
 

Instructions for use

Title Dynamics of market structure driven by the degree of consumer's rationality

Author(s) Yanagita, Tatsuo; Onozaki, Tamotsu

Citation Physica A: Statistical Mechanics and its Applications, 389(5), 1041-1054
https://doi.org/10.1016/j.physa.2009.10.040

Issue Date 2010-03-01

Doc URL http://hdl.handle.net/2115/42608

Type article (author version)

File Information PhyA389-5_1041-1054.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Dynamics of Market Structure Driven by

the Degree of Consumer’s RationalityI
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Kita-ku, Sapporo, 001-0020, Japan

bFaculty of Management and Economics, Aomori Public College, Yamazaki 153-4,
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Abstract

We study a simple model of market share dynamics with boundedly rational
consumers and firms interacting with each other. As the number of consumers
is large, we employ a statistical description to represent firms’ distribution
of consumer share, which is characterized by a single parameter representing
how rationally the mass of consumers pursue higher utility. As the bound-
edly rational firm does not know the shape of demand function it faces, it
revises production and price so as to raise its profit with the aid of a simple
reinforcement learning rule. Simulation results show that 1) three phases
of market structure, i.e. the uniform-share phase, the oligopolistic phase,
and the monopolistic phase, appear depending upon how rational consumers
are, and 2) in an oligopolistic phase, the market-share distribution of firms
follows Zipf’s law and the growth-rate distribution of firms follows Gibrat’s
law, and 3) an oligopolistic phase is the best state of market in terms of con-
sumers’ utility but brings the minimum profit to the firms because of severe
competition based on the moderate rationality of consumers.
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1. Introduction

The main purpose of this paper is to investigate the time evolution of the
market structure in order to understand how oligopoly and monopoly sponta-
neously emerge from competition among firms. To this end, the framework
of mainstream (i.e. neoclassical) microeconomics is of limited use for the
reasons described below. Mainstream microeconomics claims that market
structures can be classified into four categories, perfect competition, mo-
nopolistic competition, oligopoly and monopoly, according to the number of
firms and the existence of product differentiation [20]. One extreme case is
perfect competition, which is defined as the state of affairs where there is
an indefinitely large number of firms and no product differentiation1. The
other extreme case is monopoly, which is defined as the state of affairs where
there is only one firm. Thus, perfect competition is on an equal footing with
oligopoly and monopoly. As the term ‘competition’ here is prescribed mainly
by largeness of the number of firms, it has a quite different meaning from
what is used in economic actuality. Rather than being a state of affairs, com-
petition in the business world is closely related to the acts of price cutting,
product differentiation and so forth. The difference is not simply a matter
of definition but rather, more seriously, that of the theoretical structure of
mainstream microeconomics. As Hayek points out in [9], competition ought
to be defined as a dynamic process through which a certain state of affairs is
brought about, and not to be defined as a state of affairs per se. Price com-
petition, for example, may result in some firms being defeated and exiting
the market. In consequence, a state of affairs emerges that the total market
share of surviving firms is increased. From this point of view, we can say that
the dynamical property of competition is ruled out in mainstream microeco-
nomics by the underlying premises for static analysis of a particular state of
affairs, i.e. an equilibrium. In this study, we investigate the dynamic process
of a ‘competitive market’ and one of the focuses is on describing competition
as a dynamic process and studying what kind of state of affairs emerges, i.e.
how market structure changes, via competition. Note that a ‘competitive

1Perfect competition will be described in some more detail in Section 2.3.2.
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market’ here is defined as a market where firms compete for better business
performances such as market shares. Neoclassical microeconomics defines
’competition’ as the states where there is a large number of firms. On the
contrary, we define it as the acts or processes in which firms do something
against rivals along the lines of Hayek. By our definition the number of firms
does not matter. We need only two or more firms for competition to exist. In
what follows, we focus on a competitive market where there are many firms
and consumers as an initial state of market dynamics.

Another difficulty of mainstream microeconomics, which is closely related
to the above, is that its paradigm is rigidly static and lacks the dynamical
point of view in the true sense of the word. It supposes one-shot decision
making by economic agents. Even if intertemporal decision making is con-
sidered, it is always assumed in order to ensure the rationality of agents in
an uncertain world, that agents know all the future information certainly,
that agents know the probability distribution of all the future states, or that
agents know the true economic model and form rational expectations consis-
tent with it. In other words, agents know the future states of the economy in
advance, at least on average. In this sense, it is obvious that the time struc-
ture collapses, which mainstream microeconomics premises. It deals with a
world essentially without time and not with how a market economy evolves
with the passing of time. Studying the evolutionary process of a market econ-
omy does not make sense unless the premises of mainstream microeconomics
are loosened and agents are accepted as boundedly rational. In this study,
we investigate the time evolution of a competitive market, transforming from
an initial state with many boundedly rational firms, into an oligopolistic or
monopolistic state.

