<table>
<thead>
<tr>
<th>Title</th>
<th>Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tomioka, Satoshi; Kozaki, Tamotsu; Takamatsu, Hidenori; Noda, Natsuko; Nisiyama, Shusuke; Kozai, Naofumi; Suzuki, Satoru; Sato, Seichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Applied Clay Science, 47(1-2): 65-71</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-01</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/42844</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>ACS47-1-2_65-71.pdf</td>
</tr>
</tbody>
</table>
Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT

Satoshi Tomiokaa,*, Tamotsu Kozakia, Hidenori Takamatsua, Natsuko Nodaa, Shusuke Nisiyamaa, Naofumi Kozaib, Satoru Suzukic,1, and Seichi Sato

aGraduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, 060-8628 Japan
bAdvanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan
cResearch Center for Deep Geological Environments, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan

\textbf{Abstract}

Compacted bentonite, of which the major clay mineral is montmorillonite, is a candidate buffer material for geological disposal of high-level radioactive waste. In this study, a microfocus X-ray computed tomography (micro-CT, X-ray microscope), which enables non-destructive, three-dimensional observation of the interior microstructure of a sample with high resolution (several microns), examined compacted montmorillonite samples under dry and water-saturated states. The images thus obtained were analyzed by a computer code developed for this study to obtain
the information on the size and shape of montmorillonite grains in the samples before and after the water saturation. From the results of the image analysis, it can be supposed that the outer montmorillonite sheets of grains swelled and formed a gel, whereas the inner montmorillonite sheets did not change significantly in the water-saturation process.

Key words: micro computed tomography, geological disposal, montmorillonite, compacted bentonite.

* Corresponding author: S. Tomioka; Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, 060-8628 Japan; E-mail: tom@qe.eng.hokudai.ac.jp, Tel.: +81-11-706-6656, Fax: +81-11-706-7128.

Email addresses: tom@qe.eng.hokudai.ac.jp (Satoshi Tomioka), kozaki@eng.hokudai.ac.jp (Tamotsu Kozaki).

1 Present address: Science and Technology Department, Nuclear Waste Management Organization of Japan (NUMO), Mita NN building, 1-23, Shiba 4-chome, Minato-ku, Tokyo, 108-0014, Japan
1. Introduction

Compacted bentonite (or a mixture of bentonite and sand) is a candidate buffer material for geological disposal of high-level radioactive waste in Japan (JNC, 2000). The buffer material plays various important roles in the disposal system, e.g., to inhibit ground water flow and also to retard the migration of radionuclides in the region between the waste forms and the surrounding host rock. Since the properties of the buffer material are closely related to the microstructure of the bentonite, the study of the microstructure is a key issue for the safety assessment of geological disposal. Therefore, observations of the microstructure of compacted bentonite have been extensively performed using transmission electron microscopes (TEMs) and/or scanning electron microscopes (SEMs). Additionally, theoretical models for the microstructure of bentonite have been established (Pusch and Yong, 2006). However, further detailed knowledge of the microstructure of bentonite is still needed.

Three-dimensional imaging using X-ray computed tomography is a promising in-situ observation technique for geological materials (Carlson, 2006; Mooney, 2002; Nakashima, 2003). The advantage of this technique is that the interior of samples can be non-destructively examined. In addition, 3D imaging with high spatial resolution (several microns) has been realized with a microfocus X-ray computed tomography (micro-CT, X-ray microscope), as well as an X-ray CT using synchrotron radiation. Although there are several reports available for the X-ray CT observation of geological materials (DeVore et al., 2006; Nakashima et al., 2004; Van Geet et al., 2001; Van Geet et al., 2005), few attempts using the X-ray micro CT have been made to observe bentonite particles before and after water saturation (Kozaki et al., 2001; Liu et al.,
In this study, a newly developed X-ray micro CT having a high spatial resolution (about 0.8 \(\mu \text{m} \) under ideal conditions) was used to observe bentonite particles of compacted samples before and after water saturation. Computer code was newly developed for the analysis of micro-CT images to obtain information detailing the morphologic changes of bentonite grains before and after water saturation.

2. Experimental

The microfocus X-ray computed tomography used in this study is a SkyScan-1172 (Skyscan, Belgium). This system is comprised of an X-ray source (100 keV sealed microfocus tube with a spot size less than 5 \(\mu \text{m} \)), an air-cooled X-ray CCD camera having a resolution of 4000 x 2300 pixels, and a precision object manipulator. The detectable spatial resolution of this system is about 0.8 \(\mu \text{m} \) under ideal conditions.

