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Abstract

This paper presents a gradient field representation using ananalytical regularization of a

hypersingular boundary integral equation for a 2-dimensional time harmonic wave

equation called the Helmholtz equation. The regularization is based on cancelation of the

hyper-singularity by considering properties of hypersingular elements that are adjacent

to a singular node. Advantages to this regularization include applicability to evaluate

corner nodes, no limitation for element size, and reduced computational cost compared

to other methods. To demonstrate capability and accuracy, regularization is estimated for

a problem about plane wave propagation. As a result, it is found that even at a corner

node the most significant error in the proposed method is due to truncation error of

non-singular elements in discretization, and error from hypersingular elements is

negligibly small.
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1. Introduction

This paper presents a gradient field representation using ananalytical regularization

of a hypersingular boundary integral equation for a 2-dimensional time harmonic wave

Helmholtz equation. This representation is applicable to avoid fictitious solutions which

appear in an external problem such as a scattering problem. The fictitious solutions are

only found at certain wave numbers which are corresponding to the eigenvalues of a

related interior problem [1–6]. To avoid the fictitious solutions, various techniques have

been presented thus far. At present, the most widely used techniques may be the

techniques demonstrated by Burton and Miller [2]. They adopted a coupled two

independent boundary integral equations. One is a conventional boundary integral

equation (CBIE), in which the field value itself at a point on the boundary are shown as

the boundary integral of which kernel includes fundamentalsolutions. The other is

called a hypersingular boundary integral equation (HBIE) that derived by taking the

normal derivative of the CBIE, in which the normal derivative or the gradient of the field

are represented by the boundary integral. The integrand of HBIE includes the the second

order derivative of the fundamental solution, which has stronger singularity than that of

the CBIE.

An important feature of the HBIE integral is that it includesthe second order

derivatives of the fundamental solution. In case of CBIE, the singularity of the kernel is

removed by analytical integral around singular point. However, in case of HBIE, since

the singularity is stronger than that in CBIE, the hypersingular integral can not be

evaluated without special considerations. Burton and Miller also proposed the double

integral technique to regularize the hyper-singularity. This technique requires more

intensive computational efforts because several computations of double integration are

required. This paper attempts to achieve regularization without use of the double integral

technique.

Previous methods to obtain regularization of hypersingular integrals for second

order partial differential equation are reviewed by Tanaka et al. [7] and Chen et al. [8],

and for the Helmholtz equation are summarized in literatures elsewhere; e.g., by Hwang

[9], Yang [10], and Yan et al. [11]. The regularizations applied in past studies are
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classified into three approaches. The first is a use of tangential derivatives on the

boundary [12–14, 19, 20]. The second approach is a use of the fundamental solution of

the Laplace equation together with that of Helmholtz equation [2, 9–12, 16–18, 20].

Since the singularity of the fundamental solution of Helmholtz equation is same as that

of the Laplace equation, the singularity of the difference of them becomes weakly

singularity. The last scheme is a use of the difference between the field at an internal

point and that on its corresponding boundary point [9, 14–18, 20, 25, 26]; most of these

studies are used together with Taylor series expansion. Thescheme presented in this

paper applies these three schemes. Most of past studies using these techniques are

applied for 3-dimensional problems and some can be applied curved surfaces; however,

almost of them require a smooth boundary. Although this paper presents a scheme of

regularization only for 2-dimensional problems, it is applicable for problems with

corners.

After the regularizations, the singularity of a hypersingular integral becomes a

weakly singular integral. However, to evaluate this integral properly some considerations

are required to ensure accuracy; e.g., Meyer [14] and Chien [18] use sub-divided

elements, Terai [15] has presented an analytical integral,and Yang [10] has used

Fourier-Legendre expansions. This paper presents an analytical representation of

hypersingular integral.

The outline of this paper is as follows. In section 2, the singularities of CBIE and

HBIE are introduced. The regularization of the singularityof HBIE is presented in

section 3. In section 4, a rough estimation of errors in integrals of both hypersingular

elements and regular elements is presented. In section 5, numerical results are

demonstrated for the D’alembert solution to show the error of a gradient field on the

boundary in the HBIE representation. Finally, some remarksare shown in section 6.

2. Representation of gradient field on boundary

A time harmonic scalar waveu(x) at a pointx satisfies the following Helmholtz

equation:

∇2u(x) + k2u(x) = 0, x ∈ Ω, (1)
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wherek indicates the wave number, andΩ represents the spatial domain considered. A

fundamental solutionu∗(x; y) in free space corresponding to this equation satisfies

∇2u∗(x; y) + k2u∗(x; y) = −δ(x − y), (2)

where the differential operator∇ operates only onx, but not ony. Using Green’s second

identity and some integral operations, we can obtain the conventional boundary integral

equation (CBIE),

c(y)u(y) =
∮

Γ

[
u∗(x; y)(∇u(x))·n− u(x)(∇u∗(x; y))·n

]
dΓ

(3)

whereΓ denotes a boundary surroundingΩ, x is the position of the points on the

boundary,y is the position of a field point,n is the outward-pointing normal unit vector,

andc(y) is the result of the following evaluation of Dirac’s delta function.

c(y)u(y) ,

∫

Ω

u(x)δ(x − y) dΩ =
∫

Ω

δ(x − y) dΩ u(y) .

(4)

The coefficientc(y) depends on both the relative position of field pointy and the shape of

boundaryΓ. Wheny is located inside and outside the domain,c(y) evaluates to 1 and 0,

respectively. In the case wherey is located on the boundary,c(y) equals to the ratio of

interior angle∆θ to a whole angle; e.g.,∆θ/2π for 2-dimensional problems.

A 2-dimensional fundamental solution appearing in Eq. (3) is written as a function

of the distance between the source point (i.e., integrationpoint x) and the field pointy

[21],

u∗(x; y) =
1
4 j

H(2)
0 (kr), r = |x − y|, (5)

where j denotes an imaginary unit, and the functionH(2)
0 (kr) is a second kind 0-th order

Hankel function. This solution represents an outward propagating wave with time factor

ejωt assumed. The Hankel functionH(2)
0 (kr) has a singularity atr = 0, with asymptotic

form shown in Eqs. (89)-(91) in Appendix B. In boundary element methods, the

boundary is divided into discrete boundary elements. The distribution ofu and (∇u)·n on
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each element is modeled by means of shape functions, according to a discretization

scheme such as assignment to constant, linear, or higher order elements. By locating the

field pointy at every boundary node, we can obtain simultaneous equations, and

determine the unknown quantities along the boundaries. When y approachesx in a

boundary element, we should pay attention because both integrandsu∗ and (∇u∗)·n are

singular. However, their integral does not diverge. In the case ofu∗ the singularity is only

on the order of logr, and this integral becomesr
(
log r − 1

)
. Since it approaches 0 asr

approaches 0, the singularity disappears. This kind of singularity is called a weakly

singularity. In the case of the other integrand (∇u∗)·n, there is a stronger singularity.

Introducing a unit vector betweenx andy aser , (x − y)/r, we can rewrite the kernel as

(∇u∗)·n = ∂u∗

∂r er ·n. Since the vectorer is perpendicular to the normal vectorn near the

singular pointy, the inner vector product,er ·n, becomes 0; therefore, the singularity also

disappears. Thus, Eq. (3) does not necessitate inclusion ofany singular integrals, and it

requires only attention to ensure the accuracy of integration.

Next, let us consider the gradient of the wave field at the boundary nodes. Taking

the gradient of Eq. (3) with respect to the field pointy, we can obtain the following

equation,

∇y
[
c(y)u(y)

]
=

∮

Γ

[
(∇yu

∗(x; y))(∇u(x))·n

−u(x)(∇y∇u∗(x; y))·n
]

dΓ , (6)

where the∇y means the gradient with respect toy. The respective gradients of both

fundamental solutions,∇yu∗ and∇y∇u∗, show stronger singularities than CBIE

representation in Eq. (3). These singularities cannot be regularized simply because the

aforementioned orthogonality ofn ander does not apply to Eq. (6). This type of

singularity is called a hyper-singularity, and the equation is called hypersingular

boundary integral equation (HBIE).
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3. Regularization of the hypersingular integral related toa gradient field

3.1. Hypersingular term

Since the quantityc(y) in Eq. (4) is not dependent on either the wave numberk or

any field distributions, we can evaluate it by a Laplace equation, which is identical to the

Eq. (1), in terms ofk = 0. Assuming the field is uniform, we can obtainc(y) as the

subsequent boundary integral representation [29], which is called the equi-potential

condition:

c(y) = −
∮

Γ

∇u∗L(x; y)·ndΓ , (7)

whereu∗L is a fundamental solution of the Laplace equation. Substituting this relation

into Eq. (3), we can reduce to the following expression,
∮

Γ

[
q∗(x; y)u(x) − q∗L(x; y)u(y) − u∗(x; y)q(x)

]
dΓ = 0,

(8)

whereq, q∗, andq∗L are the normal derivatives ofu, u∗, andu∗L, respectively. The last term

of the integrand has only a weakly singularity as shown in theprevious section. In

contrast, both the first and the second term have stronger singularities. However, the

singularity of sum of them is canceled as follows. Since, thefundamental solution ofu∗L

can be given as

u∗L = −
1
2π

log r, (9)

the singularity ofu∗L is same asu∗. Therefore, the difference between the fundamental

solutions,

δu∗ , u∗ − u∗L, (10)

has no singularity withO(log r) even ify = x, and it has the highest order term ofO(1).

