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Adaptive Missing Texture Reconstruction Method Based on Kernel
Canonical Correlation Analysis with a New Clustering Scheme

SUMMARY In this paper, a method for adaptive reconstruction of
missing textures based on kernel canonical correlation analysis (CCA) with
a new clustering scheme is presented. The proposed method estimates the
correlation between two areas, which respectively correspond to a missing
area and its neighboring area, from known parts within the target image and
realizes reconstruction of the missing texture. In order to obtain this corre-
lation, the kernel CCA is applied to each cluster containing the same kind
of textures, and the optimal result is selected for the target missing area.
Specifically, a new approach monitoring errors caused in the above kernel
CCA-based reconstruction process enables selection of the optimal result.
This approach provides a solution to the problem in traditional methods
of not being able to perform adaptive reconstruction of the target textures
due to missing intensities. Consequently, all of the missing textures are
successfully estimated by the optimal cluster’s correlation, which provides
accurate reconstruction of the same kinds of textures. In addition, the pro-
posed method can obtain the correlation more accurately than our previous
works, and more successful reconstruction performance can be expected.
Experimental results show impressive improvement of the proposed recon-
struction technique over previously reported reconstruction techniques.
key words: image restoration, texture, kernel canonical correlation analy-
sis, nonlinear estimation

1. Introduction

In the field of image restoration, reconstruction of miss-
ing areas in digital images is a very important issue since
it has a number of fundamental applications. For exam-
ple, it is applied to removal of unnecessary objects, restora-
tion of corrupted old films, and error concealment for video
communications. In order to realize these applications,
many methods for reconstruction of important visual fea-
tures, such as structural and texture features have been pro-
posed. Structural reconstruction approaches focus on accu-
rate restoration of missing edges in images and are effective
for pure structure images [1]-[3]. However, since ordinary
images also contain many textures, texture reconstruction
approaches [4]-[6] work better for those parts. In this pa-
per, we focus on the reconstruction of texture features.
Much progress has been made in recent studies on
missing texture reconstruction [4]-[6]. Most algorithms re-
ported in the literature reconstruct missing areas by utilizing
statistical features of known textures within the target im-
age as training patterns. Kernel principal component anal-
ysis (PCA) [7],[8] is a suitable method for extraction of
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nonlinear features in observed data. By utilizing projec-
tion schemes onto the nonlinear subspace obtained in the
kernel PCA [9], the missing textures can be reconstructed
from known textures. However, such approaches assume
that arbitrary local textures within the target image are sim-
ilar to each other; that is, the target image contains only one
type of texture. Thus, if the target image consists of vari-
ous textures, the missing textures should be adaptively re-
constructed from only the same kinds of textures. Unfortu-
nately, such textures cannot be selected by traditional meth-
ods since the distance between the target missing textures
and the other ones cannot be calculated.

In order to solve the problem in traditional methods of
not being able to perform adaptive texture reconstruction,
we first proposed an error reduction (ER) algorithm [10]
based adaptive texture reconstruction method in [11]. In
this method, missing textures are reconstructed by retriev-
ing their phases from the Fourier transform magnitudes esti-
mated from known textures within the target image. Fur-
thermore, the same kinds of textures could be adaptively
provided for the estimation of the Fourier transform magni-
tudes by monitoring errors converged in the ER algorithm.
However, in this ER algorithm, the constraint utilized in the
Fourier domain was not convex, and the convergence of the
optimal solution was not guaranteed. Therefore, in order
to modify this method, we proposed a projection onto con-
vex sets (POCS) [12] based adaptive reconstruction meth-
ods of missing textures by using the kernel PCA in [13]
and [14]. Furthermore, in [15], we also proposed an im-
proved method, which introduced a renewal approach of
the constraints into the POCS algorithm. These methods in
[13]-[15] tried to estimate correlation of intensities between
known and unknown areas in the target image by using the
kernel PCA to reconstruct missing textures. However, the
correlation utilized in these methods contains not only the
desired one but also the correlation of intensities between
pixels within known areas and that between pixels within
unknown areas. In the point view concerning the correla-
tion between known and unknown areas directly, the kernel
canonical correlation analysis