Bentonite used in this study is Na-type montmorillonite, Kunipia-F, which is commercially available from Kunimine Industries, Japan. This sample contains montmorillonite (> 95wt%) and minor components (Sato et al., 1992). The montmorillonite was purified into homoionic Na\(^+\)-type montmorillonite, ground by mortar and pestle, and then sieved to obtain a grain size of 75-150 \(\mu \text{m} \), as described elsewhere (Kozaki et al., 1999). The purified montmorillonite samples were then compacted to a dry density of 1.0 Mg m\(^{-3}\) in glassy carbon tube (Tokai Carbon Co., LTD). Each tube had a 5-mm internal diameter and a 10-mm height. A negligibly small amount (ca. 1.3 vol.%) of glass spheres
(100-200 µm in diameter) was included in some montmorillonite samples as a reference. The montmorillonite samples which were fully saturated with water were prepared by contacting the compacted samples with distilled water through sintered stainless steel filters as illustrated in Fig. 1. After the water saturation period of more than two weeks, the cells were dismantled to expose the glassy carbon tubes. Both ends of each glassy carbon tube were sealed with a plastic plate held in place by adhesive to contain the water-saturated sample within the tube. The full water-saturations of the samples were confirmed in another experiment by weighing the samples before and after an oven-dry at 378 K.

The microstructures of the samples in the glassy carbon tubes were then observed with the micro-CT technique. The voltage of 50 kV was applied to the X-ray tube, and an aluminum filter (0.5 mm in thickness) was used in the observation. The samples were examined while being rotated 360 degrees in 0.1-degree steps. Data acquisition time was approximately 16 hours for each sample. The images obtained by 3D-reconstruction processes consist of 4000 x 4000 pixels with each pixel having an 8-bit attenuation value (i.e., signal intensity). The image spatial resolution was about 2 µm in this observation. The attenuation value of the X-ray corresponds to the image brightness at each pixel. The measurements and the 3D-reconstruction processes for all samples were carried out under identical conditions.

3. Analytical method using computer code

The two-dimensional micro-CT images were analyzed using a computer code developed for this study. The code employed three analytical steps; noise re-
duction, grain boundary analysis, and grain shape analysis. In the first step, a
ring artifact reduction and image noise reduction were applied to the micro-CT
images. In the second step, montmorillonite grains in the image were identi-
fi ed using a boundary determination algorithm. In the last step, the results
were examined to determine several quantities associated with the montmoril-
onite particle grain shapes: the cross-sectional area, the length of the contour
(perimeter), the length of the major, minor and mean axes, and the aspect
ratio of each grain. Detailed procedures for each step are described below, to-
gether with the boundary determination algorithm and the parameters used
for the calculations.

3.1. Noise reduction

The two-dimensional CT images contained 4000 x 4000 pixels, and each pixel
was comprised of an 8-bit signal. In this study, a set of 256 pieces of two-
dimensional CT images (horizontal plane of 400 x 400 pixels) was precon-
ditioned to remove ring artifacts and random noise, and analyzed to obtain
the grain shape information of the montmorillonite sample. Neither the glass
beads nor any part of the glassy carbon sample holder was involved in the
rectangular parallelepiped region of 400 x 400 x 256 pixels (ca. 800 x 800 x
500 µm).

The ring artifacts in the micro-CT images are observed as bright (or dark)
concentric circles, of which the center of each is the same as the rotational
center of the sample. Then, these artifacts were removed by a normalization
in which the averaged intensities of pixels along every circle are assumed to
be same. On the other hand, the random noise reduction procedure involved
two steps; spectrum analysis and filtering. The image spectrum contains the
signals of grains in the lower spatial frequency region and widely distributed
noise (Press et al., 1992). Assuming a model that contained the spectrum of
superimposed signals with some Gaussian functions, white noise, and Gaussian
shaped noise having wide spectral width; we determined the nature of each
component of the spectrum using a nonlinear least-squares fit (Tomioka et al.,
2007). The two types of noise (i.e., the white noise and the Gaussian shaped
noise) were removed by a Gaussian spatial filter that had filtering parameters
determined from the result of the nonlinear least-squares fit.

