{21-35}} \).

(c) P_{aq}^*, proportion of C_{31} in C_{35}, = \(\frac{\text{C}_{31}}{\text{C}_{35}} \).

(d) P_{aq}^+, proportion of aquatic plant n-alkane, = \(\frac{\text{C}_{29}-\text{C}_{35}}{\text{C}_{29}-\text{C}_{35}} \).
Table 2 Stable carbon isotopic compositions (δ^{13}C) of n-alkanes in Dorokawa catchment

<table>
<thead>
<tr>
<th>Site</th>
<th>Depth (cm)</th>
<th>C_{27}</th>
<th>S.D.*</th>
<th>C_{25}</th>
<th>S.D.*</th>
<th>C_{23}</th>
<th>S.D.*</th>
<th>C_{21}</th>
<th>S.D.*</th>
<th>C_{19}</th>
<th>S.D.*</th>
<th>C_{17}</th>
<th>S.D.*</th>
<th>C_{15}</th>
<th>S.D.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site A-1</td>
<td>0-30 cm</td>
<td>-33.1</td>
<td>-33.0</td>
<td>-34.1</td>
<td>-34.6</td>
<td>-34.5</td>
<td>-35.4</td>
<td>-34.5</td>
<td>-35.4</td>
<td>-34.5</td>
<td>-35.4</td>
<td>-34.5</td>
<td>-35.4</td>
<td>-34.5</td>
<td>-35.4</td>
</tr>
<tr>
<td>Site B</td>
<td>0-30 cm</td>
<td>-32.7</td>
<td>-32.6</td>
<td>-32.6</td>
<td>-32.9</td>
<td>-33.2</td>
<td>-33.5</td>
<td>-33.5</td>
<td>-33.5</td>
<td>-33.5</td>
<td>-33.5</td>
<td>-33.5</td>
<td>-33.5</td>
<td>-33.5</td>
<td>-33.5</td>
</tr>
<tr>
<td>Site D</td>
<td>0-30 cm</td>
<td>-32.4</td>
</tr>
<tr>
<td>Site E</td>
<td>0-30 cm</td>
<td>-34.6</td>
</tr>
<tr>
<td>Site F</td>
<td>0-30 cm</td>
<td>-33.3</td>
</tr>
<tr>
<td>Site G</td>
<td>0-30 cm</td>
<td>-32.7</td>
</tr>
<tr>
<td>Site H</td>
<td>0-30 cm</td>
<td>-32.8</td>
</tr>
<tr>
<td>Site I</td>
<td>0-30 cm</td>
<td>-31.7</td>
</tr>
</tbody>
</table>

(a) S.D., standard deviation
Table 3 Stable hydrogen isotopic compositions (δD) of n-alkanes in Dorekawa catchment