Thus, the normal derivative ofδu∗ has no singularity, and Eq. (8) is a regular boundary

integral equation. In fact, we can choose theO(1) term of δu∗ so that it will also be

canceled because the constant term in the fundamental solution can be chosen arbitrarily.

In this case we can find that the significant order ofδu∗ aroundr ∼ 0 becomes
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O(r2 log r) from Eqs. (89)-(91) in Appendix B. The regularization scheme has been also

used for HBIE regularization in past studies [2, 9–12, 16–18, 20].

Since Eq. (8) is satisfied for any boundary shapes, we can modify the boundary to

exclude the pointy as shown in Fig. 1. This modification is achieved as follows. First,

the original boundary is divided into two types of boundary sections: the non-singular

boundary section,Γn, and the singular one. Next, the singular boundary section

including the singular pointy is further separated into three sections to excludey: the

first is a part of circle sectionΓε with infinitesimal radiusε, the second isΓa connecting

from one of end points ofΓε to the end point ofΓn, and the last isΓb connecting from the

other end point ofΓε to the other end point ofΓn. The original boundary is redefined

with limiting procedure as

Γ = Γn ∪ lim
ε→0

[Γa ∪ Γb ∪ Γε] . (11)

Taking the gradient with respect toy of Eq. (8), and considering the integral ofq∗L

disappears by Eq. (7) when they is located outside the domain in the configuration, we

can transform the boundary integral equation to
∮

Γ

[
(∇yq

∗)u− (∇yq
∗
L)u(y) − (∇yu

∗)q
]

dΓ = 0. (12)

In the case where the gradient operator with respect toy is applied to the functions that

depend on only the distancer such asu∗ or u∗L, the result is represented by the gradient

with respect tox with an opposite sign because the unit vectors of such functions have an

opposite direction to each other.

∇yu
∗ = −∇u∗ = −

∂u∗

∂r
er , (13)

∇yu
∗
L = −∇u∗L = −

∂u∗L
∂r

er . (14)

In contrast, the gradients of bothq∗ andq∗L are not functions that depend only on the

distance,r, because they also depend on the vector’s inner product,er ·n. However,

considering the relations ofer = (x − y)/r and∇yy·n = n, we can obtain the following

expression,

∇yq
∗ =

(
−
∂2u∗

∂r2
+

1
r
∂u∗

∂r

)
erer ·n−

1
r
∂u∗

∂r
n. (15)
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Sinceu∗ satisfies the following Helmholtz equation expressed in circular polar

coordinates, the second order derivative ofu∗ can be replaced by the first order derivative

and theu∗ itself.

∂2u∗

∂r2
+

1
r
∂u∗

∂r
+ k2u∗ = 0. (16)

Thus, we can obtain∇yq∗; furthermore, puttingk = 0 into the result of∇yq∗, we can also

obtain∇yq∗L as follows:

∇yq
∗ =

(
k2u∗ +

2
r
∂u∗

∂r

)
erer ·n−

1
r
∂u∗

∂r
n, (17)

∇yq
∗
L =

2
r

∂u∗L
∂r

erer ·n−
1
r

∂u∗L
∂r

n. (18)

The three integrals on the left-hand side in Eq. (12) can be written as follows.

I1 ,

∮

Γ

(∇yq
∗)u dΓ

=

∮

Γ

{(
k2u∗ +

2
r
∂u∗

∂r

)
erer ·n−

1
r
∂u∗

∂r
n
}

u dΓ , (19)

I2 , −

∮

Γ

(∇yq
∗
L)u(y) dΓ

= −u(y)
∮

Γ

{
2
r

∂u∗L
∂r

erer ·n−
1
r

∂u∗L
∂r

n
}

dΓ , (20)

I3 , −

∮

Γ

(∇yu
∗)q dΓ =

∮

Γ

∂u∗

∂r
erq dΓ . (21)

The orders of integration kernels in bothI1 andI2 areO(r−2) and that ofI3 is O(r−1) for

the vicinity aroundr ∼ 0.

3.2. Integral along the boundaryΓa andΓb

We assume a linear shaped boundary element forΓa andΓb in Eqs. (19)-(21), with

nodes located at both ends of each element. We also consider that the normal derivative

q = ∇u·n varies linearly within the element, following a linear element discretization

scheme, so thatq can be represented by the following Taylor expansion; similar

formulations to regularization have been applied in [15–18, 20, 22, 23].

q = ∇u·n ∼ (∇u·n)y + rer ·(∇∇u·n)y . (22)
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Since the order ofq is less than that ofu, the distribution ofu should be expressed

including the second order as follows, to ensure the accuracy of q being equivalent to

that ofu.

u ∼ u(y) + rer ·(∇u)y +
r2

2
er ·er ·(∇∇u)y . (23)

In the case where the integration pointx is located on the linear shaped boundaryΓa

or Γb, the unit vectorer = (x − y)/r is identical to the unit tangential vectorτγ, where the

suffix γ denotes eithera or b (see Fig. 1). Sinceτγ is perpendicular tonγ, the vector

erer ·n that appeared at the first term on the right-hand side of Eqs. (19) and (20) vanishes.

The summation of the non-zero integration kernels of Eqs. (19)-(21) is evaluated

using Eqs. (23), (22) and (10), as follows:

−
1
r
∂u∗

∂r
unγ +

1
r

∂u∗L
∂r

u(y)nγ +
∂u∗

∂r
qτγ

=
∂u∗

∂r
(nγ×τγ)×(∇u)y −

1
r
∂ δu∗

∂r
u(y)nγ

+r
∂u∗

∂r

−
1
2

nγ
∂2u
∂τ2

γ

∣∣∣∣∣∣
y

+ τγ
∂2u

∂τγ∂nγ

∣∣∣∣∣∣
y

 , (24)

where the representation of the first term with vector tripleproduct is derived from the

formula (nγ×τγ)×(∇u)y =
(
nγ ·(∇u)y

)
τγ −

(
τγ ·(∇u)y

)
nγ . The order of the singularity of

each term∂u∗

∂r , 1
r
∂ δu∗

∂r , andr ∂u∗

∂r is O(r−1), O(log r), andO(1), respectively. Although the

second term on the right-hand side becomes a weakly singularintegrand, the first term is

still singular.

This singularity of the first term, can be removed by considering the summation of

the integrals ofΓa andΓb. The factor of the singular term contains the vector productof

nγ×τγ. They have mutually opposite signs, and their lengths are same;

nγ×τγ = e3γ =


−e3 : (γ = a)

+e3 : (γ = b)
, (25)

wheree3 is one of the unit vectors in the Cartesian coordinate systemthat is

perpendicular to the 2-dimensional domain under consideration, as shown in Fig. 1.
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Using this property, the singular integral is canceled and the result is easily evaluated:

∑

γ=a,b

∫

Γγ

∂u∗

∂r
(nγ×τγ) dΓ ×(∇u)y

= [−u∗(La) + u∗(Lb)] e3×(∇u)y

= [−u∗(La) + u∗(Lb)] (−e1e2 + e2e1)·(∇u)y , (26)

whereLa andLb represent the size of elementsΓa andΓb, respectively. It should be noted

that the computation of the sum of the integral along the singular elementsΓa andΓb is

obtained solely by evaluations ofu∗ at one end of each element, and it requires no

numerical integrations. Moreover, limitations regardingelement size or smoothness are

not imposed in this formulation; it is applicable for different sizes of boundary elements,

and also applicable for corners. To simplify notations in later discussion we introduce an

abbreviation of a difference operator between a functionf related toΓa and that related

to Γb, as Diff
γ : a−b

[
fγ
]
, fa − fb. The coefficients of(∇u)y on the left-hand side of Eq. (26)

are rewritten as the following dyadic tensor,

←−→
Ca∪b(y) , −Diff

γ : a−b

[
u∗(Lγ)

]
(−e1e2 + e2e1)

=



0 Diff
γ : a−b

[
u∗(Lγ)

]

−Diff
γ : a−b

[
u∗(Lγ)

]
0


. (27)

Next, let us consider the second and third terms on the right-hand side of Eq. (24).

The second order derivatives at the third term can be expressed as a linear combination

of u andq at associated points, which are the singular nodey and its adjacent nodesxγ,

as shown in Eq. (81) and Eqs. (83)-(85) in Appendix A. Also thesecond term is

expressed byu(y) itself. Consequently, the integrals of terms of Eq. (24) are expressed

by u andq but not∇u, so we introduce the following vector definition.