In this paper, an adaptive texture reconstruction method
based on kernel CCA with a new clustering scheme is pro-
posed. Since the kernel CCA is a useful method for finding
underlying relationships between two different data sets, we
utilize this method for finding the correlation of intensities
between missing areas and the other known areas. Specif-
ically, the proposed method estimates the correlation be-
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tween two areas, which respectively correspond to a missing
area and its neighboring area, from known parts within the
target image and reconstructs the missing intensities. In this
procedure, the kernel CCA is applied to each cluster con-
taining the same kind of textures, and the optimal result is
selected for the target missing area based on errors caused
in the above reconstruction scheme. This approach provides
a solution to the problem of the traditional methods and is
the biggest advantage of the proposed method. Since each
missing texture is adaptively reconstructed by the optimal
correlation obtained from only the same kind of textures,
successful restoration of the missing areas can be expected.
Furthermore, since the proposed method estimates more ac-
curate correlation than those obtained by our previous works
[13]-[15], improvement of the reconstruction performance
can be also expected.

This paper is organized as follows. The kernel CCA is
explained in Sect. 2, and the kernel CCA-based missing tex-
ture reconstruction method is presented in Sect. 3. Experi-
mental results that verify the performance of the proposed
method are shown in Sect. 4. Finally, conclusions are given
in Sect. 5.

2. Kernel CCA

The kernel CCA is explained in this section. Suppose there
is a pair of multi-variates x € R™ and y € R™, and they
are respectively transformed into the feature space via the
nonlinear map ¢y and ¢y. Furthermore, from the mapped
results ¢x(x) and q)y(y)T, the kernel CCA seeks to maximize
the correlation

between

s = a'¢x(x) 2
and

£ =By ) 3

over the projection directions a and b. This means that
the kernel CCA finds the directions a and b that maximize
the correlation E{s?} of corresponding projections subject to
E{s?} = 1 and E{#*} = 1. Note that vector/matrix transpose
is denoted by the superscript ’ in this paper.

The optimal directions a and b can be found by solving
the Lagrangean

A A
£ = Blst) - SELs?) = 1) = TEF) - 1)
+2(lalP + IbIP), 4)
where 7 is a regularization parameter, and this computation
scheme is called the regularized kernel CCA [17]. By taking

the derivatives of Eq. (4) with respect to a and b, 1; = A,
(= A) is derived, and the directions a and b maximizing the
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correlation p (= A) can be calculated.
3. Kernel CCA-Based Missing Texture Reconstruction

A kernel CCA-based missing texture reconstruction method
is presented in this section. In Fig. 1, the outline of the pro-
posed method is shown. In the the proposed method, a local
image f (w X h pixels) including missing areas is clipped
from the target image, and the missing intensities are esti-
mated based on the kernel CCA. For the following explana-
tion, we respectively denote two areas whose intensities are
unknown and known within the target local image f as Q
and Q, respectively.

Note that in the target image, there are many known
local images whose textures are quite different from that of
the target local image f. Such local images should not affect
the reconstruction of the target local image f. Therefore, the
proposed method applies the kernel CCA to each cluster of
local images containing the same kind of texture, and the
optimal result is adaptively utilized for reconstruction of the
target local image f. In order to realize this scheme, cluster-
ing of the known local images within the target image must
be performed before the reconstruction process. Thus, we
firstly show the kernel CCA-based clustering algorithm of
the known local images in 3.1. The adaptive reconstruction
algorithm of the missing textures based on the kernel CCA
is shown in 3.2.

3.1 Texture Clustering Algorithm

In this subsection, clustering of known textures within the
target image as preprocessing for reconstruction of the miss-
ing textures is described. First, we clip known local images
fi G = 1,2,---,N) whose size is w X h pixels from the

Clipped known local images ﬁ(l =12,..., N)

| Information about €3 and © I. Cluster 1 Cluster 2 Cluster 3

' Adaptive selection of the optimal cluster

I Kernel CCA-based reconstruction (3.2) I

4

Reconstruction result

Fig.1  Outline of the proposed texture clustering and reconstruction
algorithms.

