Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO₂: Significance of molecular interactions

Xiangchun Menga,b,c, Haiyang Chengb, Shin-ichiro Fujitaa, Yufen Haob, Yanjiao Shangb,
Yancun Yub, Shuxia Cai, Fengyu Zhaob,*, Masahiko Araia, *

a Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
Tel & Fax: +81 11 706 6594.
E-mail: marai@eng.hokudai.ac.jp (M. Arai).

b State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Tel: +86 431 8526 2410; Fax: +86 431 8526 2410.
E-mail: zhaofy@ciac.jl.cn (F. Zhao)

c School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
Abstract

The hydrogenation of chloronitrobenzene to chloroaniline was investigated over Ni/TiO₂ at 35°C in supercritical CO₂ (scCO₂), ethanol, and n-hexane. The reaction rate followed the order of scCO₂ > n-hexane > ethanol. In scCO₂, the selectivity to chloroaniline and to aniline over Ni/TiO₂ were 97–99.5% and <1%, respectively, in the conversion range of 9–100%. The high chemoselectivity to chloroaniline cannot be achieved over Ni/TiO₂ in ethanol and n-hexane. In situ high-pressure Fourier transform infrared measurements were made to study the molecular interactions of CO₂ with the following reactant and reaction intermediates: chloronitrobenzene, chloronitrosobenzene, and N-chlorophenylhydroxylamine. The molecular interaction modifies the reactivity of each species and accordingly the reaction rate and the selectivity. The influence of Cl substituent on the interaction modes of CO₂ with these reacting species is discussed. Possible reaction pathways for the hydrogenation of chloronitrobenzene in scCO₂ over Ni/TiO₂ are also proposed.

Keywords: Chloronitrobenzene, Chloroaniline, Hydrogenation, Carbon dioxide, Intermolecular interaction
1. Introduction

The catalytic hydrogenation of chloronitrobenzene (CNB) is a common method to manufacture chloroaniline (CAN) isomers (o-, m-, and p-CAN), which are important intermediates in the synthesis of dyes, pharmaceuticals, and agricultural chemicals [1]. The hydrogenation of CNB, depending on the catalyst used, yields CAN through several possible pathways along with some reaction intermediates such as chloronitrosobenzene (CNSB), N-chlorophenylhydroxylamine (CPHA), dichloroafoxobenzene (CAOB), dichloroazobenzene (CAB), and dichlorohydrazobenzene (CHAB) (Scheme 1) [2-5]. The accumulation of these intermediates, especially CPHA, is critical when the hydrogenation of CNB is carried out in batch reactors at low or medium temperatures [3]. Because these compounds are highly toxic and problematic, their accumulation during the reaction should be avoided for the safe and green production of CAN [3-5]. To avoid the accumulation of CPHA, it is of advantage to carry out the hydrogenation at temperatures >80°C over well-designed catalysts [4]. Chemoselective hydrogenation of aromatic nitro compounds was achieved over Au/TiO₂ and Au/Fe₂O₃ at 100–130°C, with only trace amounts of intermediates formed [6]. The addition of small amounts of vanadium promoters could reduce the accumulation of arylhydroxylamine during the
hydrogenation (120°C) of aromatic nitro compounds over commercial Pd and Pt catalysts [3]. For Raney Ni catalysts used for the hydrogenation (30–35°C) in organic solvents, however, the selection of effective promoters is difficult because modifiers that reduce the accumulation usually lower the reaction rate [7]. Mahata et al. communicated that when the hydrogenation of CNB was performed at 120°C over filamentous carbon stabilized Ni catalyst in methanol, the specific activity was ~50 mmol h⁻¹ g⁻¹ Ni (2.9 mmol h⁻¹ mmol⁻¹ Ni) and there was no intermediate detected at any level of CNB conversion [8]. Their catalyst was prepared by methane decomposition over Raney Ni, which is expensive for industrial catalyst preparation. Keane and coworkers reported that selective production of CAN could be achieved in the gas phase hydrogenation of CNB over Au/Al₂O₃ (120–250°C), Pd-promoted Au/Al₂O₃ (Au/Pd mol/mol ≥ 20) (120°C), and supported Ni catalysts (120°C) [5, 9].

Dechlorination of CAN to aniline (AN) or of CNB to nitrobenzene (steps VIII, IX in Scheme 1) is another side reaction that decreases the selectivity to CAN and results in the formation of hydrogen chloride. Addition of inhibitors can minimize dechlorination, but usually lowers the reaction rate. It has recently been reported that the dechlorination process can almost completely be suppressed over several novel catalysts such as Ag/SiO₂ [10], Au/SiO₂ [11], Au/ZrO₂ [12], AuPd/Al₂O₃ [9], Au/Fe(OH)₈ [13],
Pt/γ-Fe$_2$O$_3$ [14, 15], Pt/γ-ZrP [16], decorated Pt/TiO$_2$ [17, 18], Ru/SnO$_2$ [1], and Ni/TiO$_2$ [19]. The hydrogenation was usually carried out at 90–150°C with Au and Ag [9-13], at 75–120°C with Ni [8, 19], and at 30–60°C over Pt catalysts [14-18]. With these catalysts, the selectivity to the undesired AN was <1% at complete conversion of CNB. However, the use of these noble metal catalysts (Au, Ag, Pd, Ru, and Pt) in large-scale production should be practiced after a prudential consideration of the cost. Additionally, it seems necessary to improve the activity of Au and Ag catalysts for practical applications [15]. With Pt/Fe$_2$O$_3$, Pt/γ-ZrP, and Ni/TiO$_2$, harmful reaction intermediates such as CNSB, CPHA, CAOB, and CAB were formed in organic solvents during the reaction [14-16, 19].