Jγ (u, q) , −

∫ Lγ

0

1
r
∂ δu∗

∂r
dr u(y)nγ

+

∫ Lγ

0
r
∂u∗

∂r
dr

−
1
2

nγ
∂2u
∂τ2

γ

∣∣∣∣∣∣
y

+ τγ
∂2u

∂τγ∂nγ

∣∣∣∣∣∣
y

 . (28)

For the sake of accurate evaluations of both the weakly singular integral and the regular

integral, we can apply the analytical integral shown in Appendix B.
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Thus, the summation of the entire integral alongΓa andΓb is represented as

Ia∪b ,
∑

γ=a,b

3∑

i=1

Ii,γ =
←−→
Ca∪b(y)·(∇u)y +

∑

γ=a,b

Jγ (u, q) . (29)

3.3. Integral along the boundaryΓε

The integration pathΓε can be given byε dθ whereε is an infinitesimal constant,

andθ is the azimuthal angle from the directione1 in the Cartesian coordinate system.

The angleθ varies fromθb to θa with the interior angle∆θ = θa − θb > 0. Sinceer = −nε

is satisfied throughout the path, each of the integrals (Eqs.(19)-(21)) alongΓε is readily

evaluated by applying a similar procedure to that used in thereduction of Eq. (24). The

terms with non-zero values in the integrals are as follows:

I1,ε , lim
ε→0

∫ θa

θb

∂u∗

∂r

∣∣∣∣∣
ε

nε
(
u(y) − εnε ·(∇u)y

)
dθ , (30)

I2,ε , −u(y) lim
ε→0

∫ θa

θb

∂u∗L
∂r

∣∣∣∣∣∣
ε

nε dθ , (31)

I3,ε , − lim
ε→0

∫ θa

θb

(
∂u∗

∂r

∣∣∣∣∣
ε

nεnε ·(∇u)y ε

)
dθ . (32)

Since the singularity of∂ δu
∗

∂r is O(r log r), the coefficient ofu(y) vanishes withε→ 0;

therefore, the summation of these integrals are simplified as

Iε ,

3∑

i=1

Ii,ε = − lim
ε→0

(
ε
∂u∗

∂r

∣∣∣∣∣
ε

) ∫ θa

θb

2nεnε dθ ·(∇u)y. (33)

Furthermore,Iε is a regularized term because the singularity of∂u∗

∂r is O(r−1), and the

coefficient of the integral can be evaluated as

lim
ε→0

(
ε
∂u∗

∂r

∣∣∣∣∣
ε

)
=
−1
2π
. (34)

The vectornε and the dyadnεnε are written in terms of unit vectors in the Cartesian

coordinate system,e1 ande2, as follows:

nε = −er = −(cosθ e1 + sinθ e2), (35)

nεnε = cos2 θ e1e1 + cosθ sinθ(e1e2 + e2e1) + sin2 θ e2e2.

(36)
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Evaluating the definite integral with respect toθ using these equations, we can obtain the

following result:

Iε =
(
Diff
γ : a−b

[
θγ

2π

]
←→
1 + Diff

γ : a−b

[
sin 2θγ

4π

]
(e1e1 − e2e2)

+Diff
γ : a−b

[
− cos 2θγ

4π

]
(e1e2 + e2e1)

)
·(∇u)y

,
←→
Cε(y)·(∇u)y , (37)

where
←→
1 denotes an identical dyadic tensor. The coefficient of

←→
1 is equal to that of

CBIE. The coefficient dyad
←→
Cε(y) is same as that for Laplace equation [22, 23] (note

these references contain a few mistakes in representationsof the coefficients).

Furthermore, Chen et al. [24] shows similar coefficients called free term, but their

representation is given by two normal derivatives with different normal directions at a

corner.

3.4. Regularized boundary integral equation for gradient field

Using Eqs. (29) and (37), the integral equation of the gradient given in Eq. (12) is

expressed by only the regularized terms as follows:

←→
C (y)·∇u(y) = −J (u, q) . (38)

The right-hand side,J (u, q), is composed ofJγ (u, q) andJn (u, q), whereJγ (u, q) is the

regularized result of the hypersingular integral shown in Eq. (28) that is not dependent

on∇u, andJn (u, q) is the integral along the non-singular boundary elements. The

coefficient dyad
←→
C is the regularized result of hypersingular integrals associated with

∇u.

J (u, q) ,
∑

γ=a,b

Jγ (u, q) + Jn (u, q) , (39)

Jn (u, q) ,

∫

Γn

{
(∇yq

∗)u− (∇yq
∗
L)u(y) − (∇yu

∗)q
}

dΓ , (40)

←→
C (y) ,

←→
Cε(y) +

←−→
Ca∪b(y)

=



Diff
γ : a−b

[
2θγ + sin 2θγ

4π

]
Diff
γ : a−b

[
− cos 2θγ

4π
+ u∗(Lγ)

]

Diff
γ : a−b

[
− cos 2θγ

4π
− u∗(Lγ)

]
Diff
γ : a−b

[
2θγ − sin 2θγ

4π

]


.

(41)
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When we can assume that the element sizeLγ is small enough compared to the

wavelength, the
←→
C (y) is a regular matrix as shown in Appendix C. Therefore, the inverse

matrix
←→
C−1(y) can be defined as Eq. (98). Operating the inverse matrix to Eq. (38), the

following equation is derived,

∇u(y) = −
←→
C−1(y)·J (u, q) . (42)

Since the
←→
C−1(y) depends on only the boundary shape and the element size, once the

quantitiesu andq are known, the gradient can be computed by an evaluation of the

right-hand side as an explicit form.

In general problems either one ofu or q on the boundary is given, but not the other.

In this case, taking the scalar product ofnγ(y) and Eq. (42), we can obtain a Fredholm

equation of the second type with respect toq:

qγ(y) = −nγ(y)·
←→
C−1(y)·J (u, q) . (43)

Similarly to CBIE, this equation can be solved after constructing a set of equations

obtained by takingy for every boundary node.

Two kinds of error arise in solving such a set derived from Eq.(43): one is the error

from the regularization of the hypersingular integral equation, and the other is the

rounding error in solving simultaneous equations. In contrast, Eq. (42) only includes

error from the regularization. Since another aim of this paper is estimation of the error

due to the regularization, we will consider the evaluation of Eq. (42) in later sections.

4. Error Estimation

In the section 3 in order to derive the regularized equation of gradient field, we

considered the second order derivatives ofu around the singular point in Eq. (23), and

higher order derivatives were truncated. The error by interpolation using shape functions

in the singular element, which is the error of Eq. (28), results from these truncated terms.

In the integral of non-singular elements defined in Eq. (40) this error is also included. In

this section we will roughly estimate these errors. We classify the error source terms as
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follows,

Jγ

{
∂2
ττu

}
, −

1
2

∫ Lγ

0
r
∂u∗

∂r
dr

∂2u
∂τ2

γ

∣∣∣∣∣∣
y

nγ, (44)

Jγ

{
∂2
τnu

}
,

∫ Lγ

0
r
∂u∗

∂r
dr

∂2u
∂τγ∂nγ

∣∣∣∣∣∣
y

τγ, (45)

Jni {u} ,
∫

Γni

(∇yq
∗)u dΓ , (46)

Jni {q} ,
∫

Γni

−(∇yu
∗)q dΓ , (47)

where the identifiersγ andni show, the singular element (γ ∈ {a, b}) and thei-th

non-singular boundary element, respectively, moreover, the argument in the bracket on

the left-hand side of each equation shows the cause of error,in which∂τ and∂n are

abbreviation of derivative with respect toτ andn, respectively.

In order to facilitate estimation of the error we assume thatu is a plane wave, i.e., a

D’Alembert’s solution, which satisfies the following equations,

∇u+ jku = 0. (48)

The amplitude of this solution can be estimated as follows:

|∇u| = k |u| ,
∣∣∣∂nu

∣∣∣ = k |u| |cosφ| ,
∣∣∣∂τu

∣∣∣ = k |u| |sinφ| ,

(49)

whereφ is the angle between the wave vectork and the normal unit vectorn. The higher

order derivatives satisfy similar relations.

Although the discussions in this section are only focused ona plane wave, it should

be noted that the application can be expanded to the case where the fieldu is expressed

as a sum of plane waves. By considering a plane waveum with wave vectorkm that has

the same magnitude as other plane waves but different directions, the amplitude of a

gradient of the total field can be estimated as the following expanded relation:

u =
M∑

m=1

um, ∇um = − jkmum, |km| = k,

|∇u| =

∣∣∣∣∣∣∣

M∑

m=1

kmum

∣∣∣∣∣∣∣
≤

M∑

m=1

|km| · |um| = k
M∑

m=1

|um|

≤ M kmax
m
|um|. (50)
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4.1. Error due to integral including singular point

Both the errors associated with Eqs. (44) and (45) are mainlyaffected by the errors

of the second order derivatives with the discretization procedure because the integral can

be evaluated with good accuracy by analytical integral expressed as Eq. (88) in

Appendix B. The errors of the second order derivatives of which details are shown in

Appendix D, depend on the geometries: sizes of two singular elements that both include

the singular pointy, and the interior angle∆θ at y. In subsequent discussion, the sizes of

the singular elements are denoted using a parameterα asLγ = L andLγ ′ = αL, where the

subscriptγ is either one ofa or b, andγ ′ is the other one. In terms of the internal angle

we consider two typical cases; a flat boundary (∆θ = π), and a corner with right angle

(∆θ = π/2). The followings are the estimated error ofJγ

{
∂2
ττu

}
andJγ

{
∂2
τnu

}
.

