Two distinct regions in *Staphylococcus aureus* GatCAB guarantee accurate tRNA recognition

Akiyoshi Nakamura¹, Kelly Sheppard², Junji Yamane¹, Min Yao¹,³, Dieter Söll²,⁴ and Isao Tanaka¹,³,*

¹Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, ²Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA, ³Faculty of Advanced Life Science, Hokkaido University, kita-10, nishi-8, Sapporo, Hokkaido, 060-0810, Japan and ⁴Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA

Received September 1, 2009; Revised October 6, 2009; Accepted October 10, 2009

ABSTRACT

In many prokaryotes the biosynthesis of the amide aminoacyl-tRNAs, Gln-tRNA{\text{Gln}} and Asn-tRNA{\text{Asn}}, proceeds by an indirect route in which mischarged Glu-tRNA{\text{Gln}} or Asp-tRNA{\text{Asn}} is amidated to the correct aminoacyl-tRNA catalyzed by a tRNA-dependent amidotransferase (AdT). Two types of AdTs exist: bacteria, archaea and organelles possess heterotrimeric GatCAB, while heterodimeric GatDE occurs exclusively in archaea. Bacterial GatCAB and GatDE recognize the first base pair of the acceptor stem and the D-loop of their tRNA substrates, while archaeal GatCAB recognizes the tertiary core of the tRNA, but not the first base pair. Here, we present the crystal structure of the full-length *Staphylococcus aureus* GatCAB. Its GatB tail domain possesses a conserved Lys rich motif that is situated close to the variable loop in a GatCAB:tRNA Gln docking model. This motif is also conserved in the tail domain of archaeal GatCAB, suggesting this basic region may recognize the tRNA variable loop to discriminate Asp-tRNA Asn from Asp-tRNA Asp in archaea. Furthermore, we identified a 3₁₀ turn in GatB that permits the bacterial GatCAB to distinguish a U₁–A₇₂ base pair from a G₁–C₇₂ pair; the absence of this element in archaeal GatCAB enables the latter enzyme to recognize aminoacyl-tRNAs with G₁–C₇₂ base pairs.

INTRODUCTION

Correct pairing of an amino acid with its cognate tRNA is an essential step to maintain the accuracy of translation. This is usually accomplished by aminoacyl-tRNA synthetases (aaRSs) that catalyze the direct attachment of an amino acid to its cognate tRNA (1). However, glutaminyl-tRNA synthetase (GlnRS) is absent in the majority of bacteria, in all known archaea, and in many organelles (2). These organisms utilize an indirect pathway for Gln-tRNA{\text{Gln}} formation where a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) synthesizes mischarged Glu-tRNA{\text{Gln}} (3) that is then amidated to the cognate Gln-tRNA{\text{Gln}} by glutamyl-tRNA{\text{Gln}} amidotransferase (Glu-AdT) (2,4). Similarly, many prokaryotes lacking an asparaginyl-tRNA synthetase (AsnRS) generate Asn-tRNA{\text{Asn}} by the combined actions of a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) and an aspartyl-tRNA{\text{Asn}} amidotransferase (Asp-AdT) (5,6).

Two types of AdTs exist: the heterotrimeric GatCAB (7) present in bacteria, archaea and organelles (2), and the heterodimeric GatDE found exclusively in archaea (8). GatDE specifically converts Glu-tRNA{\text{Gln}} (8), while bacterial GatCAB acts as both a Glu-AdT and an Asp-AdT in vitro (2). The *in vivo* role of bacterial GatCAB is defined by the nature of ND-aaRS (ND-GluRS and/or ND-AspRS) present in the cell (2). In archaea that lack AsnRS, GatCAB is encoded (9). This enzyme (e.g. from *Methanothermobacter thermautotrophicus*) in vitro strongly prefers Asp-tRNA{\text{Asn}} over the homologous Glu-tRNA{\text{Gln}} (10); thus archaeal GatCAB may act *in vivo* as an Asp-AdT.

AdTs accurately distinguish their mischarged aa-tRNA substrates (Glu-tRNA{\text{Gln}} and/or Asp-tRNA{\text{Asn}}) from the cognate Glu-tRNA{\text{Glu}} and Asp-tRNA{\text{Asp}} species. Bacterial GatCAB and GatDE achieve this by recognizing the first base pair of the acceptor stem and the D-loop of their tRNA substrates (11–13). In contrast, archaeal GatCAB does not recognize the first base pair of Asp-tRNA{\text{Asn}} (13,14). Instead the *M. thermautotrophicus* GatCAB makes use of the D-loop, the nucleotide in position 49, and to a lesser extent of the length of the variable loop to distinguish Asp-tRNA{\text{Asn}} from...
Asp-tRNA^{Asp} (14), while the Methanosarcina barkeri
GatCAB appears to use primarily the length of the variable loop for the same task (13).