<table>
<thead>
<tr>
<th>Site</th>
<th>Depth (cm)</th>
<th>C23</th>
<th>S.D.*</th>
<th>C27</th>
<th>S.D.*</th>
<th>C31</th>
<th>S.D.*</th>
<th>C35</th>
<th>S.D.*</th>
<th>C39</th>
<th>S.D.*</th>
<th>C43</th>
<th>S.D.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site A-1 (forest)</td>
<td>0-5 cm</td>
<td>-211</td>
<td>1</td>
<td>-205</td>
<td>0</td>
<td>-203</td>
<td>2</td>
<td>-195</td>
<td>2</td>
<td>-203</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site A-2 (forest)</td>
<td>0-5 cm</td>
<td>-211</td>
<td>2</td>
<td>-202</td>
<td>3</td>
<td>-198</td>
<td>5</td>
<td>-194</td>
<td>5</td>
<td>-192</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site A-3 (forest)</td>
<td>0-5 cm</td>
<td>-211</td>
<td>1</td>
<td>-201</td>
<td>1</td>
<td>-195</td>
<td>3</td>
<td>-190</td>
<td>1</td>
<td>-204</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site B-1 (forest)</td>
<td>0-5 cm</td>
<td>-207</td>
<td>7</td>
<td>-214</td>
<td>4</td>
<td>-211</td>
<td>1</td>
<td>-202</td>
<td>4</td>
<td>-200</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site B-2 (forest)</td>
<td>0-5 cm</td>
<td>-210</td>
<td>2</td>
<td>-211</td>
<td>5</td>
<td>-203</td>
<td>2</td>
<td>-199</td>
<td>3</td>
<td>-198</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site B-3 (forest)</td>
<td>0-10 cm</td>
<td>-205</td>
<td>4</td>
<td>-212</td>
<td>0</td>
<td>-205</td>
<td>1</td>
<td>-197</td>
<td>2</td>
<td>-196</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site B-3 (forest)</td>
<td>40-50 cm</td>
<td>-187</td>
<td>4</td>
<td>-204</td>
<td>8</td>
<td>-208</td>
<td>4</td>
<td>-203</td>
<td>3</td>
<td>-188</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site B-3 (forest)</td>
<td>80-90 cm</td>
<td>-206</td>
<td>2</td>
<td>-208</td>
<td>4</td>
<td>-210</td>
<td>1</td>
<td>-198</td>
<td>0</td>
<td>-187</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site C-1 (forest)</td>
<td>0-5 cm</td>
<td>-206</td>
<td>1</td>
<td>-199</td>
<td>3</td>
<td>-195</td>
<td>0</td>
<td>-191</td>
<td>3</td>
<td>-190</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site C-2 (forest)</td>
<td>0-5 cm</td>
<td>-192</td>
<td>2</td>
<td>-192</td>
<td>-1</td>
<td>-195</td>
<td>3</td>
<td>-191</td>
<td>4</td>
<td>-190</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>10-20 cm</td>
<td>-211</td>
<td>4</td>
<td>-214</td>
<td>5</td>
<td>-213</td>
<td>6</td>
<td>-197</td>
<td>4</td>
<td>-191</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>20-30 cm</td>
<td>-202</td>
<td>4</td>
<td>-212</td>
<td>0</td>
<td>-214</td>
<td>1</td>
<td>-205</td>
<td>0</td>
<td>-196</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>30-40 cm</td>
<td>-199</td>
<td>1</td>
<td>-198</td>
<td>3</td>
<td>-203</td>
<td>4</td>
<td>-191</td>
<td>1</td>
<td>-193</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>40-50 cm</td>
<td>-200</td>
<td>9</td>
<td>-197</td>
<td>1</td>
<td>-205</td>
<td>6</td>
<td>-199</td>
<td>1</td>
<td>-188</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>50-60 cm</td>
<td>-201</td>
<td>4</td>
<td>-203</td>
<td>5</td>
<td>-207</td>
<td>3</td>
<td>-206</td>
<td>0</td>
<td>-186</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>60-70 cm</td>
<td>-203</td>
<td>3</td>
<td>-203</td>
<td>5</td>
<td>-186</td>
<td>1</td>
<td>-180</td>
<td>3</td>
<td>-197</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>70-80 cm</td>
<td>-196</td>
<td>5</td>
<td>-200</td>
<td>5</td>
<td>-207</td>
<td>3</td>
<td>-206</td>
<td>0</td>
<td>-186</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site C-3 (forest)</td>
<td>80-90 cm</td>
<td>-195</td>
<td>4</td>
<td>-203</td>