∣∣∣∣∆Jγ

{
∂2
ττu

}∣∣∣∣

∼



(kL)2|1− α|
12π

∣∣∣sin3 φ
∣∣∣ |ku(y)|


∆θ = π and

|1− α| 3 kL

 ,

(kL)3(1+ α3)
48π(1+ α)

∣∣∣sin4 φ
∣∣∣ |ku(y)|


∆θ = π and

|1− α| ≪ kL

 .

(51)
∣∣∣∣∆Jγ

{
∂2
ττu

}∣∣∣∣ =
α(kL)2

12π

∣∣∣cos3φ
∣∣∣ |ku(y)| (∆θ = π/2), (52)

∣∣∣∣∆Jγ

{
∂2
τnu

}∣∣∣∣ =
(kL)2

4π

∣∣∣sin2 φ cosφ
∣∣∣ |ku(y)|


∆θ = π or

∆θ = π/2

 .

(53)

In the case ofLγ = Lγ ′ , by comparing Eq. (51) and Eq. (53), we can find that the error

due to (∂2
τnu)y is larger than the error due to (∂2

ττu)y. Otherwise, the orders of the errors

are same, (kL)2.

The error
∣∣∣∣∆Jγ

{
∂2
ττu

}∣∣∣∣ for the corner shown in Eq. (52) error decreases by taking

smallerα at a glance. However, in the situation of exchangingγ andγ ′, the error

increases because the factorα is replaced by its reciprocal. Since the total integral given

in Eq. (39) includes a sum of the case of (γ, γ ′) = (a, b) and an exchanged case

(γ, γ ′) = (b, a), the factor of the error should be estimated asα + 1/α. Thus, when we
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choose smallerα, the error of the total integral will not become smaller. Furthermore, in

the case ofα ∼ 1 the error for∆θ = π/2 (Eq. (52)) is larger than that for∆θ = π

(Eq. (51)).

4.2. Error due to the non-singular integral

The error due to discretization in integral of non-singularelements appears as well

as the integral of singular elements. Substituting the quantities∇yq∗(x; y) and−∇yu∗(x; y)

toΨ(x; y), and substitutingu(x) andq(x) to f (x), we can reduce to the general form of

the non-singular integral in Eqs. (46) and (47) as follows:

Jni { f } ,
∫ x′′i

x′i

Ψ(x; y) f (x) dΓ , (54)

wherex′i , x′′i are both ends of the non-singular elementΓni andy < Γni .The functionf

can be expanded by a shape functionζ j(x) as follows:

f (x) =
∑

j

f j ζ j(x) + ∆ f (x), (55)

where∆ f (x) means truncated terms in the discretizing procedure. Whenwe can

calculate the first term with good accuracy, the error due to the non-singular integral is

determined by∆ f (x) at the second term;

∆Jni { f } ,
∫ x′′i

x′i

Ψ(x; y)∆ f (x) dΓ . (56)

In the case of linear element, the significant term of∆ f (x) within truncated terms is the

second order derivative off ,

∆ f (x) = ∆ f (2)(x) =
1
2

(x − xi)·(x − xi)·(∇∇ f )xi
, (57)

wherexi =
1
2(x′i + x′′i ). Sinceu is assumed as a D’Alembert’s solution shown in Eq. (48),

the gradient off , where f is eitheru or q = ∇u · n, satisfies∇ f = − jk f . Moreover,

puttingx − xi = lτi, we can obtain the error as,

∆Jni { f } =
− (k·τi)

2 f (xi)
2

∫ +L/2

−L/2
Ψ(xi + lτi; y) l2 dl . (58)

In the case wherel ≪ r i (r i shows distance betweenxi andy), theΨ can be considered as

a constant vector,

∆Jni { f } ∼ −
L3

24
(k·τi)

2 f (xi)Ψ(xi; y). (59)
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SinceΨ increases with decreasingr i, the error from the non-singular element near the

singular pointy becomes significant. When we consider the case wherer i ≪ 1/k, the

fundamental solutionΨ, i.e.,∇yu∗ or∇yq∗ given by Eqs. (13) and (17) are reduced

approximately as follows:

∇yu
∗ = −er

∂u∗

∂r
∼ eri

1
2πr i

, (60)

∇yq
∗ =

(
k2u∗ +

2
r
∂u∗

∂r

)
(ni ·er)er −

1
r
∂u∗

∂r
ni

∼ −
2eri

(
ni ·eri

)
− ni

2πr2
i

= −
ni cos 2ψi + τi sin 2ψi

2πr2
i

, (61)

where cosψi = ni ·eri , sinψi = τi ·eri . Introducingβ asβ = r i/L and substituting the above

equations and Eq. (49) into Eq. (59), we can finally estimate the error due to the

non-singular integral as follows:

∣∣∣∆Jni {q}
∣∣∣ ∼

(kL)2
∣∣∣sin2 φ cosφ

∣∣∣
48βπ

|ku(xi)| , (62)

∣∣∣∆Jni {u}
∣∣∣ ∼

kL
∣∣∣sin2 φ

∣∣∣
48β2π

|ku(xi)| . (63)

These errors become larger for smallerβ. Since
∣∣∣∆Jni {u}

∣∣∣ is only proportional to the first

order ofkL, it becomes larger than the error due to the singular integral shown in the

previous subsection.

4.3. Total error of the gradient field

In the above subsections we have shown the estimation of the error due to the

discretization for components ofJ. The total error of the gradient field∇u is estimated

by operating
←→
C−1 on the sum of the errors of the components:

∆ {∇u} , −
←→
C−1·∆J, (64)

∆J ,
∑

γ=a,b

[
∆Jγ

{
∂2
ττu

}
+ ∆Jγ

{
∂2
τnu

}]

+
∑

i

[
∆Jni {u} + ∆Jni {q}

]
. (65)

Since the component of∆J is generally unknown, we apply the norm of the inverse
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matrix to estimate the total error.

∣∣∣∆ {∇u(y)}
∣∣∣ =

∣∣∣∣∣
←→
C−1
∆J

∣∣∣∣∣ ≤
←→
C−1

∣∣∣∆J
∣∣∣ , (66)

←→
C−1 =

1∣∣∣∣det
←→
C

∣∣∣∣

(∣∣∣∣∣
∆θ

2π

∣∣∣∣∣ +
∣∣∣∣∣Diff
γ : a−b

[
u∗(Lγ)

]∣∣∣∣∣ +
∣∣∣∣∣
sin∆θ

2π

∣∣∣∣∣
)
,

(67)

where the estimation of the norm
←→
C−1 is shown in Appendix C. The total error is

magnified by this norm. Results of some typical cases are shown in bellow.

(
∆θ = π

) ←→
C−1 ≤

2

(
1+

∣∣∣∣∣2Diff
γ : a−b

[
u∗(Lγ)

]∣∣∣∣∣
)

∣∣∣∣∣∣∣
1+

(
2Diff
γ : a−b

[
u∗(Lγ)

])2
∣∣∣∣∣∣∣

,


∆θ = π

La = Lb


←→
C−1 = 2,

(
∆θ =

π

2

) ←→
C−1 ≤

4π

(
π + 2+ 4π

∣∣∣∣∣Diff
γ : a−b

[
u∗(Lγ)

]∣∣∣∣∣
)

∣∣∣∣∣∣∣
π2 − 4+ 16π2

(
Diff
γ : a−b

[
u∗(Lγ)

])2
∣∣∣∣∣∣∣

,


∆θ =

π

2
La = Lb


←→
C−1 ≤

4π
π − 2

.

(68)

In the case ofLa = Lb, we can find that the norm for∆θ = π is 2, while the maximum of

the norm for∆θ = π/2 is almost 11. This result suggests that the error for a corner with

right angle in the worst case is magnified about 5 times largerthan that for smooth

boundary.

5. Numerical Result

In order to show the error of hypersingular integral in the proposed regularization,

let us consider the case where true solution is given in wholedomain. We adopt the

following plane wave without scattering as the true solution ũ to compare the

computational error of the hypersingular integral equation with the rough estimation
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discussed in the section 4;

ũ(x) = u0e
− jk·x, (69)

whereu0 is complex amplitude andk is a real wave vector. The true boundary values at

boundary nodesxi consisting of the field̃u(xi) and its normal derivatives̃q(xi) can be

readily obtained. Substituting these boundary values tou(xi) andq(xi) on the right-hand

side of Eq. (42), we can evaluate the gradient at the boundarynodes,∇u(xi), as an

explicit form. The reference of gradient at the boundary nodes is derived directly from

the true field in Eq. (69) as∇ ũ(xi) = − jk ũ(xi). The error of the gradient is defined as the

difference of these gradients.

Since both of the results,∇u by numerical integral and∇ ũ by the reference, are

dependent on position, it is difficult to fully capture the error. However, by normalizing

the gradient with respect to the field itself, the true gradients can be converted to a

position independent quantity. Similarly, the numerical gradient is normalized by the

field as follows.