The melting point of o-, m-, and p-CNB is 32.1, 44.4, and 82°C, respectively. To dissolve the solid CNB substrates (at room temperature), organic solvents such as methanol, ethanol, 1-butanol, hexane, cyclohexane, ethyl acetate, diethyl ether, and tetrahydrofuran are frequently used in both the liquid and the conventional gas phase hydrogenation [1-19]. These organic solvents are volatile, toxic, and associated with serious health hazards and environmental problems. The use of traditional organic solvents is considered a major source of waste in the chemical industry. Thus, removal of the toxic solvents is significant to achieve the green production of CAN. Ionic liquid
was used as a medium for the hydrogenation of o-CNB over ionic-liquid-like copolymer stabilized Pt nanocatalysts, and the selectivity to CAN was >96% [20]. Because toxic organic solvents are generally used in the synthesis of ionic liquids, supercritical carbon dioxide (scCO₂) might be a greener alternative to conventional organic solvents. ScCO₂ has several merits such as nonflammability, relative inertness, complete miscibility with gases, and easy separation from liquid/solid products after reactions [21-27]. Furthermore, scCO₂ can show interesting effects on reaction rate and product selectivity [28-32]. Ichikawa et al. reported that the rate of hydrogenation of CNB over Pt/C was markedly enhanced and the dechlorination reaction was significantly suppressed in scCO₂. The selectivity to CAN was >99% at 100% conversion; however, they did not mention whether there were intermediates accumulated during the course of reaction to the complete conversion [32]. The present authors previously showed that undesired intermediates were formed and accumulated during the hydrogenation of nitrobenzene on Pt/C in scCO₂ [33, 34]. With Pd/C, the selectivity to o-CAN in scCO₂ (92–94%) was also higher than that in ethanol (84%), but it is difficult to suppress the dechlorination reaction completely [35]. In our attempts to use supported Au catalysts such as Au/TiO₂ and Au/SiO₂ in scCO₂ for the CNB hydrogenation, the activity of Au catalysts was lowered monotonously with the addition of CO₂. The reduction of Au activity in dense
phase CO$_2$ was possibly due to the interaction of CO$_2$ with Au [36]. As to Pt/γ-Fe$_2$O$_3$ and Au/Fe(OH)$_x$, the acid formed in situ from CO$_2$ and a hydrogenation byproduct of H$_2$O are likely to impose negative effects on the support Fe$_2$O$_3$ or Fe(OH)$_x$.

Thus, it remains to be a challenging task to achieve a high chemoselectivity to CAN for the hydrogenation of CNB in green solvents over non-noble metal catalysts. Recently we have shown that the selective hydrogenation of nitrobenzene can be achieved over Ni/γ-Al$_2$O$_3$ in dense phase CO$_2$ with 99% selectivity to AN over the whole conversion range of 0-100%, and molecular interactions of CO$_2$ with the reaction species are significant for the improvement in the selectivity [37]. The hydrogenation of CNB has a stronger tendency to give arylhydroxylamine in large amounts during the reaction [3]. Therefore, it is interesting and significant to see whether the dechlorination reaction and the accumulation of intermediates can be suppressed simultaneously during the hydrogenation of CNB with the Ni-scCO$_2$ system. The molecular interaction of CO$_2$ with CNB, CNSB, and CPHA is also a question of common interest because there is an electron-withdrawing substituent, -Cl, attaching to the benzene ring of CNB, CNSB, and CPHA. In this work, we have studied the hydrogenation of o-, m-, and p-CNB over Ni/γ-Al$_2$O$_3$ and Ni/TiO$_2$ in scCO$_2$ at 35°C. For comparison, the hydrogenation was also examined in ethanol and n-hexane under similar reaction conditions.

In situ
high-pressure Fourier transform infrared (FTIR) measurements were made to study the molecular interactions of dense phase CO₂ with CNB, CNSB, and CPHA molecules.

2. Experimental

2.1. Catalyst preparation and characterization

Ni/TiO₂ was prepared by incipient wetness impregnation using anatase TiO₂ (specific surface area 120 m² g⁻¹, Nanjing High Technology Nano Material Co., Ltd., China) and Ni(NO₃)₂·6H₂O. Ni/Al₂O₃ was prepared by co-precipitation using Ni(NO₃)₂·6H₂O and Al(NO₃)₃ with a Ni/Al atomic ratio of 1/1 [37]. After drying at 120°C, the two catalysts were calcined at 450°C for 5 h. Before the hydrogenation run, the calcined samples were reduced under H₂ flow at 450 and 610°C for Ni/TiO₂ and Ni/Al₂O₃, respectively.

The Ni loading in the calcined samples of Ni/Al₂O₃ and Ni/TiO₂ was measured by inductively coupled plasma optical emission spectrometry. The structural properties of Ni catalysts were examined by X-ray diffraction (XRD, Philips PW1710 BASED) and transmission electron microscopy (TEM, JEM-2000EX).

2.2. CNB hydrogenation

The hydrogenation of CNB was examined over both catalysts at 35°C. The reaction runs in scCO₂ were conducted in a 50 cm³ autoclave. The reactor was charged
with CNB 1.5 g (9.52 mmol) and a catalyst sample (0.15 g Ni/TiO₂ or 0.1 g Ni/Al₂O₃), flushed with N₂, and placed into a water bath preset to 35°C for 20 min. After the introduction of 4 MPa H₂, liquid CO₂ was introduced into the reactor with a high-pressure liquid pump (Jasco SCF-Get) to the desired pressure. The reaction was conducted while the reaction mixture was being stirred with a magnetic stirrer. After the reaction, the reactor was cooled with an ice-water bath for 20 min, depressurized carefully, and the reaction mixture was analyzed with a gas chromatograph (Shimadzu GC-2010, Rtx-5 capillary column) using a flame ionization detector. Hydrogenation reactions in ethanol and n-hexane were conducted in the same reactor using similar procedures. To ensure the amount of hydrogen in the reactor is enough for a complete conversion of CNB, all reactions were performed at an initial H₂ pressure of 4 MPa; the hydrogenation could proceed smoothly at lower H₂ pressures, as shown in our previous work [37].

2.3. Phase behavior and FTIR measurements

The solubility of CNB in scCO₂ in the presence of 4 MPa H₂ was measured at 35°C by the naked eye through the transparent sapphire windows attached to an 85 cm³ high-pressure reactor. Different amounts of CNB substrate were added into the reactor and the CO₂ pressures corresponding to phase transition were carefully determined. The
details of experimental procedures were described elsewhere [31]. The phase behavior of the reactant mixture (i.e., H₂ and CNB) in dense phase CO₂ was also examined in the same reactor; the observation was made with a similar mass/volume ratio of CNB to the reactor volume as used in the hydrogenation runs.