“In this section, we assume that E{¢,(x)} = 0 and E{¢y(y)} =0
for brief explanation, where E{-} denotes the sample average of the
random variates.
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Fig.2  Overview of the clustering algorithm of known local images.

target image in the same interval (width @; pixels, height
8 pixels). Next, for each local image f;, two vectors X;
(e R¥"=Ne) and y; (e RM*), whose elements are respectively
raster scanned intensities in the corresponding areas of Q
and Q, are defined, where N represents the number of pix-
els in Q. Furthermore, the proposed method maps x; into
the feature space via the nonlinear map ¢ :R” Mo — F
[16]. In this paper, we use the nonlinear map whose ker-
nel function is a Gaussian kernel. The Gaussian kernel is a
default general purpose kernel in the kernel methods com-
munity [9]. Therefore, in the proposed method, we utilize
the Gaussian kernel. Note that an exact pre-image, which is
the inverse mapping from the feature space back to the input
space, typically does not exist [19]. Therefore, the estimated
pre-image includes some errors. Since the final results esti-
mated in the proposed method are the missing intensities in
Q, we do not utilize the nonlinear map for y;.

From the obtained results ¢x(x;) and y; (i =
1,2,---,N), the proposed method performs their clustering
that minimizes the following criterion, and its overview is
shown in Fig. 2:

2
/DX, (5)

B (v} - 5) - A“AY (ux) - %)

k
J
and y]; (j = 1,2,---,N¥) respectively represent x; and y;

where K is the number of the clusters. The vectors x

(i = 1,2,---,N) assigned to cluster k. Furthermore, (;_S’;
and y* are respectively the mean vectors of ¢X(x’;) and y’jf

(G=12,--- , NF) and are defined below.

- 1
v = el (©)
_ 1
¥ = Y (7
where
EX = [fx(x5), px(x5), L (xE)1, )
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Yk = [ylf’ y§7 e 7yka]’ (9)

and 1¥ = [1,1,---, 1] is an N*¥ x 1 vector. The matrices A
and B¥ are coefficient matrices whose columns respectively
correspond to the projection directions a and b in Egs. (2)
and (3), and AF is a correlation matrix whose diagonal ele-
ments correspond to the correlation in Eq. (1). In addition,
the value D* is the dimension of A¥, B¥, and A*. Thus, the
D*-dimensional matrices A, B¥, and A* are obtained by ap-
plying the kernel CCA to ¢x(x’;) and y’J‘. (j=1,2,---,N".
Specifically, given {((ﬁx(x’;),y’j‘.)lj =1,2,---, N},

Ak = [allca aga T, a’gk] (10)
and
B = [b], b, -, by (11

in Eq. (5) are matrices that maximize the correlation /l"‘l d=
1,2,-- -, DF) between the d-th elements in the following two
vectors:

s = A (9x(x) - 84). (12)
tt =BY (v - §). (13)

Then, A* becomes a diagonal matrix whose diagonal ele-
ments are the correlation coefficients A% (d = 1,2,---, DX).
The details of the calculation of A, B¥, A%, and D* are
shown as follows.

In order to obtain A*, B¥, and A¥, we utilize the regu-
larized kernel CCA shown in the previous section. Note that
the optimal matrix A is given by

Ak = =FHFEX, (14)
where EF = [}, ¢, - ,e’z)k] is an N* x DF matrix. Further-
more,

1 ,
Hf = TF - —1°1* (15)

Nk

is a centering matrix, where I* is the N* x N* identity matrix.
From Eq. (14), the following equation is satisfied

ab ==fH*e! (@ =1,2,---,D". (16)
Then, by calculating the optimal solution e'g‘, and bfl d =
1,2,---,DF), AF and B* can be obtained. In the same way
as Eq. (4), we calculate the optimal solution e and b* that
maximizes

, Ak Ak
Ky kpk Uk ok 1)k phpk
L=e"L'p 2(e Mfe“-1) 2(be 1), (7
where e, b*, and A* respectively correspond to e, b, and
/l’:l. In the above equation, L*, M*, and P¥ are calculated as

follows:
1 ,
L = NF HkK’;HkaYk ) (18)