ẽk ,
∇ ũ
− j|k| ũ

=
k
|k|
, ek ,

∇u
− j|k| ũ

. (70)

The results shown below are represented in terms of these normalized differences,

∆ek , ek − ẽk. (71)

The aim of this section is to demonstrate the error dependencies with respect to

element size, the effect of corners, and the effect of uneven sized elements. A

two-dimensional model to demonstrate them is shown in Fig. 2. There are two different

configurations of boundary elements and nodes:

Even-type configurations: The nodes are placed with even interval, i.e., the size of

every element is same.

Uneven-type configurations: By appending two additional nodes to the even-type

configuration at the bottom side and adjacent to the upper-right corner, two original

elements are replaced by 4 smaller elements, sized half thatof original ones.
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The size of standard element,L, and the direction,φk, are changed, but the dimension of

the region,D, and the wavelength,λ, are fixed asD = 0.8[m], λ = 0.1[m]. Instead of the

element sizeL, the error dependency of element size is shown byN, representing the

number of elements in a wavelength, i.e.,N = λ/L. Gauss’ 4 points quadrature formula

[29, 30] is applied to the numerical integral for non-singular elements. Notably, we also

examined use of 8 points quadrature, but no significant difference was found. This

indicates that the error due to numerical integration is sufficiently small compared to the

error due to other effects such as truncations of higher derivatives.

In addition, to avoid ambiguity of the direction of the normal unit vectorn at the

corners, we employed a double node technique with zero distance for the corner nodes

[27, 28], in which each corner node has three variables; one field u, and two normal

derivatives for different directionqγ andqγ ′.

5.1. Error properties for even-type configuration

Figure 3 shows the difference vector,∆ek, with N = 10 for the even-type

configuration for differentφk. It is found that the error at a corner is larger than that on

the sides, and its magnitude at such a corner reaches almost 10% of true solutions.

From the result ofφk = 0 symmetrical error with respect to the horizontal axis

(ξ2 = 0) is found. However, symmetry with respect to the vertical axis (ξ1 = 0) cannot be

found. It may appear counterintuitive; however, it is not a wrong result. The reason for

these results is the difference of the nature between the terms (∇yu∗)q and (∇yq∗)u in the

integrand in Eq. (40). The symmetrical nature of the∇yu∗ and∇yq∗ can be evaluate by

Eqs. (13) and (17). In the case where the symmetrical axis is the horizontal axis (ξ2 = 0),

each the (∇yu∗)·e1, (∇yq∗)·e1, u andq has even symmetry, and each of the (∇yu∗)·e2,

(∇yq∗)·e2 has odd symmetry. Therefore, the above-mentioned difference in Eq. (40),

(∇yu∗)q− (∇yq∗)u, which is the integrand ofJ, has even and odd symmetry for horizontal

and vertical component, respectively. In contrast, in the case where the symmetrical axis

is the vertical axis (ξ1 = 0), although the gradients have similar natures, the natures ofu

andq have neither even or odd symmetry;u at symmetrical point is equal to the complex

conjugate ofu at the original point, and in terms ofq we have the complex conjugate

with opposite sign. Thus, there is no symmetry with respect to the vertical axis. In the
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case whereφk = π/4, shown in the bottom two graphs in Fig. 3, a symmetry with respect

to the line ofξ1 = ξ2 is observed. This is caused by the symmetry of all the quantities of

u, q, ∇yu∗, and∇yq∗.

Figure 4 shows error dependencies of element size. It is found that the error

decreases with increasingN, which is equivalent to decrease of the size of elementL.

For almost all of the results the dependency ofN obeys a 1/N law, which agrees with the

discussions in the section 4. The significant error is the error due to the non-singular

integral∆Jni {u} shown in Eq. (63). Some exceptions are found in cases where the field

node is located around the center of the left-side or right-side forφk = 0, in which the

dependency shows 1/N2. In these cases, the error due to the truncation of higher order

derivatives in the representation of field on the left- or right-hand side of the boundary

disappears, because the wave front of the propagation wave is parallel to each side, over

which both theu andq are uniform. Therefore, the error∆Jni {u} from non-singular far

element on top- or bottom side, (r i > 4λ), becomes significant. Since the error in

Eq. (63) is a consequence of the assumption ofl ≪ r i ≪ 1/k, we can not use the

estimation. However, it can be estimated directly by substituting the second of Eq. (61)

into Eq. (59). In the case whereni ·eri ∼ 0, it is
∣∣∣∆Jni {u}

∣∣∣ = (kL)2|sin2 φ|
24β

∣∣∣u(xi)∂u∗

∂r

∣∣∣, which is

proportional to 1/N2.

We can also draw some conclusions of the errors around corners from the result

shown at the right-hand side column of Fig. 4. For the case of sufficiently fine element

resolution (e.g.,N = 100) the errors at the corner nodes are larger than that at adjacent

nodes, for which distance from the corner isL. It depends on theφk. In the case of

φk = 0 their ratio is almost 4, and in the case ofφk = π/4 they are almost same. This

result agrees with the discussion in the section 4.3; i.e., the error at the corner that is

induced from the the norm
←→
C−1 grows almost 5 times larger than that on flat

boundary in the worst case. The reason why the errors are almost equals in the case of

φk = π/4 can be also explained by previous analysis in terms of symmetry. The growth

factor
←→
C−1, and the maximum norm of

←→
C−1 is evaluated by the right-hand side of Eq. (99)

in Appendix C. If the error vector∆J multiplied to
←→
C−1 is known, the error growth can

be estimated precisely using Eq. (98). The significant errorat every corner is∆Jni {u} as
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discussed above, which magnitude and direction are shown inEqs. (63) and (61),

respectively. There are two dominant elements within this error source: namely the two

non-singular elements adjoining to two singular elements,where the normal vectors

point in different directions. Estimating sum of them for two corners (upper-right and

upper-left), we can find that both the absolute magnitudes oferror are same but the

directions of the error vectors are different each other. The vector component satisfies,

respectively,∆J · e1=∆J · e2 and∆J · e1=−∆J · e2 for the upper-right corner and for

the upper-left corner. Using these relations the norm of
←→
C−1 can be evaluated. The norms

at both corners forφk = π/4 become

←→
C−1 =

←→
C−1·∆J

∆J
=

4π
π + 2

∼ 2.4. (72)

This result is almost equal to the norm for∆θ = π, which is equal to 2 as shown in

Eq. (68).

5.2. Error properties for the uneven-type configuration

Figure 5 shows the effect in the case where smaller sized elements are included.

Although the uneven-type configuration uses smaller sized elements, the growth of error

is found from a comparison of the zoomed graphs around the replaced elements. The

growth is not limited to only this example. The detail results are not shown here, but we

have obtained that the amplitude each error obeys 1/N as similar to the case of even-type

configuration shown in Fig. 4. It means that the significant error is∆Jni {u} shown in

Eq. (63) even in the case of uneven-type configuration. The error at the additional node

on the bottom side is almost twice as large as neighboring ones. Although the element

size of the singular element is reduced by appending a new node, the size of the

non-singular elementL is not changed. However, sinceβ appeared in the denominator in

the equation is proportional to the distance between the center of the element and the

singular node, theβ does become smaller by appending the new node. It meansβ = 3/2

for the even-type configuration, andβ = 1 for the uneven-type configuration. Thus, the

error from the non-singular element which connects to the singular elements increases

by appending the new node. From Eq. (63), the growth of∆Jni {u} by appending the new

node is estimated as 9/4 times larger than the even-type configuration.
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The error near a corner is similar to the case where the additional node is located on

the bottom side. The error at the additional nodes has largererror than that at the

adjacent node located opposite to the corner node. At the corner node a little

improvement is gained. The dominant error at the corner is caused by the∆Jni {u} from

horizontal side as discussed in the previous subsection. Since the element with the most

significant error is the one adjacent to the additional node that is opposite to the corner,

the element size becomes half of the size of the original element andβ is same as the

original configuration. Thus, the error from this element decreases. Note that the error is

not reduced to exactly half, since the error from the other elements is not reduced.

From the above discussion we can conclude that when the configuration contains

uneven sized elements even if their sizes are finer than the other even sized elements, it

may still result in larger error around them.

5.3. Error reduction around the corner

As discussed above, the errors at corners are generally larger than at other nodes.

Furthermore, replacement of an element around corner to several smaller sized elements

induces a larger error in the areas around the corners. However, it does afford a little

improvement exactly on the corner nodes. To reduce the errorat the corner nodes, we

evaluated two configurations. One is a gradual size-variation configuration. In this

configuration, the element adjacent to the corner node on either side is replaced by four

smaller elements with a quarter size of the original element; moreover, the next

consecutive element following this replaced element is also replaced two half-sized

elements. In the other configuration the two elements adjacent to the corner node are

replaced by eight quarter-sized elements on each side, i.e., the number of new fine

elements is sixteen. Both of these results are shown in Fig. 6, together with the result of

the original even-type configuration. The results of both new configurations demonstrate

the error reduction at the corner. However, the errors at theadditional nodes are

relatively larger than the errors on the side near the corner. The growth of the error on

the side in the case of gradual size varying is smaller than that of the replacement by

eight quarter-sized elements on each side. These results agree with the results discussed

in the above subsections.
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6. Conclusion

This paper shows the regularization of the hypersingular term that appears in the

gradient representation of a boundary integral equation for a 2-dimensional Helmholtz

equation. Since this regularization is achieved by an analytical approach and it does not

use the double integral technique [2], a computational costmay be significantly reduced.