Previous work implicated the tail domain of the
GatB and GatE in D-loop recognition of their respective
aa-tRNA substrates (11,12). These tail domains share
homology with the standalone YqeY proteins of
unknown function (PFAM id: PF09424) that are present
in a diverse array of organisms (11,12,15,16). Previous
crystallographic studies did not resolve the YqeY-like
domain of AdTs (11,12,17,18) or of Deinococcus
radiodurans GlnRS (15). Here, we present a full-length
Staphylococcus aureus GatCAB structure (containing the
YqeY domain) resolved at 1.9 Å. The structure reveals
this enzyme to distinguish a U1–A72 base pair from a
G1–C72 pair.

MATERIALS AND METHODS

Preparation of S. aureus GatCAB

The enzyme was over-produced in an Escherichia coli
B834 strain and purified over a HiTrap HP column
(GE Healthcare) as described (11). The sample was then
diluted 5-fold with Buffer A [50 mM Tris–HCl pH 7.5,
10 mM MgCl₂, 1 mM DTT and 10% (v/v) glycerol], and
applied to a HiTrap Heparin HP column (GE Healthcare)
equilibrated with buffer A. The column was washed with
buffer A containing 50 mM NaCl, and proteins were eluted
with a linear gradient of 50–500 mM NaCl. The enzyme eluted at ~250 mM NaCl. The enzyme fractions
were then loaded onto a HiLoad 26/60 Superdex 200 pg
column (GE Healthcare) equilibrated with buffer B
[20 mM Tris–HCl pH 7.5, 10 mM MgCl₂, 1 mM DTT and 10% (v/v) glycerol]. Pooled fractions were
concentrated by ultrafiltration using Vivaspin devices
(VIVASCIENCE) to a final concentration of 12 mg/ml.
S. aureus GatCAB mutants were generated using the
QuickChangeTM site-directed mutagenesis kit according
to the manufacturer’s protocol (Stratagene), and purified
to homogeneity as described above.

**Preparation of M. thermoautotrophicus GatCAB and
ND-AspRS**

The over-production and purifications were as described
(10). Methanothermobacter thermoautotrophicus GatCAB
mutants were generated as described above.

Preparation of S. aureus ND-GluRS

The gene encoding the ND-GluRS from S. aureus Mu50
was amplified by polymerase chain reaction (PCR).
The S. aureus ND-GluRS is toxic for an E. coli, which does not
possess GatCAB, therefore the gene was cloned into
NcoI/XhoI site of a pTip vector, which is used to
protein expression in Rhodococcus erythropolis, and then the
S. aureus ND-GluRS protein was expressed in
R. erythropolis as described (19). Cells were harvested
(4000 x g, 15 min at 4°C) and disrupted using sonication
in buffer C [50 mM Tris–HCl pH 7.5, 300 mM NaCl, 5 mM MgCl₂, 10% (v/v) glycerol, 0.5 mg/ml lysozyme
and 0.1 mg/ml DNase I]. All the following purification
processes were carried out at 4°C. Cell debris was
removed by centrifugation (40 000 x g, 1 h), and clarified
supernatant was applied to a HiTrap HP column as
described (11). Pooled fractions were loaded onto a
HiLoad 26/60 Superdex 200 pg column equilibrated with
buffer D [20 mM HEPES-K pH 7.6, 5 mM MgCl₂, 100 mM KCl, 1 mM DTT and 10% (v/v) glycerol]. The purified S. aureus ND-GluRS was concentrated by
ultrafiltration to a final concentration of 18 mg/ml, and
then diluted 2-fold with 100% (v/v) glycerol, and stored
at −30°C.

**Preparation of S. aureus tRNA^{Gln}, and
M. thermoautotrophicus and C. trachomatis tRNA^{Asn}**

The tRNA isoacceptors were in vitro transcribed and purified as described (10,11).

Preparation of aminoacyl-[³²P] labeled tRNA

The tRNA isoacceptors were [³²P]-labeled and aminoacylated as described (10,20) with minor modification.
For glutamylation of S. aureus tRNA^{Gln}, 5 μM
S. aureus ND-GluRS and tRNA^{Gln} were added in the
aminoacylation reaction.