The high-pressure FTIR was used to examine the molecular interactions of CO₂ with reacting species. The FTIR spectra of \(p \)-CNB, \(p \)-CNSB, and \(p \)-CPHA in dense phase CO₂ were collected with the same spectrometer in similar fashions as used in the previous work [31]. The measurements were made at 35°C and in the presence of 0–20 MPa CO₂ and 4 MPa H₂. The weight of samples used was changed depending on its solubility in CO₂. A higher temperature of 90°C was also used for \(p \)-CNB and \(p \)-CNSB at CO₂ pressures < 4 MPa and < 6 MPa, respectively. For those measurements, \(p \)-CNB (Wako) was used as received; commercially unavailable \(p \)-CNSB and \(p \)-CPHA, two of the intermediates (Scheme 1), were synthesized by the oxidation of \(p \)-CAN (Wako) with H₂O₂ catalyzed with ammonium molybdate [38], and by the reduction of \(p \)-CNB with zinc dust [39], respectively. The formation of these compounds was confirmed by FTIR and NMR (JEOL A200II) [38, 40].

3. Results and discussion

3.1. Properties of Ni catalysts
Ni/Al₂O₃ was the same as used previously for the hydrogenation of nitrobenzene; the average Ni particle size was ca. 8.5 nm [37]. The Ni loading of Ni/Al₂O₃ and Ni/TiO₂ was 41% and 16%, respectively. The XRD patterns and TEM images of Ni/TiO₂ are presented in Fig. 1. After calcination, the existence of NiO and anatase TiO₂ was identified. After reduction, Ni particles in size mostly between 5–25 nm were formed. The average particle size determined from the XRD line broadening was ca. 14 nm.

3.2. Features of Ni catalysts for selective hydrogenation of CNB

Table 1 shows the results of o-CN₆ hydrogenation over Ni/Al₂O₃ and Ni/TiO₂ in scCO₂ at 35°C. The selectivity to the desired o-CAN at ca. 80% conversion was > 98% and 99% over Ni/Al₂O₃ and Ni/TiO₂, respectively. Moreover, the turnover frequency (TOF) value for the reaction over Ni/Al₂O₃ was much less than that over Ni/TiO₂ (entries 1, 2). These results indicate that chemoselective hydrogenation of o-CN₆ can be achieved in scCO₂ over both Ni catalysts, especially over Ni/TiO₂.

Table 1 also compares the results of o-CN₆ hydrogenation over Ni/TiO₂ in scCO₂ with that in polar ethanol and apolar n-hexane at 35°C. The rate of o-CN₆ conversion was the highest in scCO₂ and the lowest in ethanol. The TOF value in scCO₂ was ~3.1 and ~1.4 times higher than that in ethanol and n-hexane, respectively. In ethanol, the
dechlorination reaction was negligible but the intermediates including CNSB, CAOB, CAB, and CHAB were formed in a significant amount (entries 3, 4). Because CPHA decomposes to CNSB and CAN during gas chromatograph analysis [42], the formation of CPHA during the hydrogenation cannot be excluded. Chen and coworkers, who performed the hydrogenation of CNB at 90°C over Ni/TiO₂ in ethanol, also observed the formation of significant amounts of intermediates and negligible amount of AN [19]. In contrast, there was no accumulation of intermediates in n-hexane, but a slight dechlorination occurred (entry 5). In scCO₂, both of the dechlorination and the accumulation of intermediates were suppressed satisfactorily; the selectivity to o-CAN was 99% at 82% conversion (entry 2).

Fig. 2 shows the evolution of product species with time during the hydrogenation of o-CNБ over Ni/TiO₂ in scCO₂. The yield of o-CAN is similar to the conversion of o-CNБ over the whole conversion range from 9 to ~100%; the yield of all byproducts including AN and reaction intermediates decreased from < 3.5% in 5 min to < 1% after 30 min. Thus, Ni/TiO₂ is very effective for the chemoselective hydrogenation of o-CNБ in scCO₂. The combination of scCO₂ and Ni/TiO₂ is also effective for the chemoselective hydrogenation of m- and p-CNБ isomers (Table 2).

The suppression of formation of hydroxylamine is a topic of industrial importance
because aryl hydroxylamines are generally accumulated in large amounts during the hydrogenation of nitroaromatics with electron-withdrawing substituents (e.g., halogen or sulfonamide) [3, 7]. Studer et al. found that the accumulation of hydroxylamine in methanol at 30–35°C could be reduced from 70–80% over unmodified Raney Ni to 11% by careful selection of vanadium promoters; simultaneously, the reaction rate was down by a factor of 0.1 [7]. Mahata et al. communicated that there was no intermediate detected in methanol during the hydrogenation of o- and p-CNBr over filamentous carbon stabilized Ni catalyst, and the specific activity was ~50 mmol h⁻¹ g⁻¹ Ni (2.9 mmol h⁻¹ mmol⁻¹ Ni) at 120°C under 1.5 MPa H₂ [8]. Recently, we have shown that the accumulation of intermediates during the hydrogenation of nitrobenzene can be completely avoided over Ni/Al₂O₃ in dense phase CO₂ [37]. The present hydrogenation of o-CNBr over Ni/TiO₂ in scCO₂ gave a TOF value of 318 h⁻¹ (22.9 mmol h⁻¹ mmol⁻¹ Ni) at 35°C under an initial H₂ pressure of 4 MPa; the TOF value was much higher than that in ethanol and n-hexane (Table 1). Additionally, it is difficult to achieve a high chemoselectivity in both ethanol and n-hexane because either significant accumulation of intermediates or slight dechlorination takes place. In the context, the present results are important because the reduction of intermediates can be achieved along with the increased reaction rate and the negligible dechlorination. In other words, the
effectiveness of scCO₂ and Ni catalysts for the reduction of intermediates can be extended to a more challenging task of chemoselective hydrogenation of CNB in the absence of organic solvents. To our knowledge, such a chemoselective hydrogenation of CNB to CAN over Ni catalysts at mild temperature has not been reported so far.