Moreover, this regularization is applicable even if the nodes include corner locations or

if the size of elements is non-uniform. This paper also showsthat the error from this

regularization in terms of linear elements is estimated roughly by separation into the

error from the singular elements and that from non-singularelements. The

computational result from evaluated examples demonstrates that the calculated errors are

in agreement with the roughly estimated error. The error caused by the hypersingular

element regularized in the proposed method is negligibly small in comparison to the

non-singular element. The dominant non-singular error decreases with increasing of the

number of elements,N, such that the total error is proportional to 1/N. When some

nodes are modified by appendage of evenly sized boundary elements, the properties of

the error vary according to the location of the appended nodes. In the case where the

additional node is located on a flat boundary, in which the size of two adjacent boundary

elements to the node are different, the error increases in spite of the reduced boundary

size. In the case where the additional node is located in the vicinity of a corner, the error

at the corner decreases, but the error at adjacent nodes along a flat boundary increases. In

order to reduce the error effectively by the regularization technique proposed in this

paper, it is recommended to use even sized elements for flat boundaries, and for corner

areas to employ a configuration of gradual variation of element sizes.

A. Representation of the second order derivative of the fieldat the singular point

The purpose of this appendix is to reformulate the two secondorder derivatives in

Eq. (28) as the linear combination ofu andq at the singular pointy or at adjacent nodes.

The two variables that should be represented finally are∂2u
∂τγnγ

∣∣∣∣
y

and ∂2u
∂τ2

γ

∣∣∣∣
y

whereγ is a or b

and the unit vectorsnγ, τγ are shown in Fig. 1. Let us labelγ ′ which expresses

associated quantities with the opposite side of the boundary Γγ to y. Notice that (γ, γ ′)
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can be taken as either pair (a, b), or (b, a); however, their identification is not important

because no quantities dependent on the difference between them are found in the

following formulation.

We assume the second derivative ofu is defined at a pointx located on each

boundary element, and derivatives of third or higher ordersare negligibly small.

Accordingly, the Taylor expansion aroundy can be given as follows.

u(x) ∼ u(y)+ (x − y)·(∇u)y

+
1
2

(x − y)·(x − y)·(∇∇u)y . (73)

Since the quantityq has been already applied to the differential operator, the Taylor

expansion is represented up to the first order.

qγ(x) ∼ qγ(y) + (x − y)·
(
∇qγ

)
y
, (74)

whereqγ = ∇u·nγ.

The relation between the pairs of unit vectors (τγ, nγ) and (τγ ′ , nγ ′) are represented

by the internal angle∆θ at the singular pointy. The following inner products are

corresponding to the components of the coordinate transform matrix,

Tτ′τ , τγ ′ ·τγ = cos∆θ, Tτ′n , τγ ′ ·nγ = − sin∆θ,

Tn′τ , nγ ′ ·τγ = − sin∆θ, Tn′n , nγ ′ ·nγ = − cos∆θ.

(75)

The derivative operators can be transformed by the coordinate transform matrix between

(τγ, nγ) system and (τγ ′ , nγ ′) given by the following derivative operators.


∂τ′

∂n′

 =


Tτ′τ Tτ′n

Tn′τ Tn′n




∂τ

∂n

 =


Tτ′ j∂ j

Tn′ j∂ j

 , (76)

where the notation of∂α is an abbreviation of∂
∂α

. Moreover, the summation symbol with

respect toj for τ, n is omitted in the final notation.

The position vectorsxγ andxγ ′ are expressed by the unit tangential vectorsτγ of Γγ,

as well as the vectorsτγ ′ of Γγ ′,

xγ − y = Lγτγ, xγ ′ − y = Lγ ′τγ ′ , (77)
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whereLγ andLγ ′ denote the size ofΓγ andΓγ ′ , respectively.

The result of expansion ofu(xγ) can be written simply as

u(xγ) ∼ u(y) + Lγ(∂τu)y +
L2
γ

2
(∂2

ττu)y. (78)

The second derivative at the last term is the variable to be solved, while bothu(xγ) and

u(y) are the variables in the final expression of a linear combination.

In the case ofu(xγ ′) the derivative operator is replaced by the transform matrix in

Eq. (76), and then the expansion is written as,

u(xγ ′) ∼ u(y) + Lγ ′(∂τ′u)y +
L2
γ ′

2
(∂2

τ′τ′u)y

= u(y) + Lγ ′
(
Tτ′τ(∂τu)y + Tτ′n(∂nu)y

)

+
L2
γ ′

2

(
T2
τ′τ(∂

2
ττu)y + 2Tτ′τTτ′n(∂

2
τnu)y + T2

τ′n(∂
2
nnu)y

)
.

(79)

In this equation the variable (∂nu)y is identical toqγ(y),

(∂nu)y = qγ(y). (80)

Taking a tangential derivative of this equation, we obtain the other second derivative

(∂2
τnu)y that is one of the variable to be represented finally,

(∂2
τnu)y =

∂2u
∂τγnγ

∣∣∣∣∣∣
y

=
∂qγ
∂τγ

∣∣∣∣∣∣
y

∼
qγ(xγ) − qγ(y)

Lγ
. (81)

The relation between the quantities (∂2
nnu)y and (∂2

ττu)y can be given by a Helmholtz

equation, because the sum of these quantities equals the Laplacian,

(∂2
nnu)y + (∂2

ττu)y + k2u(y) = 0. (82)

Eliminating the derivatives except (∂2
ττu)y from five independent equations

Eqs. (78)-(82), we can represent the (∂2
ττu)y using a linear combination form,

(∂2
ττu)y =

∂2u
∂τ2

γ

∣∣∣∣∣∣
y

=
∑

i

W fi
γ fi, (83)

where fi denotes one of the quantitiesu andqγ at y, xγ andxγ ′ ,

fi ∈
{
u(y), u(xγ), u(xγ ′), qγ(y), qγ(xγ)

}
, (84)
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and, each factor forfi is obtained as follows.



W
u(xγ)
γ

Wu(y)
γ

W
u(xγ ′ )
γ

W
qγ(xγ)
γ

W
qγ(y)
γ



=
1
D



−2Lγ ′ cos∆θ

+2Lγ ′ cos∆θ − 2Lγ
(
1−

(kLγ ′ )
2

2 sin2
∆θ

)

+2Lγ

+L2
γ ′ sin 2∆θ

−L2
γ ′ sin 2∆θ + 2LγLγ ′ sin∆θ



,

D = LγLγ ′(Lγ ′ cos 2∆θ − Lγ cos∆θ). (85)

These factors depend on the quantity∆θ as well as the sizes of elements.

B. Analytical representation of integrals appeared in the singular element

The purpose of this appendix is to show the analytical representation of the two

integrals in Eq. (28). A numerical integral is obtainable because these integrals are

regular or weakly singular. However, analytical representation is useful to improve the

accuracy and to understand the nature of the integrals.

The second integral in Eq. (28) is transformed to the following relation by partial

integration,
∫ Lγ

0
r
∂u∗

∂r
dr = [ru∗]r=Lγ −

∫ Lγ

0
u∗ dr

=
Lγ
4 j

H(2)
0 (kLγ) −

1
4 j

∫ Lγ

0
H(2)

0 (kr) dr , (86)

where the second term has a weakly singularity. This integration is given by Struve

function,Hn(x) [30],
∫ x

0
H(2)

0 (x) dx= xH(2)
0 (x)

+
πx
2

(
H0(x)H(2)

1 (x) − H1(x)H(2)
0 (x)

)
. (87)

Since the first term of the integral of Eq. (86) and the first term of Eq. (87) are canceled,

the integral of Eq. (86) is reduced to
∫ Lγ

0
r
∂u∗

∂r
dr =

jπLγ
8

(
H0(kLγ)H

(2)
1 (kLγ)

−H1(kLγ)H
(2)
0 (kLγ)

)
. (88)
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The integer order of the Hankel function,H(2)
n (x), and the Struve function,Hn(x), are

given by the following infinite series.

H(2)
n (x) = Jn(x) − jYn(x), (89)

Jn(x) =
( x
2

)n ∞∑

m=0

anm

( x
2

)2m

, (90)

Yn(x) =
−1
π

n−1∑

m=0

(n−m− 1)!
m!