1
M- = ﬁHkK’;HkaKin - mH'KAHE, (19)
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1 ,
Pt = WY"H"H"Y" —_ L (20)

Furthermore, K¢ (= =X'Zk) is the matrix whose (p, ¢)-th
(p=12-- , N, qg=12-- , N) element is defined as
Kx(x5, x%) by using the Gaussian kernel function (-, -) [18].
The values 17, and 1, in Egs. (19) and (20) are regularization
parameters. By taking derivatives of Eq. (17) with respect to
e* and b*, the optimal e*, b¥, and A* can be obtained as the
solutions of the following eigenvalue problems:

M LA L o = pR ek, 1)
PILY M LRt = /lkzb" 22)

where A* is obtained as an eigenvalue, and the vectors et

and b are respectively obtained as eigenvectors. Then, the
dth(d=1,2---,D eigenvalue of A* becomes /l];l’ where
A A ,/lka. Note that the dimension D* is set to
the value whose cumulative proportion obtained from /llg‘,
(d = 1,2,---, D) becomes larger than Th. Furthermore,
the eigenvectors e and b* corresponding to /l’; become e’g‘,
and b¥, respectively.

From Egs. (6) and (7) and the obtained matrices B¥, E¥,
and AX, Eq. (5) can be rewritten as follows:

K Nt
- 25 - )
k=1 j=1
kyok! yykmk’ k 1 k 1k 2 k
—~A'EFHFEF (qﬁx(xj) - Waxl ) /D,
S Sy
_ BY (y’f _ _Yklk)
k
k=1 j=1 TN
' yyk 1 k : k
~A'EFH (K§ - ﬁKkl) /D*, (23)

where k¥ is an N*x 1 vector whose p-th element is KX(X];., xb).
From Eq. (23), the mapped result

: 1
i, = A'EVH* (K§ - ﬁng) = A'st (24)

is the optimal approximation result of t’; in Eq. (13) as shown
in Fig. 2. Therefore, ||t’J‘. - f’J‘.II2 corresponds to the minimum
distance between the new variate t} of y% and ! obtained

from the new variate s* of Ox (x’J‘. ). Then, by using criterion C,
we can effectively perform the clustering of the local images
fii=1,2,---,N).

In the conventional methods [13]-[15], we utilized dif-
ferent criterion with that of the proposed method to perform
clustering of known local textures. Their criterion repre-
sents the sum of approximation errors between known local
textures and those projected onto the nonlinear eigenspaces
obtained from their belonging clusters. These errors con-
tained both of two errors respectively calculated from two
areas corresponding to known and unknown areas of target
local images. Note that the errors we must minimize are
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those in the unknown areas Q of the target local image f.
Therefore, we utilize the new criterion representing the sum
of the minimum errors between new variates of areas cor-
responding to Q and those optimally estimated from areas
corresponding to Q by the kernel CCA.

3.2 Texture Reconstruction Algorithm

In this section, we present an algorithm for reconstruction
of the missing texture in the target local image f from the
clustering results presented in the previous section. First, we
denote the vectors of the raster scanned intensities in Q and
Q as x and y, respectively. As shown in Fig. 3, the estimation
result §* of the unknown vector y by cluster k is obtained as
follows:

¥ = TRAAY (gu(x) - 8) + 5" (25)
In the above equation, the matrix T’]; satisfies
TEBY YFHF = YFH, (26)

and it is obtained by calculating the pseudo-inverse matrix
of B¥'YFHF as follows:

TS = Y'H'HF Y B (B"’Y"H"H"Y"'B")’1 . 27

Furthermore, by utilizing the calculation scheme of Eq. (23),
Eq. (25) is rewritten as follows:
. , 1 1
k= TEAFENH (Kk - WKkl") N —Y*1X, (28)
where «* is an N* x 1 vector whose p-th element is xy (X, X}).
By calculating $* in Eq. (28), the missing intensities in
Q can be estimated from cluster k. In the proposed method,
the matrices A¥ and B¥, which maximize the correlation
between the new variates in Egs. (12) and (13), are calcu-
lated from ¢X(x’;) and y’J‘. (j = 1,2,---,N* by the kernel
CCA. Then, from the obtained matrices A¥, B¥, and A¥, t’]f
of cluster £ in Eq. (13) can be optimally approximated by
f’; in Eq. (24) as shown in Fig. 2. Therefore, if we can clas-
sify the target local image f into the optimal cluster k°P, the
proposed method accurately estimates the unknown vector
y from the known vector ¢x(x) in Eq. (28). However, since
the target local image f contains the missing area €, it can-
not be classified by criterion C in Eq. (23). Thus, in order to
achieve the classification of f, the proposed method utilizes
the following novel criterion as a substitute for Eq. (23):

ct=|

By utilizing the calculation scheme of Eqgs. (23) and (28),
the above equation is rewritten as follows:

