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An inverse problem for the one-dimensional
wave equation in multilayer media

Sei NAGAYASU

Abstract

We consider half-line media which consist of many kinds of sub-
stances. We assume that the waves through this media are described
by the one-dimensional wave equation. We can directly observe the
data near the boundary point of the half-line, but we cannot directly
observe the data of things away from the boundary point. In this situ-
ation, we try to identify these unknown things by creating an artificial
explosion and observing on the boundary point the waves generated
by the explosion. In the previous works related to this problem, only
the speeds of the waves were treated, but we also take into account
the impedances of the media in our setting.

1 Introduction

We consider half-line media which consist of many kinds of substances. We
can directly observe the data near the boundary point of the half-line, but
we cannot directly observe the data of things away from the boundary point.
In this situation, we perform the following experiment in order to investigate
them: We first create an artificial explosion at a point near the boundary
point. Waves generated by this explosion travel in the media. Then we
observe the waves at the boundary point, and guess the situation away from
the boundary point.

This problem has been studied by Bartoloni-Lodovici-Zirilli [1], for ex-
ample. However, from the experimental point of view, this result has some
problem with respect to the formulation of the situation. Indeed, in [1], they
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Figure 1: The situation which we consider.

in order to express behavior of the waves inside the half-line, where S(x)
is a piecewise constant function. In this case, the interface or transmission
conditions are determined by only the speeds of the waves. However this
is not natural since the interface or transmission conditions depend on not
only the speeds of the waves but also the impedances of the substances. Then
we consider this problem in consideration of the impedances, and we try to
reconstruct the unknown data concretely.

Now, we introduce the notations and formulate this problem. Put hg := 0.
Let hi be a positive constant and hy, > hy_1 fork=1,..., N —1. We call the
interval (hy_1, hy) Medium k for k = 1,..., N —1 and the interval (hy_1, 00)
Medium N. Let a; and by be positive constants for £ = 1,..., N. The
positive number a; describes the speed of the waves through Medium k,
and by the impedance of Medium k. Put D; := (1/i)(0/0t) and D, :=
(1/4)(0/0x), where i is the imaginary unit. We define Py (D, D,) = a2 D? —
D? for k=1,...,N. Suppose 0 < y < hjy.

We consider the following equations:

Py (Dy, Dy)u(t, x
Pi(Dy, Dy)u(t, z
Pn(Dy, Dy)u(t, )
D,u(t, z)|z=0+0 = 0,
Ut 2) oot = (t, 2) o (1 < B < N 1),

agbr Dyu(t, )| smpy—0 = @pr1bpr1 Dotu(t, )| pep, 40 (1 < k< N —1).

t,x—y), 0<x<hy, (1)
0, hip1<z<hy 2<k<N-1), (2)
0, hy-1<ux, (3)
(4)
()
(6)

The equation (4) means the free boundary condition at the point x = 0. The
equations (5) and (6) for k express the conditions at the point z = hy which



is the joining of Medium k£ and Medium k& 4 1. The equation (5) describes
the continuity of the displacement of the waves, and (6) the continuity of
the stress. The equations (1)—(6) express the situation that the initial data
is the delta function at the point y in Medium 1 at the time ¢ = 0 with the
boundary condition (4) and the interface or transmission conditions (5) and
(6) at the joining point between Medium k& and Medium k + 1.

The following main result says that we can reconstruct the impedances
br+1 and the ratios (hy — hi_1)/ay of the width to the speeds of the waves by
the observation data u(t,0) when the data a;, by of Medium 1 are known.

Main result. Suppose that the constants aq, by, y are known. Assume b; #
bjt1 forj=1,...,N—1. Assume that the observation data v(t) := u(t,0) are
given on [0,T), where u(t,z) denotes the solution of the equations (1)—(6).
Then bgy1 and (hy, — hy_1)/ay, are reconstructed by the following process:

e The first step: Put v1(t) := (1/a1)H(t — y/ay) — v(t), where H is the
Heaviside function.

o The (k+ 1)-st step (k = 1,2,...): If vi(t) = 0 then the process is
finished. If vp(t) Z 0, then put t;, := inf{t € [0,T) : ve(t) # 0},
reconstruct the constants (hy — hy_1)/ay. and byy1 by

k-1
hk — hk—l 1 Yy hj — hj—l
— " = _ |t = ) — -~ J -

j=1 j
k—1 .
o2k—2 H(bjbj+1) + vk (tr + 0)ay | [ (b; + bjy1)?
o j=1 e
e A k—1 b,
22k—2 H(b]b]+1) - /Uk(tk; + 0)&1 (b] + bj+1)2
Jj=1 e

define vg41(t) by the known data and the reconstructed data, and go the
next step.