( x
2

)2m−n

+
2
π

log
x
2

Jn(x)

−
1
π

∞∑

m=0

(ψm+1 + ψn+m+1)anm

( x
2

)2m+n

, (91)

anm =
(−1)m

m! (n+m)!
, ψm+1 = −γ +

m∑

l=1

1
l
, (92)

Hn(x) =
( x
2

)n+1 ∞∑

m=0

(−1)m

Γ
(
m+ 3

2

)
Γ
(
n+m+ 3

2

)
( x
2

)2m

,

(93)

whereγ is the Euler constant, andΓ represents the Gamma function. In the case of

kLγ ≪ 1 the infinite series converges rapidly. The integral aroundkLγ ∼ 0 can be

approximated as

∫ Lγ

0
r
∂u∗

∂r
dr ∼

−Lγ
2π

, (kLγ ∼ 0). (94)

Similarly, the other integral in Eq. (28) that is a weakly singular integral can be

represented without any singularity using Eqs. (89)-(92),

∫ Lγ

0

1
r
∂ δu∗

∂r
dr =

∫ Lγ

0

1
r

(
−k
4 j

H(2)
1 (kr) −

−1
2πr

)
dr

=
−k
4 j

∞∑

m=0

a1m

2m+ 1

(
kLγ
2

)2m+1

·

1+
j
π

ψm+1 + ψm+2 +
1

m+ 1
2

− 2 log
kLγ
2


 . (95)

C. Inverse matrix of the coefficient matrix

To ensure the existence of an inverse matrix of
←→
C the determinant of

←→
C must not

be 0. The evaluation of the determinant is shown in this appendix. Both the differences
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Diff
γ : a−b

[
sin 2θγ

]
and Diff

γ : a−b

[
cos 2θγ

]
in the definition of

←→
C (Eq. (41)) are reduced to the

following relation,


Diff
γ : a−b

[
sin 2θγ

]

Diff
γ : a−b

[
cos 2θγ

]


= 2 sin∆θ


cos 2θ0

− sin 2θ0

 , θ0 =
θa + θb

2
.

(96)

Using this relation the determinant of
←→
C is represented as

det
←→
C =

1
4π2

(
(∆θ)2 − sin2

∆θ
)
+

(
Diff
γ : a−b

[
u∗(Lγ)

])2

=
1

4π2

(
(∆θ)2 − sin2

∆θ
)

+



(
ℜ

{
Diff
γ : a−b

[
u∗(Lγ)

]})2

−

(
ℑ

{
Diff
γ : a−b

[
u∗(Lγ)

]})2


+2 jℜ

{
Diff
γ : a−b

[
u∗(Lγ)

]}
ℑ

{
Diff
γ : a−b

[
u∗(Lγ)

]}
. (97)

The first and second terms on the right-hand side are real numbers. In contrast, the last

term is a pure imaginary number. In order to satisfy the condition that the determinant is

not equal to 0, either the real or the imaginary part must havea non-zero value. The first

term is always positive. The second term depends onLγ. In general, the element size is

chosen as a size sufficiently small compared to the wave length, i.e.,Lγ ≪ 1/k. In this

case the fundamental solutionu∗(Lγ) has a larger real part than its imaginary part;

therefore, the second term has also a positive real number. Since the real part of the

determinant given by the sum of the first term and the second term is a positive number,

hence the determinant has a non-zero value and we can conclude that
←→
C has an inverse

matrix in the caseLγ ≪ 1/k.

The inverse matrix
←→
C−1 can be readily obtained from Eq. (41) and Eq. (96) as

follows:

←→
C−1 =

1

det
←→
C





∆θ

2π
−Diff
γ : a−b

[
u∗(Lγ)

]

+Diff
γ : a−b

[
u∗(Lγ)

] ∆θ

2π



+
sin∆θ

2π


− cos 2θ0 − sin 2θ0

− sin 2θ0 + cos 2θ0




. (98)
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Since the second matrix in the square bracket is an orthogonal matrix, the second

order norm becomes unity. Taking a maximum norm for the first matrix, we can obtain

the following relation.

←→
C−1 ≤

1∣∣∣∣det
←→
C

∣∣∣∣

(
|∆θ| + |sin∆θ|

2π
+

∣∣∣∣∣Diff
γ : a−b

[
u∗(Lγ)

]∣∣∣∣∣
)
. (99)

D. Error due to truncated terms of the singular element

D.1. In the case of the node on flat boundary

Since the second order derivatives ofu in Eqs. (44) and (45) are represented using

the quantitiesu andq at the singular nodey, as well as adjacent nodes,xγ andxγ ′, as

shown in Appendix A, the third or higher derivatives cause error of truncation. To

estimate the error due to the truncation we must estimate thethird derivative. However,

since there is a case where the third derivative vanishes under a certain condition, we

also consider the fourth derivative.

In the case of a flat boundary (∆θ = π), the factors of coordinate transform matrix in

Eq. (76) are given by Eq. (75) as follows:

Tτ′τ = −1, Tn′n = +1, Tτ′n = Tn′τ = 0. (100)

From these factors the fourth order of the Taylor expansionsat the nodes,xγ andxγ ′,

around the singular node,y, are obtained as follows:

u(xγ) ∼ u(y) + L(∂τu)y +
L2

2
(∂2

ττu)y

+
L3

6
(∂3

τττu)y +
L4

24
(∂4

ττττu)y, (101)

u(xγ ′) ∼ u(y) − αL(∂τu)y +
(αL)2

2
(∂2

ττu)y

−
(αL)3

6
(∂3

τττu)y +
(αL)4

24
(∂4

ττττu)y, (102)

where sizes of elements are set asLγ = L andLγ ′ = αL. Eliminating (∂τu)y and
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rearranging with respect to (∂2
ττu)y, we can obtain the following representation of (∂2

ττu)y.

(∂2
ττu)y ∼

2
(
αu(xγ) − (1+ α)u(y) + u(xγ ′)

)

α(1+ α)L2
+ ∆

(3)
∂2
ττu
+ ∆

(4)
∂2
ττu
,

(103)

∆
(3)
∂2
ττu

, −
L(1− α)

3
(∂3

τττu)y, (104)

∆
(4)
∂2
ττu

, −
L2(1+ α3)
12(1+ α)

(∂4
ττττu)y, (105)

where the variable shown as∆(n)
f represents the truncated term for some functionf

associated withn-th order of derivative. In the case ofα = 1, the error due to the third

derivative vanishes and the fourth one becomes dominant.

In contrast, the derivative ofq is simpler because it can be given by only the Taylor

expansion atu(xγ). The Taylor expansion ofq using third derivative ofu, which is

equivalent to the second derivative ofq, is given as

qγ(xγ) ∼ qγ(y) + L(∂τqγ)y +
L2

2
(∂2

ττqγ)y, (106)

whereqγ = ∇u·nγ. Rearranging about (∂τqγ)y, we can estimate the error of truncation of

qγ as follows:

(∂τqγ)y ∼
qγ(xγ) − qγ(y)

L
+ ∆

(3)
∂2
τnu

(107)

∆
(3)
∂2
τnu

, −
L
2

(∂2
ττqγ)y = −

L
2

(∂3
ττnu)y. (108)

D.2. In the case of the node at a corner with a right angle

This case (∆θ = π/2) is simple because the third derivative ofu is not canceled.

Since the factors of geometry are given as

Tτ′τ = Tn′n = 0, Tτ′n = Tn′τ = −1, (109)

the Taylor expansion ofu at xγ ′ is given as follows:

u(xγ ′) ∼ u(y) −αL(∂nu)y +
(αL)2

2
(∂2

nnu)y

−
(αL)3

6
(∂3

nnnu)y. (110)
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The normal derivative (∂nu)y at the second term is identical toqγ(y), and also (∂2
nnu)y at

the third term can be represented by (∂2
ττu)y using Eq. (82). Consequently, (∂2

ττu)y is

reduced as follows:

(∂2
ττu)y ∼

2
((

1− (kαL)2

2

)
u(y) − u(xγ ′) − αLqγ(y)

)

(αL)2
+ ∆

(3)
∂2
ττu

(111)

(∂2
ττu)y ∼ ∆

(3)
∂2
ττu

, −
(αL)

3
(∂3

nnnu)y. (112)

In terms of the tangential derivative ofqγ we can derive the same relation to that in

the case of the flat boundary shown in Eq. (107).

32



References

[1] Schenck HA. Improved integral formulation for acousticradiation problems.

J. Acoustical Soc. America 1968; 44(1):41-58.

[2] Burton AJ. Miller GF. The application of integral equation methods to the

numerical solution of some exterior boundary-value problems. Proc. Royal Society

of London. Series A 1971; 323:201-210

[3] Ursell F. On the exterior problems of acoustics. Proc. Cambridge Philosophical

Society 1973; 74:117-125.

[4] Tomioka S. Enoto T. Removal of spurious solutions in boundary element method

analysis for Fabry-Perot resonator containing another medium. Trans. Institute of

Electrical Engineers of Japan 1993; 113-A(8):572-579 (Japanese).

[5] Tomioka S. Enoto T. Fukai I. Removing spurious solutionsin boundary elemental

method for multimedia problems using virtual boundary dividing method. Int. J. of

Applied Electromagnetics in Materials 1994; Suppl. 5:357-360.

[6] Chen JT. Chen IL. Chen KH. Treatment of rank-deficiency inacoustics using SVD.