A¥ () - @5) - A“BY (3 - §¥) 2 /Dk. (29)

ck = 'Ek’Hk (Kk - LK"l")
Nk X
_ARBY ¢ = Lykyk ’ Dk (30)
V- W :
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As shown in the previous section, the mapped result
A . 1 N
§ = A'B* (yk - ﬁYklk) = A (€29)

becomes the optimal approximation result of the known vec-
tor

Assign f to cluster minimizing approximation error
2
/ Hsk g / DF

Cluster & 1

Target local image f

-y

Estimated intensities in () by cluster &

Fig.3  Overview of the reconstruction algorithm of missing textures.
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, 1
k _ wk/yrk kqk
st = ENH (H‘—N—kal), (32)

when the target local image f belongs to cluster k. This
means that criterion C¥ corresponds to the minimum dis-
tance between the new variate s* of the known vector ¢y(x)
and §* obtained from the new variate £ of the estimation
result $* as shown in Fig. 3. Therefore, this criterion is ap-
plicable for the classification of the target local image f. Se-
lection of the optimal cluster k°P* minimizing Eq. (30) for the
target local image f then becomes possible. Furthermore,
the proposed method regards the result §*" obtained by the
optimal cluster k°P* as the output. Consequently, by per-
forming the non-conventional approach, which adaptively
selects the optimal cluster for the target missing area, we
can reconstruct all of the missing textures in the target im-
age accurately.

Finally, we compare the proposed method with our pre-
vious works. Note that in our previous works [13]-[15], we
tried to estimate correlation of intensities between known
and unknown areas in the target image by using the kernel
PCA to reconstruct missing textures. However, the corre-
lation utilized in these methods contains not only the de-

Fig.4 (a) Original test image 1, (b) Corrupted image including text regions “Fall Harvest Sweet
Chestnut” (11.3% loss), (c) Zoomed portion of (a), (d) Image reconstructed by reference [9], (e) Image
reconstructed by reference [15], (f) Image reconstructed by the proposed method, (g) Zoomed portion
of (d), (h) Zoomed portion of (e), (i) Zoomed portion of (f).
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sired one but also the correlation of intensities between pix-
els within known areas and that between pixels within un-
known areas. On the other hand, the proposed method can
obtain the correlation of intensities between known and un-
known areas more successfully than those methods. There-
fore, more accurate performance can be obtained by the pro-
posed method.

As described above, we can reconstruct the missing
texture in the target local image. The proposed method clips
local images (w X h pixels) including missing pixels in the
same interval (width @, pixels, height hy pixels) and recon-
structs them by using the above approach. Note that each
restored pixel has multiple estimation results if the clipping
interval is smaller than the size of the local images. In this
case, the proposed method regards the result minimizing
Eqg. (30) as the final one.

4. Experimental Results

The performance of the proposed method is shown in this
section. Figure 4(b) is a test texture image (480 X 360 pix-
els, 24-bit color levels) that includes the text regions “Fall

(d)

Fig.5
(8.9% loss), (c) Zoomed portion of (a), (d) Image reconstructed by reference [9], (¢) Image reconstructed
by reference [15], (f) Image reconstructed by the proposed method, (g) Zoomed portion of (d), (h)
Zoomed portion of (e), (i) Zoomed portion of (f).