We state the concrete way of determining vg,;(t) in Theorem 13. We
remark that we can reconstruct the impedances b1 but we cannot identify
the speeds a; themselves of the waves. This result is not obtained by [1].

On the other hand, our main result is also the expansion of Nagayasu [4]
for the one-dimensional case. In [4], the author considers the situation that
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Figure 2: The two-layer case.

the half-line consists of two layers, and determine the unknown data by
using the observation data on the whole time. However, our main result says
that we can reconstruct the unknown data by the observation data on the
finite time, and how many data we can reconstruct is determined as to the
observation time.

We remark that the one-dimensional case differs from the n-dimensional
case (n > 2) in that the speeds themselves cannot or can be reconstructed.
Indeed, we obtain the following result from [4] for example. We consider
the two-layer case (see Figure 2), and assume that a; and b; are known.
Let observation data be given. Then, we can identify as, by and h; when
the physical space dimension is greater than or equal to two. However, we
can identify by and hy/a; (namely h; itself) but cannot identify ay when the
physical space dimension is one.

Finally, we explain the plan of this paper. In Section 2, we construct the
solution formula of the equations (1)-(6). In Section 3, we state our main
result concretely and give its proof. In Appendix, we discuss the case that
the impedance of the adjacent media may be equal, that is, b; = b;1; may

hold.
2 The solution formula

In this section, we construct the explicit solution formula in Medium 1 of the
equations (1)—(6). In order to make the dependence of the solution on the



coefficients clearly, we denote the solution of (1)—(6) by
u(t,z) =un(t,z;a1,...,anibi, ... onsha, oo hvo13y).

In Section 2.1, we express it in the case of N = 1. In Section 2.2, we construct
it for N > 2.

2.1 The solution formula for N =1

The equations which we deal with are as following:

P (Dy, Dy)uy(t,x) =0(t,x —y), x>0,
Dzul(t, I)‘x:()_i_o =0.

By Matsumura [2], we find the solution

1 — 1
ui(t, ;a1;0055y) = —H (t—u) +2—H (t— x—iry)‘

2(11 aq aq ay

We remark that its Fourier-Laplace transform along p = 7 — imlog(2 + |7])
with respect to t is

1
 2a4ip

i (P, :L') {e—ip\z—y\/al + e—ip(a}-‘ry)/al} . x> 0.

2.2 The solution formula for N > 2

We construct the solution of (1)—(6) by induction on N. Then we first define
FIEN)@,.QT) = Fk(N)(t,.fE, A1y...,4N, bl, Ce 7bN; h'17 cey hN—l; y) by

FISN)(ta@ =un_1(t,7r) —un(t,z), M1 <r<h (1<k<N-1),
F](\[N)(t,:c) =uy(t,z), hn_1 <z,

where we write

uN—l(t7x) = uN—l(tax;a'la s 7aN—1;b1a s 7bN—1; h17 ey hN—Q;y)v

UN<t7$) :uN(twr;ala"'7G/N;b17"‘JbN;hla"'7hN—1;y)

for short notation. The distribution £ ,gN) (t,z) expresses the behavior of the
waves in Medium £ which are affected by Medium N. We remark that this
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F,C(N)(t,x) and Fi(t,z) in Matsumura [3] are different. By the definition of
Fk(N) (t,x), the equations (1)—(6) are changed for

PE™ — 0 (vaﬁifh’“ E;ﬁi’fﬁ“”)» (7)
D,FM|,_ =0, (8)
(FN = F™M)ompy =0 (1< k< N —2), (9)
(akka FMN = apibp 1 Dy FiY ) ey, =0 (1 < k< N —2), (10)
(Fy 1+F<N>>|m v = - ot (11)
(an-1bx—1Do F™ + anby DaF ) lonn s