3.3. Influence of CO₂ pressure and phase behavior

The present hydrogenation occurs in a multi-phase system, in which the reaction rate and/or the product distribution may depend on the phase behavior. The hydrogenation of CNB was studied with the most effective Ni/TiO₂ catalyst at different CO₂ pressures while making the other conditions unchanged. Before the reaction results, the phase behavior observations are given first. Fig. 3 shows the changes in the phase state of CNB isomers in scCO₂ at different CO₂ pressures and at 35°C in the presence of 4 MPa H₂. At 35°C, m- and p-CNB are solid in the absence of CO₂; m-CNB turned into liquid at ca. 3.6 MPa CO₂, indicating that its melting point could be lowered to < 35°C under dense phase CO₂. The CNB substrates were soluble to some extent in scCO₂ at 35°C and their quantities in scCO₂ increased with CO₂ pressure. The solubility was influenced somewhat by the substituent position of the CNB isomers and followed the order of m- > o- and p-CNB. With the same ratio of CNB weight to reactor volume as used in the hydrogenation runs, the phase transition from two phases to a single one
occurred at CO2 pressures of 12.3, 10.2, and 12.8 MPa for \(o-, m-, \) and \(p-\)CNB, respectively. Upon careful depressurization, the reverse transition was observed at 11.8, 9.6, and 11.6 MPa for \(o-, m-, \) and \(p-\)CNB, respectively.

The influence of CO2 pressure was examined with a selected substrate of \(o-\)CNB. Fig. 4 shows the changes in the conversion of \(o-\)CNB and the selectivity to \(o-\)CAN with CO2 pressure. The total conversion of \(o-\)CNB increased first and then decreased with increasing CO2 pressure. The conversion was maximal at ca. 9–12.5 MPa CO2. The pressure for the maximum conversion is close to that of the reversible phase transition of \(o-\)CNB (11.8–12.3 MPa CO2), indicating that the phase behavior is an important factor in determining the rate of CNB hydrogenation. However, the high selectivity to \(o-\)CAN remained unchanged when the reaction mixture changed from the gas–liquid–solid system to the gas–solid one.

3.4. FTIR measurements: molecular interactions with CO2

High-pressure FTIR was used to examine molecular interactions of dense phase CO2 with such selected reacting species as \(p-\)CNB, \(p-\)CNSB, and \(p-\)CPHA, which would affect the reaction pathways of selective hydrogenation of CNB and change the reaction rate and the product selectivity.

3.4.1 \(p-\)CNB
Fig. 5 shows the FTIR spectra of nitro group vibrations in the presence of 4 MPa H$_2$ and 0–20 MPa CO$_2$. The result of p-CNB in ethanol is also shown for comparison. The bands at ca. 1343 and 1521 cm$^{-1}$ were assigned to the symmetric and asymmetric stretching vibrations of the nitro group, v_s(NO$_2$) and v_{as}(NO$_2$) [2]. The peaks of v_s(NO$_2$) and v_{as}(NO$_2$) were shifted with CO$_2$ pressure, and these shifts are depicted in Fig. 6. The peak position of v_s(NO$_2$) was blue shifted from 1343 cm$^{-1}$ at 0 MPa CO$_2$ to 1350 cm$^{-1}$ at 7 MPa CO$_2$, and remained unchanged at 7–20 MPa CO$_2$. The peak position of v_{as}(NO$_2$) was also blue shifted from 1521 to 1538 cm$^{-1}$ with CO$_2$ pressure up to ca. 5.5 MPa; between 5.5 and 20 MPa CO$_2$, the peak position was slightly shifted to a lower wavenumber and then changed little. The absorption bands at 20 MPa CO$_2$ were located at larger wavenumbers than those at 0 MPa CO$_2$ and in ethanol. These FTIR results indicate that the N–O bond of the nitro group becomes stronger in the presence of dense phase CO$_2$ compared to the ambient gas and liquid conditions. Additionally, it was observed that an absorption band appeared at 1109 cm$^{-1}$ at 0 MPa CO$_2$ and was blue shifted to 1112 cm$^{-1}$ with CO$_2$ pressure up to 7 MPa, above which it did not change further (not shown). This band is due to the C–N stretch [43].

The above changes of v_s(NO$_2$) and v_{as}(NO$_2$) for p-CNB with CO$_2$ pressures were similar to those of nitrobenzene in dense phase CO$_2$ [37]. We have proposed that the
overall IR result of nitrobenzene in dense phase CO$_2$ is controlled by the following modes of interactions between CO$_2$ molecules and the nitro group: (1) one of the oxygen atoms of CO$_2$ interacts with the positive nitrogen of –NO$_2$ group, and (2) the carbon atom of CO$_2$ interacts with the oxygen of –NO$_2$ group. The former interaction might strengthen both the C–N and N–O bonds, while the latter might weaken the strength of the N–O bond. The former interaction has a dominant effect on the stretch vibration of N–O bond [37]. It seems likely that the nitro group of p-CNB interacts with CO$_2$ in the same modes as in the case of nitrobenzene.

At similar CO$_2$ pressures, the bands of ν(NO$_2$) and ν_{as}(NO$_2$) of p-CNB appeared at lower wavenumbers than those of the corresponding peaks of nitrobenzene. For example, the wavenumbers of ν(NO$_2$) and ν_{as}(NO$_2$) for p-CNB at 20 MPa CO$_2$ were 1350 and 1534 cm$^{-1}$; the corresponding values for nitrobenzene were 1354 and 1538 cm$^{-1}$, respectively [37]. The difference in wavenumbers of the nitro group vibrations between p-CNB and nitrobenzene might be due to the Cl substituent, an electron-withdrawing group attaching to the benzene ring of p-CNB.