<td>4</td>
<td>-199</td>
<td>1</td>
<td>-200</td>
<td>7</td>
<td>-190</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site D (wetland)</td>
<td>0-30 cm</td>
<td>5</td>
<td>-214</td>
<td>2</td>
<td>-221</td>
<td>5</td>
<td>-216</td>
<td>0</td>
<td>-229</td>
<td>2</td>
<td>-230</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Site D (wetland)</td>
<td>30-60 cm</td>
<td>2</td>
<td>-217</td>
<td>5</td>
<td>-224</td>
<td>6</td>
<td>-224</td>
<td>1</td>
<td>-241</td>
<td>2</td>
<td>-232</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Site D (wetland)</td>
<td>60-90 cm</td>
<td>0.5</td>
<td>-228</td>
<td>0</td>
<td>-223</td>
<td>3</td>
<td>-225</td>
<td>1</td>
<td>-241</td>
<td>2</td>
<td>-232</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Site D (wetland)</td>
<td>90-120 cm</td>
<td>1</td>
<td>-216</td>
<td>6</td>
<td>-216</td>
<td>1</td>
<td>-218</td>
<td>0</td>
<td>-242</td>
<td>1</td>
<td>-239</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Site D (wetland)</td>
<td>120-150 cm</td>
<td>1</td>
<td>-216</td>
<td>5</td>
<td>-227</td>
<td>2</td>
<td>-222</td>
<td>2</td>
<td>-237</td>
<td>2</td>
<td>-236</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Site E-1 (wetland)</td>
<td>0-10 cm</td>
<td>-227</td>
<td>4</td>
<td>-226</td>
<td>4</td>
<td>-226</td>
<td>1</td>
<td>-221</td>
<td>2</td>
<td>-219</td>
<td>5</td>
<td>-208</td>
<td>5</td>
</tr>
<tr>
<td>Site E-1 (wetland)</td>
<td>10-20 cm</td>
<td>-226</td>
<td>0</td>
<td>-233</td>
<td>3</td>
<td>-225</td>
<td>7</td>
<td>-220</td>
<td>6</td>
<td>-217</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site E-1 (wetland)</td>
<td>20-30 cm</td>
<td>-239</td>
<td>1</td>
<td>-229</td>
<td>1</td>
<td>-220</td>
<td>3</td>
<td>-220</td>
<td>0</td>
<td>-212</td>
<td>1</td>
<td>-211</td>
<td>1</td>
</tr>
<tr>
<td>Site E-1 (wetland)</td>
<td>40-50 cm</td>
<td>-239</td>
<td>4</td>
<td>-237</td>
<td>5</td>
<td>-222</td>
<td>5</td>
<td>-219</td>
<td>3</td>
<td>-224</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site F-1 (wetland)</td>
<td>0-10 cm</td>
<td>-212</td>
<td>2</td>
<td>-210</td>
<td>4</td>
<td>-225</td>
<td>3</td>
<td>-220</td>
<td>4</td>
<td>-230</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site F-1 (wetland)</td>
<td>10-20 cm</td>
<td>-231</td>
<td>2</td>
<td>-244</td>
<td>0</td>
<td>-240</td>
<td>0</td>
<td>-222</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site F-1 (wetland)</td>
<td>20-30 cm</td>
<td>-217</td>
<td>4</td>
<td>-240</td>
<td>1</td>
<td>-243</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site F-2 (wetland)</td>
<td>110-120 cm</td>
<td>-223</td>
<td>2</td>
<td>-211</td>
<td>1</td>
<td>-219</td>
<td>1</td>
<td>-231</td>
<td>3</td>
<td>-219</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site F-2 (wetland)</td>
<td>0-10 cm</td>
<td>-231</td>
<td>0</td>
<td>-231</td>
<td>4</td>
<td>-229</td>
<td>1</td>
<td>-241</td>
<td>1</td>
<td>-235</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site G (estuary)</td>
<td>0-5 cm</td>
<td>-217</td>
<td>3</td>
<td>-219</td>
<td>1</td>
<td>-217</td>
<td>1</td>
<td>-216</td>
<td>2</td>
<td>-214</td>
<td>2</td>
<td>-213</td>
<td>1</td>
</tr>
<tr>
<td>Site H (lake)</td>
<td>0-5 cm</td>
<td>-203</td>
<td>1</td>
<td>-201</td>
<td>6</td>
<td>-202</td>
<td>6</td>
<td>-196</td>
<td>4</td>
<td>-195</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site I (lake)</td>
<td>0-5 cm</td>
<td>-207</td>
<td>2</td>
<td>-202</td>
<td>1</td>
<td>-203</td>
<td>1</td>
<td>-204</td>
<td>0</td>
<td>-196</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) S.D., standard deviation
FIGURE CAPTIONS