Crystallization and structure determination

The high quality single crystals of S. aureus GatCAB were
obtained by using the micro-seeding technique (21) from
hanging drops set up in a 1:1:0.1 ratio from protein,
reservoir solution [25% (w/v) PEG 600, 5 mM MgCl₂, 50 mM HEPES–NaOH pH 7.2 and 3% (v/v) 2-methyl-
2,4-pentanediol (MPD)] and a micro-seeds stock
solution (21). The crystal of S. aureus GatCAB was
rapidly soaked through the reservoir containing 50 mM
MES-Na, pH 6.4, 25% (w/v) PEG 600, 5 mM MgCl₂, 3% (v/v) MPD and 10% (v/v) glycerol as a
cryoprotectant, and then a data set was collected to
1.9 Å resolution at SPring-8 beamline 41XU (Hyogo,
Japan) under cryogenic condition (−173°C). The data
set was processed and scaled using the
HKL2000 package (22). The structure of S. aureus GatCAB was
solved by molecular replacement using AMoRe in the
CCP4 suite (23), with the refined model of the previous
(11) S. aureus GatCAB structure (PDB ID: 2G5H) as a
crystallographic R_{free} factor of 19.5/21.4%. The
summary of data statistics is presented in Table 1. All
figures were generated by PyMol (28).

Small-angle X-ray scattering

For preparation of the tRNA^{Gln}-bound S. aureus
GatCAB, the S. aureus GatCAB was mixed with
tRNA^{Gln} in a molar ratio of 1:4, and then purified by a
Table 1. Data collection and refinement statistics

<table>
<thead>
<tr>
<th>Data collection statistics</th>
<th>PDB ID</th>
<th>SPring-8 BL41XU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamline</td>
<td></td>
<td>4B2/45XU</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.00 Å</td>
<td></td>
</tr>
</tbody>
</table>
| Resolution (Å) | 50.00–1.90 (1.97–1.90) | 674
| Space group | P2,2,2 1 | |
| Cell dimensions, a, b, c (Å) | 71.1, 92.7, 180.4 | 674
| Number of atoms (protein/water/others) | 8299/801/1 | 674
| Average B factors (Å²) | 33.6/35.3/26.0 | 674
| No. reflections | 94,598 | 674
| Completeness (%) | 99.9 (100) | 674
| Redundancy | 7.0 | 674

Values in parentheses are for the outermost resolution shell.

Overall structure of a full-length GatCAB

We crystallized S. aureus GatCAB by adding 3–10% (v/v) MPD to the previous crystallization condition (11), which dramatically improved the crystal quality (maximum resolution from 2.3 to 1.9 Å). Surprisingly, the high-resolution structure clearly shows the GatB C-terminal region encompassing amino acids 412–475 and a histidine-tag (Figure 1A and Supplementary Figure S1), whose electron density map was not visible in the previous crystal structures. Although the unit cell dimension and crystal packing of the full-length and the previous apo-form S. aureus GatCAB are very similar, in the current structure the C-terminal GatB region is sandwiched between two GatA molecules related by 2-fold screw axes. Successful resolution of the tail-domain may be due to MPD addition in the crystallization mixture making the protein domain less flexible.

The GatA apo-form is essentially the same as the previously deposited S. aureus GatA structures (11). Interestingly, the high-resolution structure shows an alternative conformation for R358, which recognizes the carboxyl group of the substrate Gln (Supplementary Figure S2). Furthermore, Y310, which made a hydrogen bond with D425 in the Gln-bound S. aureus GatCAB (PDB ID: 2F2A), is flipped out from the active site of GatA, indicating that Gln binding induces only minor conformational changes in the GatA active site. GatC is also nearly identical to the deposited S. aureus GatC structures except the six C-terminal residues (95–100) were disordered and could not be modeled.

GatB is comprised of three consecutive domains: a cradle domain (1–294), a helical domain (295–407) and a tail domain (412–475). The cradle and helical domains are identical to the S. aureus GatB apo-form (PDB ID: 2G51), and the permanent Mg²⁺ in the catalytic pocket was visible (11,18). The tail domain forms an anti-parallel helix bundle with three amphiphilic helices (α13, α15 and α16) that construct a hydrophobic core with α14 (Figure 1B and Supplementary Figure S1). L472 participates in this hydrophobic core and is not exposed to the molecular surface, indicating L472 is important for maintaining the structure of the tail domain rather than directly recognizing the aa-tRNA substrate as previously suggested (11). The loop between α15 and α16 interacts with I412 and S413 by two main chain and one side chain hydrogen bonds. Therefore, the S. aureus GatB tail and helical domains are linked by a ~13 Å long inter-domain loop (408–411).