From a dynamical point of view, a decentralized competitive market can
be regarded as a typical complex system which consists of a large number of
boundedly-rational and adaptive agents interacting with each other. These
micro-level local interactions give rise to a certain macro-level spontaneous
order, and then, the macro-order plays the role of binding conditions for
micro-behavior. For example, persons who watch and imitate others’ apparel
beget a fad, and then get carried away by the fad itself. Complex dynamical
behavior emerges as a consequence of recurrent causal chains between individ-
ual behavior and the macro-order. This complex two-way feedback between
microstructure and macrostructure has been recognized for a very long time,
at least since the time of Adam Smith. Nevertheless, until recently, not only
economics but other branches of science have lacked the means to model this
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feedback structure qualitatively in its full dynamical complexity. Researchers
are now able to model, with the aid of high-performance computers, a wide
variety of complex phenomena in a decentralized market economy, such as
business cycles, endogenous trade network formation, market share fluctua-
tions, and the open-ended coevolution of individual behavior and economic
institutions. One branch of this research direction has come to be known
as agent-based computational economics, i.e. computer-aided studies of the
economy modeled as an evolving system of autonomous interacting agents
(see, e.g. [14, 17]).

In this study, we model a competitive market as a complex adaptive
system consisting of mutually interacting, boundedly rational firms and con-
sumers [24, 25]. Special attention is paid to market share dynamics, in
common with [18] where product differentiation exists and consumer’s brand
loyalty plays an important role for emerging oligopoly. In this paper, how-
ever, it is assumed that a consumer decides from which firm to purchase
goods so as to increase his utility, and we employ, as a first step, a statistical
description because the number of consumers is large. Aggregate consumer
behavior is described by the Boltzmann distribution which is characterized
by the ‘inverse temperature’ indicating how rationally the consumer seeks to
increase his utility. A firm, on the other hand, revises production decision
and price so as to raise its profit with the aid of a reinforcement learning
algorithm, i.e. by learning through experience. We mainly focus on the dy-
namical phases which emerge as the rationality of consumers changes, and
characterize their statistical properties such as the probability distribution
of firms’ size and growth rates.

The remainder of the paper is organized as follows. In Section 2, we
present our model and demonstrate that it includes neoclassical competitive
equilibria (Cournot equilibrium and perfectly competitive equilibrium) as
special stationary states. In Section 3, we discuss simulation results. Firstly,
an artificial monopoly case is examined in order to verify that the learning
process is workable in the model. Secondly, time evolution of the competitive
model is examined and it is demonstrated that all firms come to face approx-
imately the same demand curves through a learning process. Thirdly, it is
demonstrated that our model exhibits three phases, i.e. the uniform-share
phase, the oligopolistic phase, and the monopolistic phase depending upon
a key parameter β1 which represents the degree of consumer’s rationality.
Fourthly, market structure dynamics is characterized from various aspects,
i.e. Herfindahl index, variances, probability distributions, and averaged util-

4



ity and profit. Section 4 concludes the paper.

2. Model

Our model consists of many consumers and many firms that are bound-
edly rational in the sense that they attempt to increase their utility and
profit subject to information constraint and, hence, through a learning pro-
cess. Consumers and firms should be considered as identical to the extent
that they have the identical functions, identical behavioral rules, and identi-
cal parameters. On the other hand, they can be deemed heterogeneous in the
following way. As regarding consumers, they behave according to probability
and in consequence consumers as a whole follow a certain probability distri-
bution. As for firms, the internal state which determines a firm’s behavior
is different from each other because its decision is affected by probabilistic
learning via their past history and hence differs from firm to firm. Pur-
chase and production decisions occur at discrete time periods. Goods are
homogeneous and perishable within a unit time period.

2.1. Consumer Behavior

Each consumer has the same amount of money income at each time step,
selects a firm, and is willing to spend all the money to purchase goods from
the selected firm. For the sake of keeping the model simple, here we as-
sume that money income at a certain period can not be carried over to the
next period so as to eliminate the intertemporal allocation problem. Each
consumer’s utility ui(t) at period t is represented by the identical function

ui(t) = U(xi(t)), (1)

where U(x) is a monotonically increasing function of the amount of goods
xi(t) that a consumer obtains from firm i at period t. U is specified as
U(x) = xα, 0 < α < 1 with U ′ > 0 and U ′′ < 0. The consumer is willing
to spend all the money to purchase as much goods as possible because his
utility increases as the amount of goods increases. The amount of goods xi(t)
he can obtain from firm i, however, depends not only on prices set by firm i
but also its output level and the number of customers who select firm i.

As the number of consumers is large, instead of manipulating consumer
agents in fact, we employ a statistical description to represent firms’ distri-
bution of consumer share later. This description is equivalent to the result
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of simulating a model which includes a number of consumer agents acting on
the following behavior rule.