Figure 1. Sampling locations in the Dorokawa River watershed and northern part of Lake Shumarinai. Solid circles and triangles represent forest sampling sites (Sites A, B and C) and wetland (Sites D, E and F) soils, respectively. Solid squares represent surface sediment sampling sites in the river and lake (Sites G, H and I). Open circles show river water sampling sites (Sites 1, 4, 6, 10, 13, 16 and 20). Parenthetical numeric numbers indicate the altitude of soil sampling points. The shaded area in the watershed is the wetland area.

Figure 2. Seasonal changes in hydrogen isotopic compositions of river water (δD_{\text{rw}}) in the Dorokawa watershed during the period from July 2003 to October 2004. River water sampling sites are shown in Figure 1.

Figure 3. Typical molecular distributions of n-alkanes in the forest (Sites A-C), wetland (Sites D-F) and lake (Sites G-I) samples in the Dorokawa catchment system and Lake Shumarinai.

Figure 4. Depth profiles of concentration, carbon preference index (CPI), average chain length (ACL), C_{27}/C_{31} and P_{aq} of n-alkanes in forest soils (Sites A-C) and wetland peat (Sites D-F) and lake sediments (Sites G-I). Data for lake surface sediments are represented by shaded vertical bands in the figures.

Figure 5. Depth profiles of stable carbon isotopic compositions (δ^{13}C) of C_{25}-C_{33} odd carbon number n-alkanes in forest (Sites A-C), wetland (Sites D-F) and lake (Sites G-I) samples in the Dorokawa catchment system and Lake Shumarinai. Data in lake surface sediments are represented by shaded vertical bands in the figures. Bars in the figures represent standard deviations.

Figure 6. Depth profiles of the hydrogen isotopic compositions (δD) of C_{25}-C_{33} odd carbon number n-alkanes in forest (Sites A-C), wetland (Sites D-F) and lake (Sites G-I) samples in
the Dorokawa catchment system and Lake Shumarinai. Data in lake surface sediments are represented by shaded vertical bands in the figures. Bars in the figures represent standard deviations.

Figure 7. C_{27}/C_{31} vs. P_{aq} diagrams of n-alkanes in the Dorokawa catchment system and Lake Shumarinai.

Figure 8. δ^{13}C vs. δD diagrams for odd C_{25}-C_{33} n-alkanes in the Dorokawa catchment system and Lake Shumarinai. Bars in the figures represent standard deviations.
Figure 1 (Seki et al.)
Figure 2 (Seki et al.)
Figure 3 (Seki et al.)

Forested soil
(a) Site A-2
(b) Site B-3
(c) Site C-1

Wetland peat
(d) Site D
(e) Site E-1
(f) Site F-2

Lake sediment
(g) Site G
(h) Site H
(i) Site I

Relative abundance
Carbon number

0-5 cm
0-10 cm
0-5 cm
0-10 cm
0-5 cm

Carbon number
Carbon number
Carbon number

Forested soil
Wetland peat
Lake sediment
Figure 4 (Seki et al.)

Forest soil

(a) Depth (cm)

(b) CPI

(c) ACL

(d) Concentration (µg/g)

(e) Depth (cm)

Wetland peat

(f) Depth (cm)

(g) CPI

(h) ACL

(i) Concentration (µg/g)

(j) Depth (cm)
Forested soil

Site A
Site B
Site C

Depth (cm)

Wetland peat

Site D
Site E
Site F

Depth (cm)

\[\delta D_{C25} (\%o) \]
\[\delta D_{C27} (\%o) \]
\[\delta D_{C29} (\%o) \]
\[\delta D_{C31} (\%o) \]
\[\delta D_{C33} (\%o) \]
Figure 7 (Seki et al.)
Figure 8 (Seki et al.)

(a) C_{25}
(b) C_{27}
(c) C_{29}
(d) C_{31}
(e) C_{33}

δD of n-alkanes (‰)
δ^{13}C of n-alkanes (‰)