Comparison of the GatB tail domain with YqeY

The C-terminal end of GatB, comprised of the helical and tail domains (295–475), belongs to the same protein family
as standalone YqeY polypeptides of unknown function present in many bacteria and in yeast (PFAM ID: PF09424) (15,16). The YqeY-like tail domain appended to the D. radiodurans GlnRS enables the enzyme to productively bind to tRNA Gln (15). A similar role is proposed for this structure in GatB and GatE via recognition of the D-loop (11,12). The only YqeY structure so far resolved is from Bacillus subtilis (PDB ID: 1NG6); it can now be compared with the YqeY region in the present full-length of S. aureus GatCAB structure. The anti-parallel helix bundle of the tail domain superimposes well with the C-terminal domain of B. subtilis YqeY protein (YqeY-C: 92-146) with an r.m.s. deviation of 1.97 Å for the 51 Ca pairs compared (Figure 1C).

Interestingly, the GatB tail domain has an additional α-helix (α14) and a short loop between α14 and α15 (439–442) not found in the YqeY-C. Based on the multiple sequence alignment with the tail domains and YqeY-C, this extended region contains a Lys rich motif (KXGKXX) that is highly conserved in bacterial and archaeal GatB enzymes (Figure 1D and Supplementary Figure S3). The C-terminal extension of D. radiodurans GlnRS also contains this extended region with a similar motif (RGGKTA). In contrast to GatB and D. radiodurans GlnRS, the tail domain of GatE lacks α14 and the Lys rich motif. Interestingly, the Lys rich motif of GatB is instead replaced in GatE with a GXXAXGX motif that has been implicated in GatDE distinguishing Glu-tRNAGln from Asp-tRNA Asn (16).

Docking tRNAGln into the S. aureus GatCAB structure

The GatB C-terminal tail is essential for GatCAB binding tRNAGln (11). In the co-crystal structure of the GatDE enzyme (PDB ID: 2D6F), the GatE tail domain was in the vicinity of the tRNA D-loop; however, its detailed structure could not be solved and the D-loop was fitted with the help of the B. subtilis YqeY-C structure (12). We decided to create a docking model of full-length S. aureus GatCAB with E. coli tRNAGln to understand how the enzyme uses the tail domain to bind the tRNA. The use of E. coli tRNAGln is reasonable as the sequences of the variable and D-loops of the S. aureus and E. coli tRNAGln are identical (Figure 2A), and E. coli Glu-tRNAGln serves as substrate for GatCAB in vivo (39).

To construct the docking model we first superposed E. coli tRNAGln (PDB ID: 1QTQ) into the GatDE:tRNAGln co-crystal structure by aligning all atoms of nucleotides U8, A14–G19, A21, C48 and U54–G57 of the tRNAs. The U8–A14–A21 base triple in the augmented D-stem is commonly found in tRNAGln while nucleotide 15 in the D-loop and nucleotide 48 in the variable loop form the conserved Levitt pair (40,41).
The tertiary interaction between the D- and TΨC-loops of tRNA is also well conserved.

Next, we docked *S. aureus* GatCAB to tRNA^Gln^ by taking advantage of the homology between GatB and GatE (8,16), and the co-crystal structure of GatDE:tRNAGln (12), superposing GatB with *M. thermotogatus* GatE. The cradle domain of *S. aureus* GatB and *M. thermautotrophicus* GatE superpose well with an r.m.s. deviation of 1.7 Å for 244 pairs of Cα atoms compared. However, initially there were severe clashes between the helical domain and tRNA^Gln^. Therefore, we separated the helical and tail domains into three parts (293–363, 364–381 and 382–475) and then superposed into GatE independently. Such movements are predicted based on previous AdT structures (11,12,17). Finally, the cradle and helical domains of *S. aureus* GatB could be superposed into that of *M. thermotogatus* GatE with an r.m.s. deviation of 1.9 Å for 321 pairs of Cα atoms compared (Supplementary Figure S4A).

The GatB tail domain possesses a highly conserved hydrophobic pocket comprised by residues (V449, M452, G457, A459 and P461) from the α15, α16 and the loop between them (Figure 3A), surrounded by positively charged residues (Figure 3B). In contrast, the opposite surface of the tail domain is composed of non-conserved, mostly negative residues (Figure 3A and B). These observations suggest that this conserved hydrophobic pocket may recognize the shape of the tRNA^Gln^ D-loop with the surrounding positive residues interacting with the tRNA phosphate backbone (Figure 3C).