Each consumer selects a firm so as to raise his utility as high as possible.
He compares the utility to be obtained by purchasing goods from firm i or
from a randomly selected firm j and selects one according to a transition
probability ρ(i, j) = min(1, (uj/ui)

β1) from firm i to firm j where β1 is a
positive parameter. This rule is interpreted as follows. If (uj/ui)

β1 ≥ 1
(this implies uj ≥ ui), the consumer purchases goods from firm j at the
next period. Furthermore, even if (uj/ui)

β1 < 1, the consumer curiously
chooses firm j with a probability (uj/ui)

β1 , which we call the exploration
probability. This rule is the so-called ‘softmax action selection’ in the field
of reinforcement learning [22]. It implies that a firm from which consumers
can purchase more goods has a higher probability of capturing consumers.
The reason why exploration probability is taken into consideration is that
exploring other firms might afford consumers the chance to encounter higher
utility under information constraint2. Indeed, the softmax rule is used to
depict the exploratory decision making of human-beings [6].

From a statistical point of view, when a consumer makes choice of a
firm with such a transition probability a sufficient number of times, firm i’s
stationary share distribution of consumers, w∗

i , can be written as

w∗
i (t + 1) = uβ1

i (t)/
M∑

j=1

uβ1

j (t), (2)

where M is the number of firms and the denominator is a normalization
constant [4]. In other words, when we adopt the Glauber dynamics as an
update rule described above, this dynamics yields an equilibrium distribution
after the relaxation process. We can rewrite this share distribution as a usual
form of the Boltzmann distribution: w∗

i (t) = exp(−β1Ei)/
∑

j exp(−β1Ej),
where Ei = − ln ui. Note that we can derive the multinomial logit model
of boundedly rational choice in the same way as the Boltzmann distribution
[15]. The multinomial logit model is originally formulated in statistics and is
widely used in various fields concerning choice behavior, such as economics,

2The softmax rule is a modified version of the simplest rule called ‘greedy action selec-
tion’, according to which the action with highest estimated value (in our context, the firm
which gives consumers highest utility) is always selected. As described later, the softmax
rule indeed corresponds to the greedy rule when β1 → ∞.
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marketing science and social psychology.
As stated above, U is specified as U(x) = xα, 0 < α < 1. In our setting,

the above market share distribution can be obtained for any value of α as
long as β1 is rescaled. Thus we fix α = 0.5 without loss of generality. We note
that the parameter β1 corresponds to the inverse temperature in statistical
mechanics [4] and represents the degree of optimization of the consumer.
When β1 → 0, i.e. the temperature goes to infinity (in this case, exploration
probability (uj/ui)

β1 → 1), it is interpreted that consumers behave in purely
random manner irrespective of their utility, whereas all consumers select the
same firm that maximizes their utility when β1 → ∞, i.e. the temperature
goes to zero (in this case, (uj/ui)

β1 → 0). For these reasons, in this paper
the parameter β1 is characterized as the degree of rationality: the higher β1,
the higher the degree of rationality.

In the learning process, consumers’ utility varies with time through a
change in price and quantity. To take into account this effect, we intro-
duce, for simplicity, a linear relaxation dynamics of firm i’s market share, wi,
toward the stationary distribution (2) as follows:

wi(t + 1) = wi(t) − τ (wi(t) − w∗
i (t + 1)) , (3)

where τ ∈ [0, 1] is a parameter that determines the relaxation time scale, or
the learning rate.

2.2. Firm Behavior

Owing to bounded rationality, a firm does not know the demand function
it faces nor the prices other firms have set, so it must decide its price pi and
production qi based only on the restricted local information, i.e. changes in
profits. Profit Πi(t) of firm i at period t is defined as

Πi(t) = pi(t)si(t) − c (qi(t)) , (4)

where si(t) denotes the quantity sold by firm i and c(q) = q2 is an identical
cost function. Since functional form does not affect the results qualitatively
as long as it is monotonically increasing, we employ one of the simplest forms
in the present paper. An identical cost function is assumed only because we
focus on an aspect of market share dynamics that is independent of the
difference of cost structures. The volume of supply si(t) of firm i at period t
is represented as

si(t) = min
(
qi(t), wi(t)T/pi(t)

)
, (5)
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where T is the total money income of all consumers at each period. Equa-
tion (5) comes from the fact that total demand for firm i’s products is given
by wiT/pi, and, if the demand differs from production qi, the supply is de-
termined by the short-side. Thus, the profit of a firm depends upon its
decision on price and production, and the demand it faces. Considering (5),
the amount of goods xi(t) that a consumer can obtain from firm i at period
t is written as

xi(t) = si(t)/(wi(t)L) = min
(
qi(t)/(wi(t)L), T/(pi(t)L)

)
, (6)

where L is the number of consumers.
We assume that a firm does not directly control price and production, but

instead determines rates of change of the previous price and production3.
This can be regarded as a simple hedging rule in an uncertain world or
rationalized by adjustment costs. Firm i chooses a pair of rates of change
(δpi(t), δqi(t)) among all possible options so as to get higher profits. Note
that pi(t + 1) = δpi(t) · pi(t) and similarly for qi

4. Here the rates of change
are given by{

δpi(t) = 1 + ∆p cos(2πni(t)/N)

δqi(t) = 1 + ∆q sin(2πni(t)/N)
for ni ∈ {0, . . . , N − 1},

where ni(t) is an integer number from 0 to N−1 denoting a strategy of firm i
at period t, N is the number of possible strategies, and ∆p and ∆q are given
constants. Hence, the maximum rates of change in price and production are
1 ± ∆p and 1 ± ∆q.