J. Comp. Acoustics 2006; 14(2):157-183.

[7] Tanaka M. Sladek V. Sladek J. Regularization techniquesapplied to boundary

element method. Appl. Mech. Reviews 1994; 47(10):457-499.

[8] Chen JT. Hong H-K. Review of dual boundary element methods with emphasis on

hypersingular integrals and divergent series. Appl. Mech.Reviews 1999;

52(1):17-33.

[9] Hwang WS. Hypersingular boundary integral equations for exterior acoustic

problems. J. Acoust. Soc. Am. 1997; 101(6):3336-3342.

[10] Yang SA. Evaluation of 2-D Green’s boundary formula andits normal derivative

using Legendre polynomials, with an application to acoustic scattering problems.

Int. J. Numerical Method in Engineering 2002; 53(4):905-27.

33



[11] Yan ZY. Hung KC. Zheng H. Solving the hypersingular boundary integral equation

in three-dimensional acoustics using a regularization relationship. J. Acoust. Soc.

Am. 2003; 113(5):2674-2683.

[12] Mitzner KM. Acoustic scattering from an interface between media of greatly

different density. J. Mathematical Physics 1966; 7:2053-2060.

[13] Stallybrass MP. On a pointwise variational principle for the approximate solution

of linear boundary value problems. J. Mathematics and Mechanics 1967;

16(11):1247-1286.

[14] Meyer WL. Bell WA. Zinn BT. Boundary integral solutionsof three dimensional

acoustic radiation problems. J. Sound and Vibration 1978; 59(2):245-262.

[15] Terai T, On calculation of sound fields around three dimensional objects by integral

equation methods. J. Sound and Vibration 1980; 69(1):71-100.

[16] Mathews IC. Numerical techniques for three-dimensional steady-state

fluid-structure interaction. J. Acoust. Soc. Am. 1986; 79(5):1317-1325.

[17] Krishinasamy G. Schmerr LW. Rudolphi TJ. Rizzo FJ. Hypersingular boundary

integral equations: Some applications in acoustic and elastic wave scattering.

Trans. ASME:J. Appl. Mech. 1990; 57:404-414.

[18] Chien CC. Rajiyah H. Atluri SN. An effective method for solving the hypersingular

integral equations in 3-D acoustics. J. Acoust. Soc. Am. 1990; 88(2):918-937.

[19] Wu TW. Seybert AF. Wan GC. On the numerical implementation of Cauchy

principal value integral to insure a unique solution for acoustic radiation and

scattering. J. Acoust. Soc. Am. 1991; 90(1):554-560.

[20] Liu Y. Chen S. A new form of hypersingular boundary integral equation for 3-D

acoustics and its implementation withC0 boundary elements. Comput. Methods

Appl. Mech. Engrg. 1999; 173:375-386.

34



[21] Morse PM. Feshbach H. Methods of theoretical physics. New York : McGraw-Hill;

1953; Chap. 7.

[22] Arai M. Adachi T. Matsumoto H. Highly accurate analysisby boundary element

method based on uniform gradient condition. Trans. of the Japan Society of

Mechanical Engineers. A 1995; 61(581):161-168 (Japanese).

[23] Guiggiani M. Krishinasamy G. Rudolphi TJ. Rizzo FJ. A general algorithm for the

numerical solution of hypersingular boundary integral equations. Trans.

ASME:J. Appl. Mech. 1992; 59:604-614.

[24] Chen IL. Liang MT. Kuo SR. Chen JT. Dual Boundary Integral Equations for

Helmholtz equation at a Corner Using Contour Approach around Singularity. J.

Marine Sci. and Tech. 2001; 9(1):53-63.

[25] Kisu H. Kawahara T, Boundary element analysis system based on a formulation

with relative quantity. In: Brebbia CA. Mathematical and computational aspects

(Boundary elements X ; vol. 1). Computational Mechanics: Southampton, 1988;

111-112.

[26] Chen JT. Hong H-K. Dual boundary integral equations at acorner using contour

approach around singularity. Advances in Engineering Software, 21(3) 1994;

169-178.

[27] Mitra AK. Ingber MS. Resolving difficulties in the BIEM caused by geometric

corners and discontinuous boundary conditions. In: Brebbia CA. Wendland WL.

Kuhn G, editors. Mathematical and computational aspects (Boundary elements IX ;

vol. 1). Springer-Verlag: Berlin,Tokyo, 1987; 519-532.

[28] Kost A. Shen JX. Treatment of singularities in the computation of magnetic fields

with periodic boundary conditions by the boundary element method. IEEE Trans.

on Magnetics 1990; 26(2):607-609.

[29] Brebbia CA. Walker S. Boundary element techniques in engineering. London,

Boston: Newnes-Butterworths; 1980.

35



[30] Abramowitz M. Stegun IA, editors. Handbook of mathematical functions with

formulas, graphs, and mathematical tables. Dover: New York; 1972.

36



List of Figures

Figure 1 Boundary excluding the singular point.

Figure 2 Node placements for Even-type and Uneven-type configurations: The

filled circles show boundary nodes for the Even-type configuration. For the

Uneven-type configuration, in which the interval of nodes are uneven, two

additional nodes shown by diamond shaped symbols at the bottom side and

around upper right corner are appended. The vectork shows the propagation

vector.

Figure 3 Complex error vector∆ek of the Even-Type configuration (N = 10): Each

pair of figures in a row denotes a set of results forφk = 0, π/6, andπ/4,

respectively. The left and right side figures show the real and imaginary part of

∆ek, respectively. To show magnitude of the error vector, the one-tenth scaled

true unit propagation vector̃ek, which is a real number vector, is also depicted

at the center of region in each figure.

Figure 4 Error dependencies on element size for the Even-Type configuration:

Each figure in the left-hand side column shows the error at thecenter node of

each side of the boundary. Figures in the right-hand side depict the error

around corners. The difference among rows is the direction of the propagation

vector,k. The positions of the nodes to evaluate the error and the direction of

k are depicted as a subfigure in the top right of each figure. Positions at the

center of each side and at each corner are fixed but the nodes next to the

corners are varying with change ofN.

Figure 5 Comparison of error vectors in the Even-type and theUneven-type

configuration: The graph at top left side of each figure shows the error in

whole region, while those at top right side and at bottom are zoomed vectors in

the vicinity of the circled area in the figure of whole region.In the zoomed



figures of Uneven-Type (b) the additional nodes are marked bydiamond

shaped symbols. All results are ofN = 10,φk = 0.

Figure 6 Error reduction around corners: (N = 10,φ = π/6) (a) Even sized

elements: Sizes of all elements are equal. (b) Gradual element size variation:

Each of two original elements connected to the corner node isreplaced by 4

elements with a quarter size of the original element, respectively. Moreover,

each of the elements adjacent to these is replaced by two elements of half size.

(c) Fine resolution into 16 elements: Each of two original elements connected

to the corner are, respectively, replaced by 8 elements of quarter size.



Γn (= Γ \ (Γa ∪ Γb ∪ Γε))
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Figure 1: Boundary excluding the singular point.
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Figure 2: Node placements for Even-type and Uneven-type configurations: The filled circles show bound-

ary nodes for the Even-type configuration. For the Uneven-type configuration, in which the interval of nodes

are uneven, two additional nodes shown by diamond shaped symbols at the bottom side and around upper

right corner are appended. The vectork shows the propagation vector.
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Figure 3: Complex error vector∆ek of the Even-Type configuration (N = 10): Each pair of figures in a

row denotes a set of results forφk = 0, π/6, andπ/4, respectively. The left and right side figures show the

real and imaginary part of∆ek, respectively. To show magnitude of the error vector, the one-tenth scaled

true unit propagation vector̃ek, which is a real number vector, is also depicted at the centerof region in each

figure.
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Figure 4: Error dependencies on element size for the Even-Type configuration: Each figure in the left-

hand side column shows the error at the center node of each side of the boundary. Figures in the right-hand

side depict the error around corners. The difference among rows is the direction of the propagation vector,

k. The positions of the nodes to evaluate the error and the direction of k are depicted as a subfigure in the

top right of each figure. Positions at the center of each side and at each corner are fixed but the nodes next

to the corners are varying with change ofN.
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(a) Error vector ∆ek of Even-Type configuration
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ẽk

20

ẽk
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(b) Error vector ∆ek of Uneven-Type configuration

Figure 5: Comparison of error vectors in the Even-type and the Uneven-type configuration: The graph at

top left side of each figure shows the error in whole region, while those at top right side and at bottom are

zoomed vectors in the vicinity of the circled area in the figure of whole region. In the zoomed figures of

Uneven-Type (b) the additional nodes are marked by diamond shaped symbols. All results are ofN = 10,

φk = 0.
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(c) Fine resolution into

16 elements

Figure 6: Error reduction around corners: (N = 10, φ = π/6) (a) Even sized elements: Sizes of all

elements are equal. (b) Gradual element size variation: Each of two original elements connected to the

corner node is replaced by 4 elements with a quarter size of the original element, respectively. Moreover,

each of the elements adjacent to these is replaced by two elements of half size. (c) Fine resolution into 16

elements: Each of two original elements connected to the corner are, respectively, replaced by 8 elements

of quarter size.