Interaction of the tail domain with tRNA is expected, as deletion of the C-terminal portion of GatB gives rise to a GatCAB mutant enzyme unable to bind tRNA (11) and as mentioned the electron density map of the GatDE:tRNA^Gln^ structure places the YeqY-like tail domain in proximity of the tRNA D-loop (12). However, the initial *S. aureus* GatCAB:tRNA^Gln^ docking model placed the conserved hydrophobic pocket of the tail domain ~12 Å away from the D-loop of tRNA^Gln^ (Supplementary Figure S4B). It is likely that the tail domain can move to interact with tRNA^Gln^ due to the flexible loop connecting the tail and helical domains. This domain flexibility may explain why it has
been difficult to resolve the YqeY-like tail of previous AdT structures (11,12,17,18). Given the above, we manually fitted the pocket of the tail domain into the D-loop of the \textit{E. coli} tRNAGln (Figure 3C). The distance between the N-terminal end of the tail domain (Q411) and the C-terminal end of the helical domain (N407) is 10 Å, a distance the inter-domain loop connecting the two domains can bridge (Figure 3C). Recognition of the D-loop is consistent with the fact bacterial GatCAB uses that tRNA element to distinguish transamidation substrates (Glu-tRNA Gln and Asp-tRNA Asn) from Glu-tRNAGlu and Asp-tRNA Asp (11,13).

In order to verify our final \textit{S. aureus} GatB:tRNAGln docking model, we recorded small-angle X-ray diffusion spectra on the tRNA-free and -bound \textit{S. aureus} GatCAB purified by a size exclusion chromatography (Supplementary Figure S5). The predicted curve calculated from the crystal structure of the full-length \textit{S. aureus} GatCAB with the program CRYSOL (32) fits closely to the experimental curve of tRNA-free \textit{S. aureus} GatCAB, as characterized by a discrepancy value \(\chi\) of 0.050 (Figure 4A). Furthermore, the crystal structure fits well to the \textit{ab initio} envelope calculated with the program DAMAVER (36), of 16 dummy atom models calculated with DAMMIN (35), as reflected by a normalized spatial discrepancy (NSD) value of 1.21 (4A). The predicted scattering curve of the tRNAGln docking model fits well the experimental curve of tRNA-bound \textit{S. aureus} GatCAB (\(\chi\) of 0.098) and the \textit{ab initio} envelope (NSD of 0.97) (Figure 4A). However, the tRNAGln docking model before fitting the tail domain shows a significantly higher discrepancy value with the experimental curve of tRNA-bound \textit{S. aureus} GatCAB and the \textit{ab initio} envelope (\(\chi\) of 0.186 and NSD of 1.08, respectively) than using the tail domain fitting model. These results suggest that our docking model with the tail domain interacting with the tRNA is consistent with the solution structure of the \textit{S. aureus} GatCAB:tRNAGln complex.

In our docking model, the hydrophobic pocket of the GatB tail domain nicely accommodates the curve of the tRNA Gln D-loop (Figure 3C). The \textit{S. aureus} enzyme distinguishes tRNAGln from tRNAGlu based on the presence of an extra base (U20) in the D-loop of tRNAGlu (11). To gain a better understanding of how this is accomplished we superposed the structures of \textit{E. coli} tRNAGln and \textit{T. thermophilus} tRNAGlu in a similar manner as described above. The D-loop of \textit{T. thermophilus} tRNAGlu like that of \textit{S. aureus} tRNAGln possesses a U20 supernumerary base (Figure 2A). That extra base flips out from the tRNA D-loop and T\textit{W}C-loop associating region (Figure 2B). In the docking model of the tail domain with tRNA, the flipped out U20 could not be accommodated; the extra base sterically clashes with the surface of the protein in the model (Figure 3C), suggesting that is the mechanism by which \textit{S. aureus} GatCAB rejects tRNAGlu.

In addition to recognition of the D-loop, the GatB tail domain may also bind to the variable loop of the tRNA. In our docking model, the GatB-specific Lys rich motif of
the tail domain is situated in proximity to the variable loop of tRNA_{Gln}, in particular U46 which is pushed out from the tertiary core of the tRNA (Figures 2B and 3C). Consistent with this prediction, replacement of this Lys rich motif with the GXXAXGX motif from GatE results in a mutant \textit{S. aureus} GatCAB enzyme with reduced affinity for tRNA (Supplementary Figure S6).

The GatB cradle domain recognizes the first base pair of the acceptor stem

Bacterial GatCAB enzymes recognize the U1–A72 base pair of the acceptor stem of Glu-tRNA_{Gln} and Asp-tRNA_{Asn} to discriminate them from Glu-tRNA_{Glu} and Asp-tRNA_{Asp} (11,13). In contrast, archaeal GatCAB does not use the first base pair of the tRNA acceptor stem to distinguish Asp-tRNA_{Asn} from Asp-tRNA_{Asp}, recognizing aa-tRNA species with either a U1–A72 or a G1–C72 base pair (10,13,14). However, the process of distinguishing a U1–A72 base pair from a G1–C72 base pair is not known.