Chain of

Mountain

(b)

(h)
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Harvest Sweet Chestnut” from Fig.4(a). We utilized the
eigenspace method using projection of the nonlinear sub-
space obtained by the kernel PCA in [9] as a traditional
method, and its reconstruction results are shown in Fig. 4(d).
In addition, we also utilized another conventional method
[15], which was the best published method in [11] and [13]-
[15], and its reconstruction results are shown in Fig. 4(e).
Figure 4(f) shows the results of reconstruction by the pro-
posed method. In this simulation, we set the parameters of
the proposed method as follows: w = 40, h = 30, &; = 6,
hi =5, =20, =15, 7 = 5.0x 107, 5, = 0.0,
Th = 0.5 and K = 2. The details of the determination of
these parameters are shown in Appendix. For better sub-
jective evaluation, the enlarged portions around the lower
right of the images are shown in Figs. 4(g)—(1). It can be
seen that noticeable improvements have been achieved by
using the proposed method. In the traditional method, the
reconstructed textures suffer from some degradation due to
different kinds of textures. On the other hand, the pro-
posed method can adaptively reconstruct the missing tex-
tures from only the reliable ones by selecting the optimal
cluster including the same kinds of textures. Furthermore, in

(a) Original test image 2, (b) Corrupted image including text regions “Chain of Mountain”
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Fig.6 (a) Original test image 3, (b) Corrupted image including text regions “Green Terraced Paddy
Fields” (11.9% loss), (c) Zoomed portion of (a), (d) Image reconstructed by reference [9], (e) Image
reconstructed by reference [15], (f) Image reconstructed by the proposed method, (g) Zoomed portion
of (d), (h) Zoomed portion of (e), (i) Zoomed portion of (f).

the proposed method, the correlation of intensities between
known and unknown areas are obtained more successfully
than the conventional methods as shown in the previous sec-
tion. Therefore, the missing textures can be reconstructed
more accurately by the proposed method than by the con-
ventional methods.

Different experimental results are shown in Figs. 5 and
6. Compared to the results obtained by the conventional
methods, it can be seen that various kinds of textures can be
accurately restored by using the proposed method. Further-
more, in order to quantitatively evaluate the performance of
the proposed method, we show the PSNR of the reconstruc-
tion results in Table 1. The PSNR is defined as follows:

MAX?
PSNR = 101log,, MSE (33)

where MAX denotes the maximum value of intensities and
MSE is the mean square error between the original image
and the reconstructed image. It can be seen that our method
has achieved an improvement of 0.55-2.06 dB over the tra-
ditional method [9]. However, some images reconstructed
by reference [15] have higher PSNR values than those of
the proposed method. Although the performance of the pro-

posed method is really superior to that of the conventional
method in subjective evaluation, the PSNR values cannot re-
flect those results. Thus, new quantitative evaluation meth-
ods should be considered in our future work.

Finally, we verify the computational loads of the pro-
posed method and the conventional methods. Table 2 shows
the comparison of the computation time between the pro-
posed method and the conventional methods in [9] and [15].
This simulation was performed on a personal computer us-
ing Intel(R) Core(TM)2 Quad CPU Q6700 2.66 GHz with
2.0 Gbytes RAM. Both the proposed method and the con-
ventional methods were implemented by using Matlab. As
shown in this table, the computation time of the proposed
method is much larger than those of the conventional meth-
ods. In the proposed method, we perform the clustering of
known textures within the target image for each target lo-
cal image f. On the other hand, the conventional method
in [15] performs the clustering only once before the missing
texture reconstruction process. Therefore, by applying this
approach to our method, its computation cost will become
much smaller. From this experiment, we can see that the re-
duction of the computational cost in the proposed method is
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Table 1  Performance comparison (PSNR) of the proposed method and
the conventional methods.

Image | Reference [9] [ Reference [15] | Proposed method

Fig.4 21.04dB 21.84dB 21.59dB
Fig.5 27.79dB 30.22dB 29.85dB
Fig.6 25.82dB 26.13dB 26.46 dB

Table 2 Comparison of computational time (sec) between the proposed
method and the conventional methods.

Image | Reference [9] | Reference [15] | Proposed method

Fig. 4 427 x 10 2.51 x 10? 5.65 x 10*

Fig. 5 4.86 x 103 2.79 x 10% 6.47 x 10*

Fig. 6 413 x 10 2.56 x 107 5.82 x 10*

necessary for practical use. This issue will be addressed in
a future work.