— a/N—le—leuN—l’CCZhN_17 (12>
where P, = Py(Dy, D,), F,gN) = F,EN) (t,z) and

Un-1 = UN—1(75,35; ar, .-, an—1;b1, . b1 hay hN—z;y)

for short notation. We solve these equations. We apply the Fourier-Laplace
transformation along p = 7 — imlog(2 + |7|) with respect to ¢ to these
equations as in Matsumura [3], where m is a positive real large enough.
Then by (7) we can write

Y00 =2 e (-2 )+ 0Me (2) kv, 03

Qg Qg
~ N x
F (o0 =2 e (-2, (1)

where e(s) := e(s; p) := exp(ips). In the same way as F,iN) (t,x), we write

(I)I(cN)(p> - CI)](QN)(pu alv‘"7aN;b17'"7bN;h17"'7hN—l;y)7
\Ij](cN)(p> - ‘IJIE:N)(p;afla"'7G/N;bl7"‘7bN;h'17"'7h'N—1;y)

in order to make the dependence on the coefficients clearly. We define
Kyrlresp. Laf)(p; a1y« -y anr; b1, o g Ry ooy hay—1, hars y) by

M( ;al,...,aM;bl,...,bM;hl,...,hM,l,hM;y)

:UM(P#”WH,---aaM§b17-~->bM;h17--~>hM—1§y)|:c:hMa
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Ly(pyay, ... an;b1, ..o 0 hay oo haro1, s y)

aybur
= P DxuM(pwr;ala"'7aM;b17"'abM;hlv"'ahM—l;y)|x:hM

for M =1,2,.... Now, we substitute (13) and (14) into the Fourier-Laplace
transform of the equations (8)—(12) and simplify them. Then we have

_ @YV) i} _ 8 i}
o™ .
o5
g
Zv| 2 | = : (15)
N
) :
g
N=l Ky
™)
L "N | Ly—1 |

where we define the (j,[)-components
ZN(p;a’17"'7aN;b17'"7bN;h'17"'7hN71>jl
of the (2N — 1) x (2N — 1) matrix

ZN(p;ah"'7a’N;b17"'7bN;h17"'7hN71)



by

ZN(p, ai, ... ,CLN;bl, Ce ,bN;hl, .. -ahN—l)jl

(1, 1=11=1,

1, j=1,1=2,

e(_@) =% l=2%—1(k=1,.... N 1),
Qg

e(@) =%k =2 (k=1,...,N—1),

Qag

bke(_@) j=2k+1,1=2k=1(k=1,... ,N-1),
ay

—bke(@), j=2k+1,1=2k(k=1,...,N —1),
Q.

_e(_ hk), j=2k 1=2k+1(k=1,...,N —2),

= Af+1

_e(hk) =%k 1= 42 (k=1,.. N—2)

Ak+1
h

_bme(—akil), j=2k+1,1=2k+1(k=1,...,N —2),
h

kae( ’“), j=2k+1,1=2k+2(k=1,...,N —2),
AL41

e(—hN_1>, j=2N—2 1=2N—1,
an

bye (_hg—l), j=2N—1, 1 =2N —1,
N

L0, otherwise

and we write

ZN :ZN(p;alv"'7aN;b17'"7bN;h17"'7hN71)7
MM = dM WM (pray, . ansbi, . by by, 1Y),
Kn_1[Ly-1) = Kna[Lv-i)(psar, ... an—1:b1, ... by_13 by, oo hv—15y)

for short notation in the equation (15).



We need to express the explicit formula of u(¢,0) in order to discuss our

inverse problem. Then we construct CDgN)(p) and \Ing) (p). Now, for short
notation we write

KN[LN] = KNUJN](ﬂ, ag, ... ,aN;bl, Ce ,bN;hl, .. .,hN_l,hN;y),
o) =W (prar, ... ansbi,. . by h, . hy1Y),
ZN = ZN(p;al,...,CLN;bl,...,bN;hl,...,hN_l)

in Lemmas 1, 2, 3 and Corollary 4. We first express det Zy explicitly.
Lemma 1. Let N > 2. Then

det Zy = (=1)Ve (_ hzv—1>

an

hy hy —h hy_1— hy_
XZN(p§b17--~7bN;_17 2 1""’M> (16)

ai ) aN-1
holds, where we denote

ZN(p; bl,bg, e ,bN; @1, @2, ceey ®N—1>

N-2 N-1
= ) o {H (b + aj@j+1bj+1)} (bn—1+ an-1by)e (Z aj@j>
j=1

ap==x1 j=1
(1<k<N-1)

for N > 2, and we define H;V:_f(bj + ojoji1bip1) = 1 when N = 2.