3.4.2 p-CNSB

Fig. 7 shows the FTIR spectra of the nitroso (N=O) moiety of p-CNSB in the presence of 4 MPa H$_2$ and 0–20 MPa CO$_2$. The spectrum of p-CNSB in ethanol at room
temperature was recorded for comparison. The absorption bands at 1109 and 1517 cm\(^{-1}\)
before the introduction of CO\(_2\) are due to the C–N stretch of the CNSB monomer and
the stretching vibration of N=O, respectively [43]. The peak position of \(v(C–N)\) of
CNSB monomer was slightly blue shifted from 1109 to 1116 cm\(^{-1}\) with the increase of
CO\(_2\) pressure up to ca. 15 MPa and then remained unchanged. We have shown that the
N=O group of nitrosobenzene can interact with CO\(_2\) molecules through its oxygen
(O-interacted) and nitrogen (N-interacted) atoms; the stretching vibration of N=O gives
a band around 1520 cm\(^{-1}\) in the former case and a band at 1485 cm\(^{-1}\) in the latter case
[37]. Thus, the band at ca. 1510 cm\(^{-1}\) in the spectra of \(p\)-CNSB would arise from the
stretching vibration \(v(N=O)(O\text{-interacted})\). The peak position of \(v(N=O)(O\text{-interacted})\)
changed with CO\(_2\) pressure and these shifts are shown in Fig. 8. The stretching vibration
\(v(N=O)(O\text{-interacted})\) in CO\(_2\) was monotonously red shifted with CO\(_2\) pressure up to 13
MPa and then remained unchanged. Additionally, there was no peak at 1485 cm\(^{-1}\) in the
spectra of \(p\)-CNSB at all pressures examined. Therefore, the N=O of \(p\)-CNSB interacts
with the carbon of CO\(_2\) through its oxygen but not through its nitrogen. The N=O group
functions as a Lewis base (LB) and CO\(_2\) plays a role of a Lewis acid (LA). This type of
intermolecular interaction becomes stronger with the increase in CO\(_2\) pressure and
weakens the N=O bond of \(p\)-CNSB. Simultaneously, the C–N stretch band was blue
shifted, in agreement with previous results for nitroso compounds that $v(\text{C–N})$ increases when $v(\text{N=O})$ decreases [37, 43].

At 20 MPa CO$_2$, the peak position of $v(\text{N=O})(\text{O-interacted})$ was at 1506 cm$^{-1}$, which was still higher than that in ethanol (1501 cm$^{-1}$). This difference is similar to that of nitrosobenzene, indicating the LA-LB interaction of CO$_2$ with the N=O group of p-CNSB is also less strong compared with the hydrogen bonding in ethanol [37].

In the spectra of p-CNSB, the band of $v(\text{N=O})(\text{O-interacted})$ was shifted from 1517 cm$^{-1}$ at 0 MPa CO$_2$ to 1506 cm$^{-1}$ at 20 MPa CO$_2$; in the case of nitrosobenzene, the same vibration gave a band at 1521 and 1513 cm$^{-1}$ at the corresponding pressures [37]. That is, the stretching vibration of N=O of p-CNSB is less strong than that on nitrosobenzene at similar CO$_2$ pressures. The difference might be due to the electron-withdrawing effect of the Cl substituent of p-CNSB.

3.4.3 p-CPHA

The FTIR spectra of p-CPHA in dense phase CO$_2$ and in ethanol are given in Fig. 9. The absorption bands at ca. 920, 1494–1500, and 3200 cm$^{-1}$ are related to the N–O stretch, a ring stretching mode, and the O–H stretching vibration of phenylhydroxylamine derivatives, respectively [44, 45]. The O–H stretch band of p-CPHA in dense phase CO$_2$ was not distinct at all pressures examined, possibly because scCO$_2$ has a combination band in the region where the stretching vibration of O–H occurs [46]. The N–O stretch of p-CPHA could only be identified at 915 cm$^{-1}$
above 8 MPa CO$_2$, and its peak position did not show any shift with CO$_2$ pressures from 8 to 20 MPa. Here, our interest is focused on the absorption band at 1494 cm$^{-1}$, which is related to the ring stretch of p-CPHA, for the discussion on interactions between p-CPHA and CO$_2$ molecules.

The position of the ring absorption band at 1494 cm$^{-1}$ scarcely changed between ca. 0 and 5 MPa CO$_2$, and was blue shifted to 1498 cm$^{-1}$ with further increasing CO$_2$ pressure up to ca. 8 MPa. At 9.7–20.4 MPa CO$_2$, the band split into two peaks at 1498 and 1505 cm$^{-1}$, and their positions did not change with CO$_2$ pressures. The splitting of the ring absorption band was also observed for N-phenylhydroxylamine at above 8 MPa CO$_2$; however, the band was red shifted at 4–11 MPa CO$_2$ and its position remained unchanged from 11 to 20 MPa CO$_2$ [37].

3.4.4 CO$_2$

Interactions of CO$_2$ with LB, polymer, or ionic liquids cause some changes in the IR spectra corresponding to the CO$_2$ ν_2-bending (610–680 cm$^{-1}$) and ν_3-antisymmetric stretching (2100–2500 cm$^{-1}$) mode regions [47-49]. It was impossible to distinguish the ν_2 mode in our IR results. Fig. 10 gives the FTIR spectra of CO$_2$ in the ν_3 region for the CO$_2$-p-CNB, CO$_2$-p-CNSB, and CO$_2$-p-CPHA systems at different CO$_2$ pressures. The results in Fig. 10 were obtained by using the substrate-absent system at the corresponding pressures as background. For the CO$_2$-p-CNB system, there was one
main peak at 2347 cm\(^{-1}\) at CO\(_2\) pressures > 8 MPa and the peak position scarcely
changed with CO\(_2\) pressure. For the CO\(_2\)-\(p\)-CNSB system, there was only one peak at
2352 cm\(^{-1}\) at above 9.5 MPa, and its position did not change with CO\(_2\) pressure. The fact
that only one band appears in the \(v_3\) region suggests that there is only one type of the
site within the \(p\)-CNB or \(p\)-CNSB molecule to interact with CO\(_2\) molecules [48].
Additionally, the wavenumber of the C=O stretching vibration of CO\(_2\) in the
CO\(_2\)-\(p\)-CNB system was lower than that in the CO\(_2\)-\(p\)-CNSB system. This indicates that
the C=O bond strength of CO\(_2\) is weaker in the CO\(_2\)-\(p\)-CNB system than that in the
CO\(_2\)-\(p\)-CNSB system. The IR results of \(p\)-CNB have shown that the interaction of CO\(_2\)
through its oxygen with the nitrogen of –NO\(_2\) group had a dominant effect on the
stretching vibration of N–O bond; both the C–N and N–O bonds were strengthened. It
seems likely that the interaction between CO\(_2\) and \(p\)-CNB induces partial electron
transfer from the C=O bond of CO\(_2\) to the C–N and N–O bonds of \(p\)-CNB, and this
weakens the C=O bond of CO\(_2\). In contrast, the N=O of \(p\)-CNSB interacted with the
carbon of CO\(_2\) through its oxygen (not nitrogen), and the N=O bond was weakened with
CO\(_2\) pressures. The interaction of CO\(_2\) with \(p\)-CNSB is likely to induce partial electron
transfer from the N=O bond of \(p\)-CNSB to the C=O bond of CO\(_2\), strengthening the
C=O bond. Thus, the IR spectra of CO\(_2\) provide additional evidence for the interaction
mode of CO$_2$ with p-CNB and p-CNSB.