A firm selects a strategy n ∈ {0, . . . , N − 1} in pursuit of higher profit,
according to a simple reinforcement learning rule which is applied to the ‘one-
armed bandit’ problem [21] as follows (here the subscript i of strategy ni is

3Even if we assume that a firm directly controls price and production, one of the
main results is preserved qualitatively that there emerges three phases of market structure
depending upon β1.

4Because price and production are adjusted multiplicatively, they fluctuate extensively
over time. In order to avoid extensive fluctuations, maximum and minimum values of
price and production are introduced. Firms cannot adjust price and production beyond
the maximum values of 1.00×1015 and below the minimum value of 1.00×10−15. It should
be noted that such maximum and minimum values do not affect the results qualitatively
if they are set to be large and small enough.
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omitted because there is no possibility of confusion). First, a firm evaluates
all of its actions {0, . . . , N − 1} by calculating the normalized quantity

Π̃n
i (t) =

(
Π̂n

i (t) − min
n

(Π̂n
i (t))

)
/
(
max

n
(Π̂n

i (t)) − min
n

(Π̂n
i (t))

)
,

where Π̂n
i (t) is firm i’s expectation of its profit at period t when it selects

a strategy n. Then, firm i selects a strategy n, following the ‘softmax’ al-
gorithm, i.e. with a probability exp(β2Π̃

n
i (t))/

∑N−1
n=0 exp(β2Π̃

n
i (t)), where

β2 is the inverse temperature determining how rationally the firm behaves.
Finally, firm i adaptively revises its profit expectation according to

Π̂n
i (t + 1) = Π̂n

i (t) − k
(
Π̂n

i (t) − Πi(t)
)

, (7)

where k ∈ [0, 1] is the learning rate.

2.3. Special Cases of the Model; Their Economic Implication

For the sake of better understanding the model, we show that it includes
neoclassical competitive equilibria (Cournot equilibrium and perfectly com-
petitive equilibrium) [23] as special stationary states.

Before going on, let us begin with crucial premises of neoclassical mi-
croeconomics. Firstly, neoclassical microeconomics usually assumes perfect
information; it assumes that every agent knows all the information concern-
ing their decision making. As consumers know all the prices of firms, they
select a firm which offers the lowest price. Firms know this, hence the rest
of them mimic the lowest price. In this way, the ‘law of indifference’ (or the
law of one price) holds:

pi = p, (8)

where p is called market price. Variable t is omitted here because neoclassical
microeconomics is essentially a static theory, and this also applies in what
follows. Secondly, neoclassical microeconomics concentrates on analyzing an
equilibrium situation where supply always equals demand, so that firm i’s
production (or supply) qi also denotes firm i’s demand. Thus market demand
Q is defined as

Q =
M∑

j=1

qj.

Now let us define Cournot equilibrium and perfectly competitive equilib-
rium in a general form.
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2.3.1. Cournot Equilibrium

Cournot competition is a state of market in which all firms produce a ho-
mogeneous product, i.e. there is no product differentiation and they compete
on the amount of output they will produce. Firms decide on their produc-
tion plan so as to maximize their profits, given the competitors’ amount of
output. It is also assumed that market price is determined as a function of
market demand:

p = p(Q),

which is called an ‘inverse demand function’. Then firm i’s profit is repre-
sented as

Πi(qi) = p(Q)qi − ci(qi).

By differentiating this with respect to qi, we have the necessary condition for
firm i’s profit maximization:

p′(Q)qi + p(Q) = ci
′(qi). (9)

Equation (9) is called the ‘reaction function’ of firm i and determines its pro-
duction amount given the competitors’ amount of output. The simultaneous
solution of (9) for all i is defined as a Cournot equilibrium, which is shown
to exist under some reasonable assumptions by using a fixed point theorem
[7].

2.3.2. Perfectly Competitive Equilibrium and the Cournot Limit Theorem

Perfect competition is a state of market in which there are enormous
numbers of small firms and all produce a homogeneous good, i.e. there is no
product differentiation. Any one firm is so small relative to the whole market,
just a mere drop in the ocean, that its presence or absence does not influence
the market price at all. This implies that each individual firm does not
have any influence on the price of the product it sells. Hence, in a perfectly
competitive market, every firm is a price taker, i.e. it takes the market price
as given. Firms decide on their production plan so as to maximize their
profits, given the market price p. Then firm i’s profit is represented as

Πi(qi) = pqi − ci(qi),

where p is a given constant. By differentiating this with respect to qi, we
have the necessary condition for profit maximization:

p = ci
′(qi). (10)
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This relationship where market price equals ‘marginal cost’, i.e. ci
′(q)5 de-

termines the equilibrium production amount of firm i in perfect competition.
The simultaneous solution of (10) for all i is a perfectly competitive equilib-
rium, which is shown to exist under some reasonable assumptions by using
a fixed point theorem [2].