5. Conclusions

In this paper, we have proposed a kernel CCA-based texture
reconstruction method. The proposed method applies the
kernel CCA to each cluster containing the same kind of tex-
tures and adaptively estimates the missing intensities from
the optimal correlation. In order to select the optimal one,
the error caused in the estimation scheme is introduced as a
new criterion. This approach provides a solution to the prob-
lem in the traditional method of not being able to adaptively
select the optimal textures for the missing area, and reliable
textures can be utilized for reconstruction of the target tex-
tures. In addition, since the proposed method enables more
accurate estimation of the correlation by using the kernel
CCA than that by our previous works, impressive improve-
ments in subjective measures have been achieved.

In the proposed method, we manually set parameters
such as the size of local images and number of clusters. It
is desirable that these parameters can be adaptively deter-
mined from the target image. Thus, we need to complement
this determination algorithm. Furthermore, the proposed
method takes more computational time than that of tradi-
tional methods. Therefore, reduction of computational cost
is needed for practical use of the proposed method. These
topics will be the subjects of subsequent studies.
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Appendix: Determination of Parameters

In Sect. 4, we set the parameters of the proposed method as
follows: w = 40, h = 30, &, = 6, hy = 5, @, = 20, hy = 15,
m = 50x10"7, 7, = 0.0, Th = 0.5 and K = 2. The
details of the determination of those parameters are shown
as follows.

(i) Size of local images: w(= 40) and k(= 30)
In order to determine the optimal value, we changed
the size of local images as 40 x 30, 60 x 45, and 80 x 60
pixels and calculated the PSNR values of the recon-
struction results of three test images. These test im-
ages are gray-scale images of Figs. 4(b), 5(b), and 6(b)
(480 x 360 pixels and 8-bit gray levels), and are also
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utilized to determine other parameters in (iv)—(vi). Fig-
ure A- 1 shows the relationship between the size of lo-
cal images and the PSNR values of the reconstruction
results. From this figure, we can see the relationship
between the size of local images and the PSNR val-
ues is different for each test image, and the quanti-
tative performance is not sensitive for w and 4. On
the other hand, if the size of local images becomes
larger, the subjective performance of the reconstruction
results tends to become worse as shown in Fig. A- 2.
Thus, it seems that w = 40 and & = 30 are the opti-
mal. Furthermore, if the size of local images is set to a
smaller value, the size of the matrices L*, M¥, and P¥ in
Egs. (18)—(20) becomes much larger, and the computa-

— Test image 1
--- Test image 2
--- Test image 3
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tion of Egs. (21) and (22) becomes difficult. Therefore,
we determined w = 40 and & = 30 in the experiments.

(i1) Sliding interval of local images for reconstructing miss-

ing textures: @, (= 20) and ha(= 15)

In the proposed method, if the target local image f is
clipped from the target image without any overlaps,
several textures may be included within f. In such a
case, the reconstruction performance of the proposed
method tends to become worse. Therefore, the pro-
posed method clips overlapped local images as f in the
same interval @, (= 20) and 7o(= 15), that is a half size
of the target local image f. Note that if we set the clip-
ping interval to a smaller value, the performance of the

— Test image 1
- Test image 2
--- Test image 3

34

32

30

-4 azﬁ gp--- T ’ emmmmmmmeeeees J
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22 20
. 50%1070 50%1078 50x1077 50% 1070 50% 107
40 % 30 60 x 45 80 x 60
. . m
Size of local images
. . . ) . Fig.A-3  Relationship between 7; and the PSNR values of the
Fig.A-1 Relationship between the size of local images and the PSNR reconstruction results.

values of the reconstruction results.

(b) ()

Fig.A-2  (a) Zoomed portion of Test image 3, (b) Zoomed portion of reconstruction results (w = 40
and i = 30), (c) Zoomed portion of reconstruction results (w = 80 and /& = 60).

(b) (©)

(a) Zoomed portion of reconstruction results (71 = 5.0 X 1078), (b) Zoomed portion of

Fig.A-4
reconstruction results (17; = 5.0 x 1077), (c) Zoomed portion of reconstruction results (77; = 5.0 x 107).



proposed method may become better, but its computa-
tion time becomes much larger. Therefore, we simply
set @, = 20 and A, = 15 in the experiments.