Fig. 10(c) shows the FTIR difference spectra of CO$_2$ in the v_3 region for the CO$_2$-p-CPHA system at different pressures. At above 8.6 MPa CO$_2$, there was one or two peaks at around 2351 cm$^{-1}$ with no other peaks in the v_3 region. In contrast, an additional peak appears at 2332 cm$^{-1}$ along with the bands at 2348–2355 cm$^{-1}$ for the CO$_2$-N-phenylhydroxylamine system [37]. This indicates that p-CPHA does interact with CO$_2$; however, the available sites within the p-CPHA molecule for CO$_2$ are less than within the N-phenylhydroxylamine molecule. Presumably, CO$_2$ interacts with p-CPHA through its carbon.

3.5. Improvement of the selectivity to CAN

The dechlorination reaction was suppressed over Ni/TiO$_2$ in either ethanol or scCO$_2$, which might be mainly related to the properties of Ni/TiO$_2$. The formation of harmful intermediates occurring in ethanol was almost completely retarded in scCO$_2$, indicating the significance of medium effects. The FTIR results show that the strength of the N–O bond of CNB in dense phase CO$_2$ was stronger than that in the ambient gas phase and it increased with CO$_2$ pressure up to ca. 6 MPa, above which it slightly decreased (Fig. 6). However, the strength of the N=O bond of CNSB was monotonously reduced with CO$_2$ pressure (Fig. 8). Namely, the reactivity of the –NO$_2$ group may
decrease with CO₂ pressure up to 6 MPa and will not change so much at higher pressures. In contrast, the reactivity of the N=O group may increase with CO₂ pressure. It is likely, therefore, that the hydrogenation of CNSB is more significantly accelerated than that of CNB when dense phase CO₂ is used. Moreover, the FTIR results indicate that interactions occurred between CPHA and dense phase CO₂ molecules. These interactions should promote the transformation of CPHA to CAN (step III in Scheme 1), contributing to the improved selectivity to CAN. As a result, CAN was formed with almost 100% selectivity in/under dense phase CO₂. Therefore, the molecular interactions of CO₂ with the reacting species should be an important factor in determining the product selectivity over Ni/TiO₂.

3.6. Reaction pathways for the hydrogenation of CNB in scCO₂ over Ni/TiO₂

The path IV in Scheme 1 occurs on Au/TiO₂, and the step V becomes significant over Pd/Pt/Ni catalysts in the presence of vanadium promoters [2, 3, 7]. Herein, we discuss the reaction pathways over Ni/TiO₂ in dense phase CO₂ without the consideration of pathways IV and V. The total yield of all byproducts was <3.5% over the whole conversion range of 9–100% (Fig. 2 and Table 2). Accordingly, the condensation route (steps VI and VII) in Scheme 1 should be negligible, and the hydrogenation of CNB to CAN proceeds likely through the consecutive steps I→II→III.
The rate of CAN formation is determined by the slowest reaction rate among steps I, II, and III. The intermediates, detected by GC analysis, included CNSB and trace amounts of CAOB, CAB, and CHAB. These intermediates may be present in the reaction mixture; or they are absent in the reaction mixture but come from the decomposition of CPHA during the GC analysis [42]. Anyway, if the reaction rate of step II or III is the slowest, the amount of these intermediates should increase first and then decrease with the conversion of CNB. Fig. 2 shows that the yield of all byproducts decreased from 3.5% at 9% conversion to <1% at conversion >70%. The yield of CAN was similar to the conversion of CNB over the conversion range of 9–100%. In other words, the rate of CAN formation was almost equal to that of CNB conversion, i.e., the rate of step I.

Therefore, in the present case of CNB hydrogenation in dense phase CO2 over Ni/TiO2, the transformation of CNB to CNSB (step I in Scheme 1) seems to be the relatively slow step that determines the rate of CAN formation. The proposed reaction pathways may be related to the molecular interactions of CO2 with CNB, CNSB, and CPHA. The relative reactivity of these reacting species was changed through interactions with CO2 as discussed above, and consequently, the relative hydrogenation rates of steps I, II, and III are altered in dense phase CO2.

4. Conclusions
The chemoselective hydrogenation of CNB to CAN was achieved over Ni/TiO₂ in scCO₂ at 35°C. Both the accumulation of harmful intermediates and the formation of dechlorinated byproduct were suppressed effectively in scCO₂. The selectivity to the desired product, CAN, was >97% over the conversion range of 9–100%. One of the important factors for this improved selectivity to CAN is the interactions of CO₂ with the reacting species, i.e., CNB, CNSB, and CPHA. The nitro group of CNB interacts with CO₂ through its nitrogen and oxygen atoms. The former mode has a dominant effect on the stretch vibration of N–O bond, and the reactivity of CNB is decreased. The nitroso group of CNSB interacts through its oxygen with the carbon of CO₂ and the reactivity of CNSB is increased. CPHA can also interact with scCO₂, and the transformation of CPHA to CAN is likely promoted. Probably, the hydrogenation of CNB mainly occurs through the direct hydrogenation route, i.e.,

\[
\text{CNB} \rightarrow \text{CNSB} \rightarrow \text{CPHA} \rightarrow \text{CAN}
\]

The transformation of CNB to CNSB might be the rate-determining step.

The strength of the N–O bond of CNB, the N=O bond of CNSB, and the N–O bond of CPHA is weaker compared with the corresponding bonds of nitrobenzene, nitrosobenzene, and N-phenylhydroxylamine, due to the electron-withdrawing effect of Cl substituent. There is no interaction between CO₂ and the nitrogen of N=O group of
CNSB, which is different from the modes of CO$_2$ interaction with nitrosobenzene. The available sites to interact with CO$_2$ are also less within the CPHA molecule than within the N-phenylhydroxylamine one.

Acknowledgments

The authors gratefully acknowledge the financial support from the One Hundred Talent Program of CAS, NSFC 20873139, and KJCX2, YW.H16. This work was also supported by the Japan Society for the Promotion of Science with Grant-in-Aid for Scientific Research (B) 18360378 and by the CAS-JSPS international joint project GJHZ05. X. Meng thanks the Global COE (Center of Excellence) fellowship of Hokkaido University.