2.3.3. Neoclassical Equilibria as Special Stationary States

Now let us move on to our model. From (5) and (8), neoclassical equality
of supply and demand yields firm i’s demand as

qi = wiT/p (= si). (11)

Thus market demand is
Q = T/p. (12)

In order to demonstrate that our model includes a Cournot equilibrium
as a special case, by substituting (8), (11) and (12) into (4), we rewrite firm
i’s profit as

Πi(qi) = Tqi/Q − c(qi).

Differentiating this with respect to qi gives the necessary condition for profit
maximization as

T (Q − qi)/Q
2 = c′(qi), (13)

which corresponds to (9). Note that, as stated in Section 2.2, an identi-
cal cost function is assumed in our model only because we focus on an as-
pect of market share dynamics that is independent of the difference of cost
structures. Next, in order to demonstrate that our model includes a per-
fectly competitive equilibrium as a special case, it suffices to show that the
‘Cournot limit theorem’ [19] holds. This theorem states that as M → ∞,
condition (9) gets closer to condition (10). In the context of our model, con-
dition (13) is the counterpart of condition (9). In other words, this theorem
means that the higher the number of firms, the closer a Cournot equilibrium
gets to a perfectly competitive equilibrium. The left hand side of (13) is
T/Q − Tqi/Q

2 = p − Tqi/Q
2 from (12). If M → ∞, then Q → ∞ from (12)

and the second term gets closer to zero.

5In economics, marginal cost is the change in total cost that arises when the quantity
produced changes by one unit. In other words, it is the cost of producing one more unit
of a good. Mathematically, the marginal cost function is denoted as the first derivative of
the total cost function with respect to quantity produced.
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To sum up, if we additionally assume in our model i) an infinitely large
number of firms, ii) perfect rationality of consumers and firms, and iii)
balance of demand and supply, then the resulting stationary state is the
same as perfectly competitive equilibrium of neoclassical microeconomics.

3. Simulation Results

3.1. Premises

We fix the following parameters throughout simulations: α = 1.0, τ = 0.1,
β2 = 3.0, N = 10, ∆p = ∆q = 0.01, k = 0.5, and we mainly consider the
dependence of consumer’s behavior on the inverse temperature β1, that is,
on how rationally the consumer behaves. The number of firms, M , is also
fixed during a single simulation. Our model, however, can be regarded as
being equipped with a mechanism kindred to firm entry and exit because,
firstly, losing all consumers owing to wrong price and/or wrong production is
identical to exiting the market, and secondly, even a firm with no consumers
can have implicit price and production that becomes explicit when it acquires
customers and joins incumbent firms just like a new entrant. In this sense,
M represents the maximum number of firms that can exist in the market at
the same time.

The absolute level of profit is qualitatively irrelevant to our analysis be-
cause the competition among firms drives the dynamics and only the relative
volume of profit matters. Thus we set the total money income of all con-
sumers T to one, and the maximum profit of each firm is rescaled to be one.
Similarly, the population L of consumers is qualitatively irrelevant and is set
to one.

For the initial condition of profit expectation Π̂n
i (0), we choose an ‘opti-

mistic’ value so that firms revise all their expectations effectively [21]. We
set Π̂n

i (0) = 100 ∀i, n, which is large enough for realizing maximum profit.
The initial prices and production are (pi(0), qi(0)) = (1 + ξ, 1 + ξ), where ξ
is a small random number distributed uniformly in [−0.01, 0.01]. The initial
market share distribution is the same among firms, i.e. wi(0) = 1/M ∀i.
As for time scale, we use a non-dimensional time t/t∗, where t∗ = N/k is a
learning time scale estimated from (7).

3.2. Artificial Monopoly Case

In order to verify that the learning process is workable in our model, we
consider the behavior of a single-firm system by setting M = 1. This as-

12



1 2 3 4 5 6 7p0 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 8
q
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Figure 1: Gradient vector field ∇Π(p, q) for M = 1 is depicted in an iso-profit contour
diagram projected on the (p, q)-plane. The contour-lines represent a sequence of equally
spaced profit values and shaded regions with higher profit values are lighter. The bold
solid curve pq = 1 is the boundary that determines which variable becomes the value of the
Min function in (5). The bold dashed line p = 2q corresponds to the necessary condition
for ∂Π/∂q = 0.

sumption leads to a situation where monopoly is always realized artificially.
Note that because there is only one firm, consumers’ behavior is quite sim-
ple. Each consumer has only to go and buy from the monopolist. Hence,
the dynamics of the model is entirely determined by the behavior of the mo-
nopolist. The gradient vector field ∇Π(p, q) is shown in Fig. 1, according to
which the asymptotically best strategy of the monopolist is raising the price
and reducing production along the curve pq = 1.

The monopolist’s decision histories with the learning process taken into
consideration for three initial conditions in (p, q)-space are depicted in Fig. 2(a).
The firm, even if starting from any randomly selected initial conditions, seems
to update its decision through the learning process so as to increase its profit.
This fact verifies that the model reproduces the profit-seeking behavior of a
boundedly rational firm. The corresponding time evolution of price and pro-
duction are plotted in Fig. 2(b), where the monopolist’s behavior of asymp-
totically raising price and reducing production is observed.
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Figure 2: (a) Typical trajectories of boundedly rational, artificial monopolist’s decisions
for three different initial conditions are plotted in an iso-profit contour diagram projected
on the (p, q)-plane. t ∈ [0, 500] and M = 1. (b) Corresponding time evolutions of price
and production are shown. The monopolist asymptotically raises the price and reduces
production to get higher profit.