3.2. Grain boundary analysis

Grain boundaries of montmorillonite particles were discriminated by using a
boundary determination algorithm included in the code. The scheme of the
algorithm is shown in Fig. 2. In the algorithm, nodes having specific signal
intensities were introduced in the image. The node was defined as the point
at the center of each pixel, and the signal intensity was the same as that of
the pixel. After a proper discrimination level of signal intensity for the grain
boundary was determined, a point having the same value of signal intensity as
the discrimination level was selected between two adjacent nodes. The position
of this point was determined using linear interpolation. Segments of the grain
boundary can be drawn with lines connecting adjacent points. The connecting
lines were sequentially established in the direction of $\nabla f \times e_z$, where f is signal
intensity and e_z is the unit vector normal to the image plane (x-y plane). Since
the direction ∇f is inward on the contour around the montmorillonite grains,
the contour runs counter-clockwise. Using these steps, both closed and open
grain boundaries were obtained. However, only closed boundaries were utilized
to define grains in this analysis; since an open grain boundary, which signifies
that some portion of the grain was not in the image range, could lead to
underestimated sizes and cross-sectional areas of grains.

3.3. Grain size analysis and shape analysis

By applying the above boundary determination algorithm to image data, the
contours of all montmorillonite grains could be obtained except for grains with
a portion of the grain not in the image. The circumference of a particular closed
grain boundary, l, can be expressed by the following equation;

$$l = \sum_{j=0}^{N-1} |r_j - r_{j+1}|,$$

(1)

where N is the total number of points belonging to the contour, r_j is the
location of the j-th point of a boundary line, and r_N is identical to r_0.

On the other hand, the cross-sectional area of a grain can be calculated by
the contour integral. According to Stokes’ integral theorem, one relationship
between a domain integral and a closed boundary integral can be given as
follows;

$$\int \nabla \times \mathbf{A} \cdot \mathbf{n} \, dS = \oint \mathbf{A} \cdot \mathbf{t} \, dl,$$

(2)

where \mathbf{A} is an arbitrary vector, \mathbf{n} and \mathbf{t} respectively denote a unit vector
normal to a cross-sectional area dS and a unit vector tangential to a boundary
dl.

When the closed boundary is on x-y plane, taking \mathbf{n} to be e_z, a vector xe_y can
be chosen as the arbitrary vector \mathbf{A}, which can satisfy the relation $\nabla \times \mathbf{A} = \mathbf{e}_z$.

the area of closed grain boundary S can be given as follows:

$$S = \oint x e_y \cdot t \, dl = \oint x \, dy = \sum_{j=0}^{N-1} \frac{x_j + x_{j+1}}{2} (y_{j+1} - y_j).$$ \hfill (3)

In this equation, S of a montmorillonite grain is always positive because the signal intensities at any positions in the boundary surrounding the grain are larger than the discrimination level, and the contour integral path runs in the counter-clockwise direction. Conversely, the contours with a negative S value are considered to be internal holes in montmorillonite grains or vacancies surrounded by montmorillonite particles. In this study, therefore, the grain boundaries with a negative S value were omitted from the analysis.

The major axis of a montmorillonite grain, d_L, is defined as the longest distance between two points among all possible pairs of points on a grain boundary as follows:

$$d_L = \max_{i,j} |\mathbf{r}_i - \mathbf{r}_j|, \quad (i, j \in 0, \cdots, N - 1).$$ \hfill (4)

By assuming the montmorillonite grain to be elliptical, the area, S, can be expressed as follows:

$$S = \pi \frac{d_L d_S}{2},$$ \hfill (5)

where d_S is the minor axis of the montmorillonite grain. Consequently, the minor axis, d_S, can be given by the following equation:

$$d_S = \frac{4S}{\pi d_L}.$$ \hfill (6)
In addition, the mean diameter of grains, d_m, can be given as the geometrical average by the following equation:

$$d_m = \sqrt{d_L d_S} = 2\sqrt{\frac{S}{\pi}}.$$ \hspace{1cm} (7)

The aspect ratio of grains, α, can be defined by the following equation:

$$\alpha = \frac{d_S}{d_L} = \frac{4S}{\pi d_L^2}.$$ \hspace{1cm} (8)

4. Results and discussion

4.1. Microstructure of dry-state compacted montmorillonite

The brightness of a CT-image corresponds to the attenuation of the X-rays, which depends on the atomic numbers of the elements and their densities in a sample. A typical horizontal-plane, two-dimensional, micro-CT image of a dry montmorillonite sample at a dry density of 1.0 Mg m$^{-3}$ is shown in Fig. 3. In this figure, montmorillonite particles can be clearly identified as ellipse-shaped dapples (gray spots) inside the big dark gray ring, which is the glassy carbon sample holder. On the other hand, the glass spheres introduced as a reference can be identified as reasonably large, definitely circular dapples (bright spots) anywhere in the image. This suggests that the CT apparatus used in this study can precisely reproduce distinct images of masses in a sample with at least a resolution of several microns.