In our GatCAB:tRNA_{Gln} docking model the tRNA_{Gln} acceptor stem U1–A72 base pair is located in the center of the cradle domain in a space constructed by \alpha 3, two internal loops between \beta12–\alpha 3 and \beta13–\beta14, and a 310 turn between \alpha 2–\beta11. The 310 turn is adjacent to the U1–A72 base pair (Figure 4B). This 310 turn is constructed by a hydrogen bond between the main-chain carbonyl oxygen of K183 and amide of E186. Furthermore, M184 in the 310 turn forms a hydrophobic core with L167, L189, C191 and F217, suggesting the 310 turn is fixed with a 3 and b11 by a hydrophobic interaction. In the GatDE enzyme, GatE has a short loop in place of a 310 turn at the corresponding region (Figure 4B and C).

In an alignment of GatB and GatE sequences (Figure 4C), the region including the 310 turn (183–186 in \textit{S. aureus} GatB) is conserved in bacterial GatB sequences, and the corresponding region in archaeal GatB is 1–3 residues shorter, suggesting archaeal GatB has a loop in place of the 310 turn like GatE. The loop region of GatE is well conserved and is rich in positive residues, however the corresponding region in archaeal GatB is not well conserved. The docking model and alignment suggest these structural differences between bacterial GatB, archaeal GatB and GatE may enable the differences in first base pair recognition between the enzymes. In particular, they imply that the 310 turn enables bacterial GatB to distinguish a U1–A72 from a G1–C72 base pair.
The 3₁₀ turn of bacterial GatB is crucial for tRNA\(^{\text{Gln}}\) acceptor helix U₁–A₇₂ base pair recognition

To evaluate the relation between the presence of the 3₁₀ turn in GatB and the specificity of first base pair recognition, we constructed a mutant \(S. \text{ aureus}\) GatCAB enzyme in which the 3₁₀ turn (K183, M184 and E185) is replaced by the short putative loop from \(M. \text{ thermautotrophicus}\) GatB. Based on the multiple sequence alignment (Figure 4C) we also constructed a mutant \(M. \text{ thermautotrophicus}\) GatCAB where the 3₁₀ turn (residues Lys, Met and Glu) is inserted into GatB between residues Gly169 and Glu170. We then tested the transamidase activities (Tables 2 and 3) by the \(^{32}\text{P}\)tRNA/nuclease P1 assay (38) of these mutant GatCAB enzymes with a variety of tRNA substrates.

As expected (10,13,14), wild-type \(S. \text{ aureus}\) GatCAB prefers tRNAs with a U₁–A₇₂ base pair over those with a G₁–C₇₂ base pair, while wild-type \(M. \text{ thermautotrophicus}\) GatCAB has no strong preference (Table 2).

\(S. \text{ aureus}\) Glu-tRNA\(^{\text{Gln}}\) was a poor substrate for wild-type \(M. \text{ thermautotrophicus}\) GatCAB (Tables 2 and 3), like \(B. \text{ subtilis}\) Glu-tRNA\(^{\text{Gln}}\) for unknown reasons (10). However, the transamidase activity of wild-type \(M. \text{ thermautotrophicus}\) GatCAB with wild-type Glu-tRNA\(^{\text{Gln}}\) containing a U₁–A₇₂ base pair was approximately the same as with the G₁–C₇₂ mutant Glu-tRNA\(^{\text{Gln}}\) (0.0035 and 0.0014 s⁻¹, respectively; Table 2); this is in line with previous results archaeal GatCAB (10,13,14).

Deletion of the 3₁₀ turn from \(S. \text{ aureus}\) GatCAB resulted in a mutant enzyme that was 17-fold less efficient than wild-type mostly due to a difference in \(k_{\text{cat}}\) (Table 3), possibly due to the enzyme no longer recognizing the first base pair of the substrate aa-tRNA. However, consistent with our model, the removal of the 3₁₀ turn from the \(S. \text{ aureus}\) GatB resulted in a mutant \(S. \text{ aureus}\) GatCAB that no longer strongly preferred tRNA substrates with a U₁–A₇₂ base pair to those with a G₁–C₇₂ base pair (Tables 2 and 3). For example the mutant \(S. \text{ aureus}\) GatCAB could use the mutant \(S. \text{ aureus}\) Glu-tRNA\(^{\text{Gln}}\) as a substrate about as well as wild-type \(S. \text{ aureus}\) Glu-tRNA\(^{\text{Gln}}\) (0.03 and 0.05 s⁻¹, respectively, Table 2). In addition, the mutant \(S. \text{ aureus}\) GatCAB could use \(M. \text{ thermautotrophicus}\) Asp-tRNA\(^{\text{Asn}}\), with its G₁–C₇₂ base pair, about as well as \(C. \text{ trachomatis}\) Asp-tRNA\(^{\text{Asn}}\) (Table 3). Consistent with our model, the insertion of the 3₁₀ insert into \(M. \text{ thermautotrophicus}\) GatCAB gave a mutant enzyme with preference for tRNA substrates with a U₁–A₇₂ base pair (Tables 2 and 3). The mutant \(M. \text{ thermautotrophicus}\) GatCAB was about as efficient as wild-type \(M. \text{ thermautotrophicus}\) GatCAB using \(S. \text{ aureus}\)