3.3. Time Evolution with Competition

In the artificial monopoly case discussed in the previous subsection, con-
sumers’ utility asymptotically decreases with time as a result of the firm’s
raising the price and reducing production. In a multi-firm system, however,
simultaneously raising price and reducing production is not always the best
strategy. Suppose that the market share of a particular firm is sufficiently
larger than that of the others. Then the market is virtually monopolistic
and the dominant firm tends to adopt the optimal strategy for the monopo-
list, namely raising the price and reducing production. When the dominant
firm raises the price, its customers’ utility decreases. The decrease in utility
causes a decrease in the number of customers through (2). As a result, sooner
or later through a reinforcement learning process by encountering the fact
that profit is decreasing, the firm realizes that its strategy is no longer the
best. The monopolist’s strategy of raising the price and reducing production
is restrained through feedback from consumers’ behavior. With regard to
production, the dominant firm slows down the pace of reducing production;
otherwise its profit decreases rapidly. Typical time evolution of these values
for the case where β1 = 1.0 are shown in Fig. 3, and it is easy to confirm
the above explanation from observing the movement of variables of the bold-
line-firm in the dotted area. The fluctuation range of prices is very wide as
compared to other variables, but its absolute scale does not matter because
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it is the difference between consumers’ utility that drives the dynamics.
It is worth noting here that our model implies ‘the law of demand’, i.e.

the negative correlation between price and demand. As total demand for firm
i is wiT/pi, a demand curve for firm i is given by plotting pairs of (wiT/pi, pi)
on the plane. Demand curves for all firms are superimposed in Fig. 4, which
shows that all the firms face approximately the same, well-behaved demand
curves. This is because each firm comes to perceive its true demand curve
after a while through a learning process.

3.4. Market Structure Dynamics

3.4.1. Emerging Three Phases

Dynamics of the market crucially depends on the parameter β1, which
represents how rationally consumers seek higher utility. As stated in Sec-
tion 2.1, for lower rationality (smaller β1), it is interpreted that almost all
consumers choose firms in a purely random manner, i.e. ρ(i, j) ≈ 1, so the
choice is irrelevant to consumer’s utility. Thus, the market share distribution
is almost uniform as depicted in Fig. 5(a) and we call this case a uniform-
share phase. For higher rationality (larger β1), it is interpreted that almost
all consumers choose the ‘best’ firm so as to seek higher utility. Hence, as
shown in Fig. 5(c), monopoly emerges as a ‘quasi-stationary’ state, which
means that strong monopolists drastically change places with time. Whereas
‘quasi-stationary monopoly’ is sustained, the time evolutions of the price and
production are similar to those of the single-firm system. For intermediate
rationality, it is interpreted that some consumers choose firms in a purely
random manner and the other consumers choose the ‘best’ firm. As shown
in Fig. 5(b), oligopoly persists owing to a balance between these two effects
although severe market-share battles among oligopolists are observed.

3.4.2. Herfindahl Index

In order to characterize the market share dynamics, let us use the Herfind-
ahl index [10, 12]

H(t) =
M∑
i=1

(wi(t))
2 ,

which measures the non-uniformity of share distribution wi, and was first
introduced in economics to indicate the concentration ratio of industries.
In physics, the same index was introduced in spin glass theory [16] and is
applied to complex chaotic dynamics [13]. The time evolution of H(t) is
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Figure 3: Typical time evolution of price pi, utility ui, production qi, share wi and profit
Πi in the five-firm system are plotted. β1 = 2.0, M = 5 and t ∈ [0, 500].
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Figure 5: Time evolution of the cumulative market share in the five-firm system are shown
for different values of β1. M = 5 and t ∈ [0, 5.0 × 103]. (a) β1 = 0.1: Phase of uniform
share – market shares are almost uniform among firms because each consumer has low
rationality. (b) β1 = 1.0: Phase of oligopoly market-share battle – market shares change
dynamically. (c) β1 = 5.0: Phase of alternating monopoly – monopolistic firms alternate
drastically.
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depicted in Fig. 6(a-c). Note that the index H(t) ranges from 1/M to 1.06.
For smaller β1, H(t) takes the values close to 1/M all the time, meaning
that the uniform-share state is realized because each consumer selects a firm
without considering his utility. Thus, the dynamics in this case is the same
as that in the artificial monopoly case: firms may set any prices and produce
any amount because this does not significantly affect customers’ behavior.
In consequence, price gradually increases and production decreases. This
case is characterized as an unnatural coexistence of multiple monopolists.
For large β1, consumers are very rational and over-concentration may oc-
cur in one firm that seems to give highest utility. Thus a monopolistic firm
change places and H(t) = 1.0 frequently (see Fig. 6(c)). The duration of
monopoly gradually increases as β1 increases. For intermediate values of β1,
oligopoly naturally occurs due to competition among firms through the feed-
back of consumers’ behavior. Hence, H(t) tends to take some intermediate
value between 1/M and 1.0. As H(t) fluctuates with time, we calculate the
time average of the Herfindahl index 〈H〉t = (1/T )

∑T
t=1 H(t) in order to

see its β1-dependence. 〈H〉t gradually increases with β1 as a consequence of
the appearance of non-uniform share distribution, and approaches 1.0 corre-
sponding to the emergence of an eternal monopolist (see Fig. 6(d)).