Figure 4 shows the frequency distribution of pixels as a function of signal intensity that was obtained for a dry montmorillonite sample. The frequency
varied continuously but has a high peak at a signal intensity of 70 and a lower peak at a signal intensity of 140. It seems that pixels at the signal intensity of 70 and 140 correspond to air-filled void spaces and montmorillonite particles, respectively. In addition, the continuous distribution suggests that there are a certain number of pixels in which air and montmorillonite coexist at various ratios. These result in pixels with grayish color in the Fig. 3 image.

The montmorillonite grain boundaries, therefore, should be evaluated with an appropriate threshold value (discrimination level). In this study, the discrimination level was determined by assuming that the numerical ratio of bright pixels to the whole pixels was identical to the theoretical volumetric fraction of the solid (montmorillonite), η, which can be given by the following equation;

$$\eta = \frac{V^c}{V^{all}} = \frac{\rho_c - \rho_a}{\rho_c - \rho_a}, \quad (9)$$

where V^c is the volume of montmorillonite, V^{all} is the total volume of the sample, ρ_c is the partial density of montmorillonite (2.88 Mg m$^{-3}$), ρ_a is the absolute density of air (\sim0 Mg m$^{-3}$), and ρ is the dry density of montmorillonite (i.e., the packing density in dry condition; 1.0 Mg m$^{-3}$). In this case, the value of η becomes 0.347. For the dry montmorillonite sample, the threshold value to discriminate grain boundaries can be determined to be 103.2, which is in accordance with the signal intensity at the accumulated frequency of 0.653 ($= 1 - 0.347$) in Fig. 4.

Figure 5 shows grain boundaries determined by the computer code with a discrimination level of 103.2 for the image of the dry montmorillonite sample at the dry density of 1.0 Mg m$^{-3}$, together with images before and after the noise reduction. The dapples drawn by solid lines are montmorillonite particles recognized by the code, whereas dapples drawn by dotted lines are closed void
spaces surrounded with montmorillonite or portions of montmorillonite particles that were not in the image range. The total number of montmorillonite grains identified with the computer code was approximately 24,000.

The distribution of the mean diameter of the boundaries of grains analyzed with the algorithm discussed in the section 3.3 is shown in Fig. 6. The grains, which had been sieved to 75-150 µm in the sample preparation process, have wide peaks in the mean diameters around 100 µm. Consequently, it follows that the images obtained by micro-CT examinations represent the interior microstructures of the dry montmorillonite. Further, the combination of micro-CT and the code enables us to evaluate the microstructures of the dry compacted montmorillonite samples with high resolution.

4.2. Microstructure of water-saturated compacted montmorillonite

In the case of water-saturated montmorillonite samples, water in the sample may attenuate both the intensity and the energy of the X-rays, resulting in unclear images with artifacts. In addition, the homogenization of the montmorillonite caused by the water saturation may make it difficult to determine a proper discrimination level for grain boundaries during the image analysis.

A typical horizontal plane, two-dimensional, micro-CT image of a water-saturated montmorillonite sample at a dry density of 1.0 Mg m\(^{-3}\) is shown in Fig. 7. Montmorillonite particles are unable to be clearly recognized in the image, although glass spheres still can be identified as circular dapples. Therefore, water saturation can homogenize the montmorillonite sample, at least in the scale of this spatial resolution (about 2 µm). Figure 8 is a plot of the fre-
quency distribution of pixels in the image of water-saturated montmorillonite
as a function of signal intensity. This also suggests that the montmorillonite
sample becomes almost homogeneous following water saturation, since there is
only one sharp peak in the figure. However, small patches with slightly higher
brightness seem to be present in the image of the water-saturated montmoril-
onite shown in Fig. 7. Therefore, the same analysis as for the dry sample was
applied to the water-saturated sample in this study.