Table 2. Transamidase activity of the \(S. \text{ aureus}\) (\(Sa\)) GatCAB and \(M. \text{ thermautotrophicus}\) (\(Mt\)) GatCAB with different mischarged tRNA substrates

<table>
<thead>
<tr>
<th>aa-tRNA(^{\text{a}})</th>
<th>(Sa) GatCAB(^{\text{b}})</th>
<th>(Mt) GatCAB(^{\text{b}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glut-tRNA(^{\text{Gln}})(^{\text{Gln}})</td>
<td>0.71 ± 0.03</td>
<td>0.05 ± 0.01</td>
</tr>
<tr>
<td>Glut-tRNA(^{\text{Gln}})(^{\text{Gln}})</td>
<td>0.05 ± 0.01</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>Asp-tRNA(^{\text{Asn}})(^{\text{Asn}})</td>
<td>0.05 ± 0.03</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>Glut-tRNA(^{\text{Gln}})(^{\text{Gln}})</td>
<td>0.24 ± 0.01</td>
<td>0.02 ± 0.01</td>
</tr>
</tbody>
</table>

Transamidase activity (s⁻¹)

Measurements were from three separate experiments. Standard deviations are reported. Reactions were carried out at 37°C in the presence of ATP (4 mM), amide donor (4 mM) and aa-tRNA (1.25 mM).

\(^{\text{a}}\)The aa-tRNA substrates tested were the \(S. \text{ aureus}\) (\(Sa\)) wild-type Glut-tRNA\(^{\text{Gln}}\)\(^{\text{Gln}}\) and mutant Glut-tRNA\(^{\text{Gln}}\)\(^{\text{Gln}}\), the wild type of the \(M. \text{ thermautotrophicus}\) (\(Mt\)) Asp-tRNA\(^{\text{Asn}}\)\(^{\text{Asn}}\) and the \(C. \text{ trachomatis}\) (\(Ct\)) Asp-tRNA\(^{\text{Asn}}\)\(^{\text{Asn}}\).

\(^{\text{b}}\)In the reactions, concentrations of the GatCAB indicated [\(Sa\) wild-type (wt) GatCAB, \(Sa\) 3₁₀ turn deleted mutant GatCAB (3₁₀Δ), \(Mt\) wt GatCAB, or \(Mt\) 3₁₀ turn insertion mutant GatCAB (3₁₀ ins)] ranged from 20 nM to 1 μM.

Table 3. Kinetic data for the transamidase activity of the \(S. \text{ aureus}\) and \(M. \text{ thermautotrophicus}\) GatCAB mutants with different mischarged tRNA substrates

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>(Sa) Glut-tRNA(^{\text{Gln}})(^{\text{Gln}})</th>
<th>(Mt) Asp-tRNA(^{\text{Asn}})(^{\text{Asn}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_M) (mM)</td>
<td>(k_{\text{cat}}) (s⁻¹)</td>
<td>(k_{\text{cat}}/K_M) (s⁻¹/mM)</td>
</tr>
<tr>
<td>(Sa) wt</td>
<td>1.80 ± 0.22</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>(Sa) 3₁₀Δ</td>
<td>1.85 ± 0.59</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>(Mt) wt</td>
<td>0.70 ± 0.26</td>
<td>0.006 ± 0.001</td>
</tr>
<tr>
<td>(Mt) 3₁₀ ins</td>
<td>0.97 ± 0.22</td>
<td>0.009 ± 0.001</td>
</tr>
</tbody>
</table>
Glu-tRNA_{Gln}^{Glu} as a substrate (Table 3). However, compared to wild-type *M. thermautotrophicus* GatCAB, the mutant enzyme was 10-fold less efficient with the *M. thermautotrophicus* Asp-tRNA_{GC

In addition, the mutant *M. thermautotrophicus* GatCAB preferred by 10-fold a substrate wild-type *S. aureus* Glu-tRNA_{UA

DISCUSSION

The bacterial GatCAB enzyme uses the first base pair of the acceptor stem and the tRNA D-loop for precise tRNA discrimination (11,13). Our results suggest that the U1–A72 base pair of tRNA_{Asn} and tRNA_{Gln} is conserved only in bacterial GatB and not in *S. aureus* GatCAB, An-tRNA_{Asn} product from deacylation until it will be bound by EF-Tu and transported to the ribosome (42,43). Complexes between ND-GluRS, tRNA_{Gln}, and either Glu-AdT (GatCAB or GatDE) are also predicted to exist (12,42). Formation of these complexes between ND-aaRS, AdT and tRNA may explain why the AdTs recognize the specific identity elements in their tRNA substrates.