References

 Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA,

Captions for Figures, Tables, and Scheme

Fig. 1. (1) XRD patterns of Ni/TiO₂: (a) calcined under air at 450°C, (b) reduced with H₂ at 450°C; (2) TEM image of Ni/TiO₂ after reduction with H₂ at 450°C.

Fig. 2. Evolution of species with time during the hydrogenation of o-CNB over 16 wt% Ni/TiO₂ in scCO₂ at 35°C. Reaction conditions: Ni/TiO₂ 0.15 g, CO₂ 11 MPa. (▲) o-CNB conversion, (○) o-CAN yield, (▽) total yield of all by-products.

Fig. 3. The phase behavior of o- (■, □), m- (▲, △) and p-CNB (▼, ▽) in CO₂ at 35°C in the presence of 4 MPa H₂. A certain amount of o-CNB was added to the view cell, H₂ was introduced up to 4 MPa, and then CO₂ was gradually introduced until the liquid o-CNB disappeared at a CO₂ pressure P₁. Upon carefully depressurization, the first liquid drop of o-CNB appeared at a pressure P₂. These two pressures P₁ and P₂ were carefully determined at several amounts (concentrations in the cell) of o-CNB, and are given with solid and open marks, respectively. The data for m- and p-CNB were collected using the same procedures.

Fig. 4. Influence of CO₂ pressure on the conversion of o-CNB (●) and the selectivity to
o-CAN (○) in the hydrogenation of o-CNB over 16 wt% Ni/TiO₂ at 35°C and at H₂ 4 MPa for 50 min.

Fig. 5. FTIR spectra of nitro group stretching vibrations for p-CNB in the presence of 4 MPa H₂ and dense phase CO₂ at different pressures given. The spectra at CO₂ pressures <4 MPa and >5 MPa were collected at 90°C and 35°C, respectively. Also included are the same group vibrations of p-CNB in ethanol (p-CNB/ethanol = 0.05, molar ratio) at room temperature.

Fig. 6. Influence of CO₂ pressure on the absorption peak position of vₛ(NO₂) and vₐ(NO₂) of p-CNB. (○) Symmetric and (●) asymmetric stretching vibrations in dense phase CO₂; (△) symmetric and (▲) asymmetric stretch in ethanol (p-CNB/ethanol = 0.05, molar ratio) at room temperature.

Fig. 7. FTIR spectra of p-CNSB in the presence of 4 MPa H₂ and dense phase CO₂ at pressures given. The spectra at CO₂ pressures <6 MPa and >6 MPa were collected at 90°C and 35°C, respectively. Also shown is the spectrum of p-CNSB in ethanol (p-CNSB/ethanol = 0.03, molar ratio) at room temperature.
Fig. 8. Influence of CO$_2$ pressure on the peak position of the nitroso group (O-interacted) vibration for p-CNSB at 35°C. The spectrum in the absence of CO$_2$ (0 MPa) was collected at 90°C. Also shown is the same group vibration in ethanol (p-CNSB/ethanol = 0.03, molar ratio) at room temperature.

Fig. 9. FTIR spectra for the ring stretching vibration of p-CPHA in the presence of 4 MPa H$_2$ and dense phase CO$_2$ at pressures given (35°C). The spectrum of p-CPHA in ethanol (p-CPHA/ethanol = 0.15, molar ratio) collected at room temperature is also shown.

Fig. 10. FTIR difference spectra in the CO$_2$ ν_3-antisymmetric-stretching mode region for the CO$_2$-p-CNB (a), CO$_2$-p-CNSB (b), and CO$_2$-CPHA (c) system at CO$_2$ pressures given. All spectra were collected at 35°C in the presence of 4 MPa H$_2$. The difference spectra were obtained by using the substrate-absent system at the corresponding pressures as background.

Table 1 Hydrogenation of o-CNB over 41 wt% Ni/Al$_2$O$_3$ in scCO$_2$ and over 16 wt%
Ni/TiO$_2$ in different reaction media.

Table 2 Results of hydrogenation of m- and p-CNB in scCO$_2$ over 16 wt% Ni/TiO$_2$.

Scheme 1 Possible reaction pathways for the hydrogenation of CNB to CAN [2–5].

CNB: Chloronitrobenzene, CNSB: chloronitrosobenzene, CPHA:

N-chlorophenylhydroxylamine, CAN: chloroaniline, CAOB: dichloraoxybenzene,

CAB: dichloroazobenzene, CHAB: dichlorohydrazobenzene, AN: aniline.
Table 1 Hydrogenation of o-CNB over 41 wt% Ni/Al₂O₃ in scCO₂ and over 16 wt% Ni/TiO₂ in different reaction media.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Medium</th>
<th>Catalyst</th>
<th>C₀ (^a) (mmol cm(^{-3}))</th>
<th>Conv. (^c) (%)</th>
<th>Selectivity (%)</th>
<th>TOF (^b) (h(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o-CAN</td>
<td>AN</td>
</tr>
<tr>
<td>1</td>
<td>scCO₂</td>
<td>Ni/Al₂O₃</td>
<td>0.19</td>
<td>78 (^c)</td>
<td>>98</td>
<td><1.5</td>
</tr>
<tr>
<td>2</td>
<td>scCO₂</td>
<td>Ni/TiO₂</td>
<td>0.19</td>
<td>82</td>
<td>99</td>
<td><1</td>
</tr>
<tr>
<td>3</td>
<td>Ethanol</td>
<td>Ni/TiO₂</td>
<td>0.19</td>
<td>26</td>
<td>70</td>
<td><1</td>
</tr>
<tr>
<td>4</td>
<td>Ethanol</td>
<td>Ni/TiO₂</td>
<td>0.95</td>
<td>36</td>
<td>70</td>
<td>−(^f)</td>
</tr>
<tr>
<td>5</td>
<td>n-Hexane</td>
<td>Ni/TiO₂</td>
<td>0.95</td>
<td>59</td>
<td>97</td>
<td>2</td>
</tr>
</tbody>
</table>

Reaction conditions: H\(_2\) 4 MPa, o-CNB 1.5 g (9.52 mmol), Ni/Al₂O₃ 0.1 g or Ni/TiO₂ 0.15 g, organic solvent 10 cm\(^3\) or CO\(_2\) 10.5 MPa, reactor 50 cm\(^3\), 35°C, 50 min.