The spectral analysis detected significant signals in low spatial frequency range
which was not noise. This suggests the presence of objects in the image. The
discrimination level of 141.9 was used for the image of the water-saturated
montmorillonite sample, as shown in Fig. 8. This discrimination level could
produce overestimated values of grain sizes, since the level was determined by
assuming the numerical ratio of bright pixels to the whole pixels was identi-
cal to the theoretical volumetric fraction of the solid, i.e. \(\eta \); a fraction of gel
phase was needed to be recognized as solid phase in order to attain the same
numerical ratio as the theoretical volumetric fraction. Figure 9 shows an ex-
ample of grain boundaries of the water-saturated montmorillonite determined
with the computer code using the discrimination level, with the images before
and after the noise reduction. The total number of grains identified with the
computer code was about 12,000, which is almost half of that in the dry con-
dition. This decrease in the total number of grains can be attributed to the
increase in the open grain boundary, which signifies that some portion of the
grain was not in the image, as mentioned above. As compared with Fig. 5(c),
the grains in the water-saturated sample (Fig. 9(c)) seem to be smaller than
those in the dry sample (Fig. 5(c)). To compare them quantitatively, the mean
diameter distribution of the water-saturated montmorillonite grains analyzed
with the computer code together with that of the dry sample is shown in Fig. 6. Realizing that the grain sizes could be overestimated in the image of the water-saturated sample, it is obvious that the grain sizes decreased with the water saturation.

On the other hand, in the X-ray diffraction study of water-saturated, compacted montmorillonite, the diffraction peak of 1.88 nm, which corresponds to the three-water-layer hydrate state of the montmorillonite interlayer, was reported to emerge at the dry density of 1.0 Mg m$^{-3}$. However, there was no peak below this dry density (Kozaki et al., 1998). This fact suggests that the montmorillonite at this dry density still has dense fragments (indicated by the diffraction peak) even after the water saturation. It is very likely that the dense fragments correspond to the grains that were identified in Fig. 9 with the computer code for the water-saturated montmorillonite.

Figure 10 indicates the distributions of the grain aspect ratio (i.e., the ratio of the minor axis to the major axis) before and after water saturation. No significant change in grain aspect ratio was found in the images before and after water saturation. Then, except the region of the open grain boundaries, it can be supposed that the outer montmorillonite sheets of grains swelled and formed a gel, whereas the inner sheets did not change significantly in the water-saturation process, as illustrated in Fig. 11. The gel that formed could occupy the vacancies between grains. This kind of model for water-saturation of montmorillonite had been proposed elsewhere (Pusch et al., 2006). However, in the analysis of the micro-CT image with the computer code in this study, some portions of gel with slightly higher density could be recognized as a part of or the whole of montmorillonite particles as illustrated with dark gray color in Fig. 11, due to the overestimation for the solid phase in the grain boundary.
determination algorithm. This is a possible reason for the small changes in the
grain aspect ratios before and after the water-saturation.

5. Conclusion

The nondestructive, three-dimensional images of the internal microstructures
of compacted montmorillonite samples in dry and water-saturated states were
obtained with the micro-CT, and analyzed with the computer code developed
in this study. The code could determine grain boundaries of montmorillonite in
the images by using appropriate discrimination levels, and provide information
on size and shape of montmorillonite grains, such as the mean diameter and
the aspect ratio of montmorillonite grains. From the results of this analysis,
it is supposed that the outer montmorillonite sheets of grains swelled and
formed a gel, whereas the inner sheets did not change significantly in the
water-saturation process.

Acknowledgements

The authors express their appreciation to Mr. T. Ohyagi and Ms. Y. Mizuguchi,
TOYO Corporation, for providing us with the opportunity to use the micro-
CT apparatus and for their technical suggestions regarding these experiments.
The authors wish to thank Professors M. Nakano and R. Pusch for their valu-
able suggestions. Financial support was provided by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan (a Grant-in-Aid for
Scientific Research (C), No. 17560049), the Japan Atomic Energy Agency
(JAEA), and the Radioactive Waste Management Funding and Research Cen-
References

Mooney, S.J., 2002. Three-dimensional visualization and quantification of soil
macroporosity and water flow patterns using computed tomography. Soil Use and Management 18, 142-151.

List of Figures

Fig. 1 Preparation of the water-saturated sample.

Fig. 2 Schematic of boundary determination algorithm.