(iii) Clipping interval for obtaining training local images:

®1(= 6) and /(= 5)

In order to reconstruct missing textures, the proposed
method clips training local images f; (i = 1,2,--- ,N)
not including missing areas from the target image. It is
desirable that the clipping interval @ and &, are respec-
tively set to the same values as @, and h,. However, if
many missing areas are contained in the target image,
it is difficult to obtain enough training local images f;.
Therefore, the proposed method sets the clipping inter-
val in such a way that the number of the clipped local

. — Test image 1

wf. --- Testimage 2

| --- Test image 3
29
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Fig.A-5 Relationship between K and the PSNR values of the
reconstruction results.
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images f;, N becomes larger than 2000 for all of the
three test images shown in Figs. 4-6. Specifically, we
set i, = L%J and h, = L%J in the experiments.

(iv) Regularization parameters: 17;(= 5.0 x 1077) and n,(=

0.0)

First, we changed the value of 77; (= 5.0 x 107°,5.0 x
1073,5.0x 1077,5.0 x 107°,5.0 x 107°) and calculated
the PSNR values of the reconstruction results of the
three test images. Figure A-3 shows the relationship
between 77; and the PSNR values of the reconstruction
results. From this figure, we can see the PSNR val-
ues almost monotonically increase with increasing 7.
However, when the regularization parameter is set to

— Test image 1
--- Test image 2
--- Test image 3

PSNR

0.1 03 0.5 0.7 0.9

Th

Fig.A-7 Relationship between Th and the PSNR values of the
reconstruction results.

Fig.A-6  (a) Zoomed portion of Test image 1, (b) Zoomed portion of reconstruction results (K = 2),

(c) Zoomed portion of reconstruction results (K = 8).

Fig.A-8 (a) Zoomed portion of Test image 2, (b) Zoomed portion of reconstruction results (Th =
0.5), (c) Zoomed portion of reconstruction results (Th = 0.9).



a larger value, the expression ability of textures tends
to become worse. On the other hand, if it is set to
a smaller value, the overfitting tends to occur. From
the subjective evaluation shown in Fig. A- 4, these phe-
nomena can be confirmed. Therefore, from this figure,
we set the regularization parameter 7; = 5.0 x 1077 in
the experiments.

Furthermore, since the proposed method did not utilize
the nonlinear map for the vectors y; i = 1,2,---,N)
and y, we thought the regularization parameter for
those vectors was not necessary. Thus, we set 17, = 0.0
in the experiments.

(v) Number of clusters: K(= 2)

In order to determine the number of clusters, we
changed the value of K (= 2,4,6,8) and calculated
the PSNR values of the reconstruction results of the
three test images. Figure A-5 shows the relationship
between K and the PSNR values of the reconstruc-
tion results. From this figure, we can see the PSNR of
the proposed method becomes the highest value when
K = 2. This is because the training local images fj’,‘

G=12,-- , N®) in cluster k becomes fewer when K
becomes larger. In order to avoid this problem, we have
to clip local images f; (i = 1,2,---, N) in a smaller in-
terval, and then the computation time becomes much
larger. Furthermore, we found the subjective perfor-
mance of the proposed method was not severely af-
fected by the value of K as shown in Fig. A-6. Thus,
we set the number of clusters K = 2 in the experiments.
If we can known the number of textures contained in
the target image, K can be adaptively determined. This
will be the subject of the subsequent reports.

(vi) Threshold utilized for the determination of D¥: Th(=

0.5)

We changed the value of Th (= 0.1,0.3,0.5,0.7,0.9)
and verified the reconstruction performance of the
three test images. Figure A-7 shows the relationship
between Th and the PSNR values of the reconstruc-
tion results by the proposed method. From this figure,
we can see the PSNR values monotonically increase
when Th becomes larger, and this can be easily ex-
pected. However, from subjective evaluation shown in
Fig. A- 8, the reconstruction results of Th = 0.9 suffer
from some blurring. On the other hand, the reconstruc-
tion performance of Th = 0.5 tends to be adequate in
the proposed method. Therefore, we set Th = 0.5 in
the experiments.
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