Proof. We prove this lemma by induction on N. It is easy to obtain the
equation (16) for the case of N = 2. Then we assume that the equation (16)
for N(> 2) holds, and we show the equation (16) for N + 1. We first expand
det Zxy 1 along the (2N + 1)-st column, and expand them along the (2/V)-th
row. Then we have

det Zy1(p;an,...,an,ang1;01, . by, Ovgrs by oo vt hiy)

h h 2hy_ h
= —e (— N > {bNe (——N)e( N 1)detZ]\,—i-b]\;e (—N) deth\;}
CLN+1 an an an
h h 2hn_ h
+ bnyie (— al ) {e (——N)e( il 1)detZN—e<—N> detZ]J{,}
AN+1 an an an




e o () e ()
+ ( &

2

N— N-1 h h
ho,
x Y, @ { [T+ ajaj+1bj+1)} e ( > 0@%)
=1

ap==+1 j=1

(1<k<N-1)
hy = hy-
X Z (bN,1 + OéN—loéNbN)a?N + CKNbNJrl)e &NT
any==%1

AN+1

— (—1)N+1€ ( ) ZN+1 <b1,...,bN,bN+1;

hy hy — Iy hy-1 —hy—o hy — hN1>

c )

a a2 aN-—1 an

where we write

Z]:{:f = ZN(pa Ay, ... 7aN—17aN;bla s 7bN—17j:bN;h17 e '7hN—1)7

hi hy—h hn—1—hn_
Z]:{:[:ZN(p;bla"‘abN—h:th;_la 2 17"'7u>

ai az anN-—-1

for short notation and we use the inductive hypothesis at (x). Hence we
obtain the equation (16) for N + 1. O

Next, we express Ky and Ly explicitly.

Lemma 2. For N > 2
W) (_fw
KN:(I)NG -, LN:bNKN
hold.
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Proof. Because of hy_1 < hy, we have

DiuN(p, I)|£B:hzv = DgtF](V )(07 x)|$:hN
for 7 = 0, 1. From this equation we can obtain this lemma easily. O]

Lemma 3. For N > 2 we have

w2 1 (Y y
oy = b = ]. 1
N 2a1ip det Zn ]1_[ J Z © (Val) (17)

=1 v==+1

Proof. We prove the equation (17) by induction on N. First we consider the
case of N = 2. We remark that we obtain

1 hy Yy
K0 a1:bi: ha — o I
l(paala 1 lay) Qalipe( a1)y§16<ya1> )
Li(p; ar; bi; hisy) = biKa(p; ax; bis hasy)
from the definition of K; and L, and Section 2.1. By these equations, we
have this lemma for N = 2. Then we assume that the equation (17) for
N(> 2) holds, and we show the equation (17) for N + 1. We have

<I>§\J,V++11)(p; ai,...,an,an+1; b1, bN, Ot Ry oo hv—1, B y)
0
= | the (2N + 1)-st component of (Z31,)- | Ky
Ly
1
= deTNH{(the (2N, 2N + 1)-cofactor of Zy.1)Kn

+ (the (2N + 1,2N + 1)-cofactor of Zx11)Ly}

® 1 hy hn_1 _ hy
= — <) e 2 det Zy — b — | det Z
det ZN+1{ Ne < an c an ¢ N Ne an ¢ N

+ bye (—h—N) e (2hN_1> det Z — bye (h—N> det ZN}
an an an

=2 by @
det ZN+1 NEN
o det Z —ov-t o (]
(), de NbN( ) Hbj Ze A
det Zn.11 2a1ip det Zy ey = aq