3.4.3. Probability Distribution of Profit

The transition among a uniform, an oligopoly and a monopoly market is
also statistically characterized by means of the probability distributions of
profit at a specific point in time t̂. Profit of a firm mostly obeys the power
law (or Pareto’s law), so that

P (Πi) ∝ Π−µ
i .

Note that, for a small value of β1 (e.g. β1 ≤ 0.1), a relatively narrow range
of probability distribution of profit seems to obey power law or profit may

6As the arithmetic mean w̄(t) of market share distribution is equal to 1/M , the vari-
ance Var(wi(t)) of wi(t) is calculated as Var(wi(t)) = 1/(M − 1)

∑M
i=1 (wi(t) − w̄(t))2 =

H(t)/M − 1/M2. Solving the above equation with respect to H(t) yields H(t) =
1/M + (M − 1)Var(wi(t)), which implies that a higher variance due to a higher level
of non-uniformity of firms’ shares results in a lower value of H(t). The variance Var(wi(t))
takes the lowest value of zero when consumers are equally distributed to each firm, i.e.
wi(t) = 1/M ∀i. Then the lowest value of H(t) is equal to 1/M . When there is a firm,
say i, that satisfies wi(t) = 1 and otherwise wj(t) = 0 for j 6= i, the variance Var(wi(t))
takes the highest value of 1/M(1 − 1/M). Then the highest value of H(t) is equal to 1.
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Figure 6: Left : Time evolution of the Herfindahl index H(t) are shown for different values
of β1. M = 200 and t ∈ [0, 5000]. (a) β1 = 0.1: As market shares are uniform among firms,
H(t) takes the minimal value 1/M almost always. (b) β1 = 1.0: Oligopolistic states are
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time-averaged H(t) vs. β1 is shown for M = 200. For smaller β1, 〈H〉t ≈ 1/M , i.e. the
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1 ≈ 0.45,
oligopolistic firms emerge and the transition of states is clearly observed. 〈H〉t gradually
increases with β1 and approaches 1.0. Herfindahl index is averaged over 1.0 × 104 time
steps (t ∈ [5.0 × 103, 1.5 × 104]) and sampled over 10 different initial conditions.
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Figure 7: The probability distributions of Πi are shown. M = 100. (a)-(c) Averaged over
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β1 = 10.0. (d) Averaged over different five initial conditions. t̂ = 2.0 × 104.

obey the exponential distribution instead. However, in order to observe the
β1-dependence of the power exponent, we assume that the probability distri-
bution of profit follows a power-law relation for all levels of β1. As shown in
Fig. 7(a-d), the profit distribution seems to obey Pareto’s law with the expo-
nent µ ≈ 1.3 for medium values of β1, and the exponent becomes higher for
smaller or larger β1. Note here that in estimating µ’s we use the method pro-
posed by [11]. A power-law relation with an exponent being approximately
unity is known as Zipf’s law, which is widely observed in various phenomena
including firm size distribution [3, 8]. As shown in Fig. 7(d), profit distribu-
tion of our model seems to obey Zipf’s law when oligopoly emerges. It should
be noted that these results support the claim that the situation where the
exponent of the power law is approximately unity is the transition point
between the oligopoly phase and the uniform-share phase [1, 5, 8].

3.4.4. Probability Distribution of Firms’ Growth Rate

The transition among three phases is also statistically characterized by
means of the probability distributions of firms’ growth rate. The firm size
measured by the volume of profit varies with time in the course of the market
share dynamics. In order to characterize the underlying dynamics which gov-
erns firm size fluctuation, let us introduce the notion of logarithmic growth-
rate of firm’s profit defined as ri = log10(Πi(t + 1)/Πi(t)) and examine its
probability distributions. We divide the range of Πi into logarithmically
equal bins, Λm = {i | 2−(m+1) ≤ Πi(t) ≤ 2−m} (m = 0, . . . , 10), and then
calculate the probability distributions of ri for each bin in order to check its
statistical dependence on Πi by graphical method. The results are shown in
Fig. 8. It shows that the probability distributions of ri have little statistical
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dependence on Πi for the case where β1 = 1.0, because all the curves for dif-
ferent m seem to overlap to make a single curve. This means that the growth
rate is independent of firm size. The fact is often mentioned as Gibrat’s law,
which states that the conditional probability P (ri |Πi(t)) is independent of
Πi(t), i.e.,

P (ri |Πi(t)) = P (ri),

and is mainly observed for large firms [1, 8, 21].