The structural models of the transamidosomes predict the ND-aaRS enzyme binds to the acceptor stem and anticodon loop of the tRNA (tRNA_{Gln}^{Glu} or tRNA_{Asn}^{Asp}) (12,42) (Supplementary Figure S7) in the same fashion as they do in the absence of AdT (44,45). This places the tRNA 3'-end into the synthetase active site to be aminoacylated; initially the first base pair of the tRNA's acceptor helix is not accessible to the 310 turn of bacterial GatB in its role to discriminate tRNA isoacceptors. However, the tRNA's tertiary core (including the D-loop) is recognized (Supplementary Figure S7).

Recognition of the D-loop by the AdT tail domain (11,12) may permit the amidotransferases to distinguish the ND-aaRS complexed with their tRNA transamidation substrates (tRNA_{Gln}^{Glu} or tRNA_{Asn}^{Asp}) from other tRNA isoacceptors (tRNA_{Glu}^{Glu} or tRNA_{Asp}^{Asp}) (12–14). For example, GatCAB recognition of the D-loop would enable the AdT to discriminate ND-AspRS bound to tRNA_{Asn} from the aaRS bound to tRNA_{Asp} despite the U1–A72 base pair being initially inaccessible to GatCAB. The variable loop of the tRNA in the transamidosome models is also accessible to the AdT, in particular the Lys rich motif in the tail domain of GatB, which may explain why archaeal GatCAB uses this element to discriminate tRNA_{Asn} from tRNA_{Asp} (13,14).

The transamidosome models (12,42) predict that after aminoacylation the tRNA’s 3’ CCA terminus flips from active site in the ND-aaRS to the kinase active site of the AdT (42), similar to the tRNA movements seen in certain aaRSs with editing domains (46,47). In the case of the transamidosome, this movement enables the aminoacyl-moiety of the mischarged tRNA to be amidated by the AdT in the complex. Once the 3’ end of the acceptor stem flips from the aaRS active site into the transamidase active site of the AdT, the U1–A72 base pair may become accessible to the 310 turn in bacterial GatB.

Recognition of the first base pair by bacterial GatCAB and the archaeal GatDE may be a proofreading step to ensure amidation of the mischarged tRNA substrate (Glu-tRNA_{Gln}^{Glu} and/or Asp-tRNA_{Asn}^{Asp}) and not the properly aminoacylated product of the ND-aaRS (Glu-tRNA_{Glu}^{Glu} or Asp-tRNA_{Asp}^{Asp}). Why this proofreading step is not required by the archaeal GatCAB is unclear, but presumably recognition of the tRNA tertiary core may be enough to ensure that GatCAB amidates Asp-tRNA_{Asn} and not Asp-tRNA_{Asp} (13,14).

It was speculated that the ancestor of GatB and GatE recognized the first base pair of its tRNA substrates (16). However, as the 310 turn in the cradle domain of the *S. aureus* GatB for recognition of the U1–A72 base pair in tRNA_{Gln}^{Glu} is conserved only in bacterial GatB and not in archaeal GatB and GatE, this may not be the case. Instead, the common ancestor of GatB and GatE may not have recognized the first base pair of its tRNA substrate, with bacterial GatCAB and GatDE independently evolving to recognize the first base pair of tRNA. Thus, bacterial GatCAB and GatDE both recognizing the first base pair may have been a case of convergent and not divergent evolution.

ACCESSION NUMBERS

Coordinate and structure factor have been deposited in PDB with accession number 3IP4.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors are grateful to S. Chimnaronk, I. Heinemann, J. Ling and Y. Tanaka for many stimulating discussions, and to T. Tamura (National Institute of Advanced Industrial Science and Technology) for his gift of the *R. erythropolis* expression system. They thank the staff of SPring-8 BL41XU, 40B2 (2009A1119) and 45XU
beam lines for their help during collection of the X-ray data.

FUNDING
A.N. held a Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists. Grants-in-Aid for Scientific Research (19370037 and 21370041 to M.Y.); Targeted Proteins Research Program (to I.T.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; Institute of General Medical Sciences and the US Department of Energy (to D.S.).

Conflict of interest statement. None declared.

REFERENCES