\(^a\) Initial concentration of o-CNB.

\(^b\) Turnover frequency of hydrogenation of o-CNB. The number of active sites was calculated using the average nickel diameter (d) determined by XRD line broadening via the following equation: Dispersion = 6(\(v_m/a_m\))/d, where \(v_m\) and \(a_m\) are equal to 10.95 Å\(^3\) and 6.51 Å\(^2\), respectively, for Ni [41].

\(^c\) After 60 min of reaction.

\(^d\) Ethanol 50 cm\(^3\), reactor 100 cm\(^3\).

\(^e\) Other products in ethanol include CNSB, CAOB, CAB, and CHAB.

\(^f\) Not detected.
Table 2 Results of hydrogenation of m- and p-CNB in scCO$_2$ over 16 wt% Ni/TiO$_2$.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reactant</th>
<th>CO$_2$ (MPa)</th>
<th>Time (min)</th>
<th>Conv. (%)</th>
<th>Selectivity (%)</th>
<th>CAN</th>
<th>AN</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m-CNB</td>
<td>11</td>
<td>30</td>
<td>64</td>
<td>96</td>
<td><0.1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>80</td>
<td>100</td>
<td>>99.5</td>
<td><0.5</td>
<td><0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>p-CNB</td>
<td>10</td>
<td>30</td>
<td>51</td>
<td>99</td>
<td>—</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>90</td>
<td>100</td>
<td>>97</td>
<td><0.5</td>
<td><2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reaction conditions: CNB 1.5 g (9.52 mmol), H$_2$ 4 MPa, 16 wt% Ni/TiO$_2$ 0.15 g, 35°C.

a Not detected.
Fig. 1. (1) XRD patterns of Ni/TiO$_2$: (a) calcined under air at 450°C, (b) reduced with H$_2$ at 450°C; (2) TEM image of Ni/TiO$_2$ after reduction with H$_2$ at 450°C.
Fig. 2. Evolution of species with time during the hydrogenation of o-CNB over 16 wt% Ni/TiO$_2$ in scCO$_2$ at 35°C. Reaction conditions: Ni/TiO$_2$ 0.15 g, CO$_2$ 11 MPa. (▲) o-CNB conversion, (○) o-CAN yield, (▼) total yield of all by-products.
Fig. 3. The phase behavior of o- ($■$, □), m- (▲, △) and p-CNB (▼, ▽) in CO$_2$ at 35°C in the presence of 4 MPa H$_2$. A certain amount of o-CNB was added to the view cell, H$_2$ was introduced up to 4 MPa, and then CO$_2$ was gradually introduced until the liquid o-CNB disappeared at a CO$_2$ pressure P_1. Upon carefully depressurization, the first liquid drop of o-CNB appeared at a pressure P_2. These two pressures P_1 and P_2 were carefully determined at several amounts (concentrations in the cell) of o-CNB, and are given with solid and open marks, respectively. The data for m- and p-CNB were collected using the same procedure.
Fig. 4. Influence of CO$_2$ pressure on the conversion of o-CNB (●) and the selectivity to o-CAN (○) in the hydrogenation of o-CNB over 16 wt% Ni/TiO$_2$ at 35°C and at H$_2$ 4 MPa for 50 min.
Fig. 5. FTIR spectra of nitro group stretching vibrations for \(p\-\text{CNB} \) in the presence of 4 MPa \(\text{H}_2 \) and dense phase \(\text{CO}_2 \) at different pressures given. The spectra at \(\text{CO}_2 \) pressures <4 MPa and >5 MPa were collected at 90°C and 35°C, respectively. Also included are the same group vibrations of \(p\-\text{CNB} \) in ethanol (\(p\-\text{CNB/ethanol} = 0.05 \), molar ratio) at room temperature.
Fig. 6. Influence of CO$_2$ pressure on the absorption peak position of ν_s(NO$_2$) and ν_{as}(NO$_2$) of p-CNB. (∗) Symmetric and (●) asymmetric stretching vibrations in dense phase CO$_2$; (△) symmetric and (▲) asymmetric stretch in ethanol (p-CNB/ethanol = 0.05, molar ratio) at room temperature.
Fig. 7. FTIR spectra of \textit{p}-CNSB in the presence of 4 MPa H\textsubscript{2} and dense phase CO\textsubscript{2} at pressures given. The spectra at CO\textsubscript{2} pressures \textless 6 MPa and \textgreater 6 MPa were collected at 90°C and 35°C, respectively. Also shown is the spectrum of \textit{p}-CNSB in ethanol (\textit{p}-CNSB /ethanol = 0.03, molar ratio) at room temperature.
Fig. 8. Influence of CO$_2$ pressure on the peak position of the nitroso group (O-interacted) vibration for p-CNSB at 35°C. The spectrum in the absence of CO$_2$ (0 MPa) was collected at 90°C. Also shown is the same group vibration in ethanol (p-CNSB/ethanol = 0.03, molar ratio) at room temperature.
Fig. 9. FTIR spectra for the ring stretching vibration of p-CPHA in the presence of 4 MPa H$_2$ and dense phase CO$_2$ at pressures given (35°C). The spectrum of p-CPHA in ethanol (p-CPHA/ethanol = 0.15, molar ratio) collected at room temperature is also shown.
Fig. 10. FTIR difference spectra in the CO\textsubscript{2} \textit{v}_3-antisymmetric-stretching mode region for the CO\textsubscript{2}-p-CNB (a), CO\textsubscript{2}-p-CNSB (b), and CO\textsubscript{2}-CPHA (c) system at CO\textsubscript{2} pressures given. All spectra were collected at 35°C in the presence of 4 MPa H\textsubscript{2}. The difference spectra were obtained by using the substrate-absent system at the corresponding pressures as background.
Scheme 1 Possible reaction pathways for the hydrogenation of CNB to CAN [2–5].

CNB: Chloronitrobenzene, CNSB: chloronitrosobenzene, CPHA:

N-chlorophenylhydroxylamine, CAN: chloroaniline, CAOB: dichloroazoxybenzene,

CAB: dichloroazobenzene, CHAB: dichlorohydrazobenzene, AN: aniline.