3.4.5. Averaged Utility and Profit

Finally, we investigate the β1-dependence of utility and profit. For this
purpose, we calculate the time average of the ensemble mean of consumers’
utility, i.e. 〈E(u)〉t = (1/T )

∑T
t=1 E(u(t)) where E(u(t)) =

∑M
i=1 wi(t)ui(t).

We also calculate the time average of firms’ profit per capita, i.e. 〈Π̄〉t =
(1/T )

∑T
t=1 Π̄(t) where Π̄(t) = (1/M)

∑M
i=1 Πi(t).

In Fig. 9(a1) and (b1), 〈E(u)〉t and 〈Π̄〉t are depicted as functions of β1

for different numbers of firms. It is clearly seen that, for each number of
firms, there is an optimal rationality value of β1 at which the time-averaged
consumers’ utility is maximized. For smaller β1, the time-averaged utility is
very small: it is interpreted that each consumer selects a firm in a purely
random manner (note that firm’s best decision in this case is raising the price
and reducing production). With the increase of β1, the market-share battle
in oligopoly starts to emerge whereas the time-averaged utility gradually in-
creases and takes an optimal value that gives the maximum utility. Beyond
the optimal value, the time-averaged utility gradually decreases: it is inter-
preted that each consumer is too rational to choose the best firm by seeking
higher utility, thereby causing the formation of a monopoly market. On
the other hand, the time-averaged profit per capita 〈Π̄〉t gradually decreases
with increasing β1 and reaches the minimal value at a certain level of β1.
Beyond the minimum value, the time-averaged profit per capita gradually
increases: it is interpreted that monopoly starts to emerge. In the vicinity
of the optimal rationality value, oligopoly emerges although its membership
changes frequently, and the time-averaged profit per capita of oligopolistic
firms reaches the minimal value. Oligopoly is the best state of the market
in terms of consumers’ utility whereas it brings the minimal profit to par-
ticipants because of severe competition. Note that, as shown in Fig. 9(a2)
and (b2), the rationality value of β1 which maximizes consumers’ utility or
minimizes firms’ profit varies as the number of firms increases and converges
to a certain limit value.
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Figure 8: The probability distributions of logarithmic growth rate ri for M = 100 are
shown. The range of Πi is divided into logarithmically equal bins, Λm = {i | 2−(m+1) ≤
Πi(t) ≤ 2−m} (m = 0, . . . , 9), and the probability distributions of ri are calculated for
each bin. The growth rate seems to be independent of firm size for (b). (a) β1 = 0.1. (b)
β1 = 1.0. (c) β1 = 5.0.
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Figure 9: (a1) The time average of the mean of consumers’ utility 〈E(u)〉t and (b1) the time
average of firms’ profit per capita 〈Π̄〉t versus β1 are plotted for M = 5, 10, 20, 50, 100 and
200. The utility and profit are averaged over 1.0×105 time steps (t ∈ [2.5×104, 1.25×105])
and sampled over 50 different initial conditions. There is an optimal rationality value which
maximizes the time-averaged utility for each M and there is also a rationality value which
minimizes the time-averaged profit per capita for each M . (a2) The rationality value which
maximizes the time-averaged utility and (b2) the rationality value which minimizes the
time-averaged profit per capita converge to certain finite values.
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4. Concluding Remarks

We have investigated the dynamics of a competitive market consisting
of mutually interacting, boundedly rational firms and consumers. Instead
of relying on demand functions, the behavior of consumers is described by
the market share distribution, i.e. the stationary distribution of a large
number of consumers who are interpreted to employ softmax strategy. This
distribution is characterized by a single parameter β1 that represents how
rationally consumers behave. Firms revise their production decisions and
prices so as to raise their profit with the aid of a simple reinforcement learning
rule. Numerical simulations show the following results:

i) Three phases of market structure: the uniform-share phase, the oligopolis-
tic phase, and the monopolistic phase appear depending upon a key
parameter β1.

ii) In an oligopolistic phase, the market-share distribution of firms follows
Zipf’s law and the growth-rate distribution of firms follows Gibrat’s
law.

iii) An oligopolistic phase is the best state of market in terms of consumers’
utility whereas oligopoly brings the minimal profit to the firms because
of severe competition based on the moderate rationality of consumers.

It should be noted that the third result presents a view different from
mainstream microeconomics. Neoclassical microeconomics claims that a
competitive market is the most efficient in terms of both consumer’s util-
ity and firm’s profit, and such efficiency is disturbed in an oligopolistic or
monopolistic market. In the context of our model, an oligopolistic phase
is the most efficient in terms of consumer’s utility, although it is the most
inefficient in terms of firm’s profit.

The model proposed in this paper is a very simple one and could be
developed in a number of directions. For example, firstly, because which
phase appears in the market depends upon a key parameter β1, it would be
important to endogenize β1. Secondly, it would be of interest to introduce
network structures into consumers to represent information exchanges or
into firms to represent trade relations. Third, a more realistic framework
should consider various strategies of firms such as product differentiation,
advertising, and so forth.
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