Fig. 3 A typical horizontal plane, two-dimensional, micro-CT image of a dry montmorillonite sample (grain size: 75-100 µm; dry density: 1.0 Mg m\(^{-3}\)). This sample contained glass spheres having diameters of 100-200 µm.

Fig. 4 Signal intensity distribution of pixels in all images included in a set of CT data of a dry montmorillonite sample (grain size: 75-100 µm; dry density: 1.0 Mg m\(^{-3}\)); thin and thick lines represent frequency and accumulated frequency, respectively.

Fig. 5 Image processing of a CT image of a dry montmorillonite sample: (a) original image, (b) preconditioned image by using the ring artifact reduction technique and Gaussian filtering, (c) extracted boundaries from the preconditioned image by using the grain boundary determination algorithm.

Fig. 6 Mean diameter distribution of montmorillonite grains before and after water saturation. Lines with and without square symbols represent accumulated area fraction and area fraction, respectively.
Fig. 7 A typical horizontal plane, two-dimensional, micro-CT image of a water-saturated montmorillonite sample (grain size: 75-100 µm; dry density: 1.0 Mg m$^{-3}$). This sample contained glass spheres having diameter of 100-200 µm.

Fig. 8 Signal intensity distribution of pixels in all images included in a set of CT data of a water-saturated montmorillonite sample (grain size: 75-100 µm; dry density: 1.0 Mg m$^{-3}$); thin and thick lines represent frequency and accumulated frequency, respectively.

Fig. 9 Image processing of a CT image of a water-saturated montmorillonite sample: (a) original image, (b) preconditioned image by using the ring artifact reduction technique and Gaussian filtering in which image contrast is enhanced to four times that of the original image, (c) extracted boundaries from the preconditioned image by grain boundary determination algorithm.

Fig. 10 Aspect ratio distribution montmorillonite grains before and after water-saturation. Lines with and without square symbols represent accumulated area fraction and area fraction, respectively.

Fig. 11 Schematic of the structures of montmorillonite: (a) in dry state, (b) in water-saturated state.
Fig. 1. Preparation of the water-saturated sample.

(a) Water-saturation of montmorillonite
(b) Water-saturated montmorillonite inside of the sample holder
(c) Water-saturated montmorillonite in the sample holder capped with plastic plates for X-ray micro CT observation
Fig. 2. Schematic of boundary determination algorithm.
Fig. 3. A typical horizontal plane, two-dimensional, micro-CT image of a dry montmorillonite sample (grain size: 75-100 µm; dry density: 1.0 Mg m$^{-3}$). This sample contained glass spheres having diameters of 100-200 µm.
Fig. 4. Signal intensity distribution of pixels in all images included in a set of CT data of a dry montmorillonite sample (grain size: 75-100 µm; dry density: 1.0 Mg m$^{-3}$); thin and thick lines represent frequency and accumulated frequency, respectively.
Fig. 5. Image processing of a CT image of a dry montmorillonite sample: (a) original image, (b) preconditioned image by using the ring artifact reduction technique and Gaussian filtering, (c) extracted boundaries from the preconditioned image by using the grain boundary determination algorithm.
Fig. 6. Mean diameter distribution of montmorillonite grains before and after water saturation. Lines with and without square symbols represent accumulated area fraction and area fraction, respectively.
Fig. 7. A typical horizontal plane, two-dimensional, micro-CT image of a water-saturated montmorillonite sample (grain size: 75-100 µm; dry density: 1.0 Mg m$^{-3}$). This sample contained glass spheres having diameter of 100-200 µm.
Fig. 8. Signal intensity distribution of pixels in all images included in a set of CT data of a water-saturated montmorillonite sample (grain size: 75-100 µm; dry density: 1.0 Mg m$^{-3}$); thin and thick lines represent frequency and accumulated frequency, respectively.
Fig. 9. Image processing of a CT image of a water-saturated montmorillonite sample: (a) original image, (b) preconditioned image by using the ring artifact reduction technique and Gaussian filtering in which image contrast is enhanced to four times that of the original image, (c) extracted boundaries from the preconditioned image by grain boundary determination algorithm.
Fig. 10. Aspect ratio distribution montmorillonite grains before and after water-saturation. Lines with and without square symbols represent accumulated area fraction and area fraction, respectively.
Fig. 11. Schematic of the structures of montmorillonite: (a) in dry state, (b) in water-saturated state.