11



2% 1 (1 y
2a11p det Zniq E I Z ¢ Val ’

where we write

Z]:[:ZN(p;ala"'7aN;b17'"abN—la_bN;hla"'7hN—1)a

Zyi1=2n41(piar,...,an,ans13 01, O, O hay oo hvot, ha)

for short notation, and we expand the determinant along the (2N)-th row
and use Lemma 2 at (), and we use the inductive hypothesis at (x). O

Corollary 4. For N > 2,

—(=2)1 1 (Y Yy hy
Ky = | L N S
N 2a1ip det Zy H b; Z © yal ’ N = b Ky

j=1 v==+1

hold.
Proof. By Lemmas 2 and 3, we obtain this corollary easily. [

REMARK 5. We define Z;(p; a1;b1;-) = (—1), Z1(p; b1;-) = 1. Then Lemma 1
and Corollary 4 hold also for N = 1, where we define H;V:_ll bj=1for N =1.
Now, we express <I)§N) and \IlgN) explicitly.

Lemma 6. For N > 2,

(I)gN)(p;alw"7aN;bla"'7bN;h17"'7h'N71;y)
:\IJEN)(p;alw"7a’N;b17"'7bN;h17"'7hN71;y)

22N—4

b b = y h h
N-1— ON N-1 N-1
— b.b. g N1

2a1ip det Zy det Zy_4 {H( J ]H)} Z ¢ (Val an—_1 an )

j=1 v==+1

holds, where we write

ZN = ZN(p, CLl,...7(1N;b1,...,bN;hl,...,hN_l),

Zn_q = ZN—l(P; ai,...,an—1;b1,...,by_15he, .., hN—2)

for short notation, and we define H‘;V:EQ(bjijr]_) =1 for N =2.

12



Proof. It is easy to obtain CI>§N) (p) = \IIEN)(/)) from the equation (15). Then
we find the explicit formula of <I>§N) (p). We have

oM (prar, ... anibiy. . byih, . b y)
0

= | the first component of (Zy') - [ Kn_1

Ly

= JeiZa {(the (2N — 2, 1)-cofactor of Zn)Kn_1

+ (the (2N — 1, 1)-cofactor of Zy)Ly_1}

g bN - bN—le _hN—l K
det ZN an N

Hoe| (2 =
deet ajt1 aj41

h; h;
=1 bjiie a1 bji1e aj+1>

by —by-1 hy-1
T det Zy e<— ay >KN ! <Hby+1>

g bN—bele _hN,1 ( 2)N 2Z 1 ]i—fb
det Zy ayn 2a1p det Zy_q \ 4 7

7j=1
b N—2
N—-1 _
x Y e (V ) (—=2)"? (H bj+1>
v=-+1 aN-1 j=1
92N -4 by_1 — by i Yy hn-1 hiv—1
— (b;b g DN-1
2a1ip det Zy det Zy_; j[[l 1) V:Zile (l/al an_1 ayn > ’

where we use Corollary 4 at (f) and we write

Zy = Zn(p;ar,...,an;b1, ... bns by, oo h—y),
Zno1=Zna1(p;ar,...;an_1;b1, ..., bn_1;he, .o Ay _2),
Ky_1=Kn_1(p;a1,...,an-1;b1,...,0n_1; 1, v oo, hyv_13y),
Ly_1=Ly_i(psa1,...,an—1;b1, ..., On_15he, o hveg, hv_15y)

for short notation. O

13



Proposition 7. For N > 2,

Fl(N)(tal‘;ala"'7aN;b17'"7bN;h17"'ahN—1;y)

:f(N) (t7$;b17"'7bN;ﬁ7h2_h1,'--7w;y)

3] a2 aN-—1

holds, where we put

f(N)(ta'r;bla"‘7bN;®1a"')®N—1;y)

1
- _2_a1 Z Un(ma,...,my_1;b1,...,byN)
0<my<oco
(k=1,....N—1)
) . N-1
T (- (ot e ees))
v,v==%1 J=1
and define ¥y by
almribu,b) = (bl_bz)mlﬂ
2 1,V1,Y2) — bl+b2

14



for N =2 and as following for N > 3:

7#N(Tnl)-"77nN—1;bl7"'7bN)

_ Z 92N—14
{(a)accy(ig)peay_1 JEGN

> met 3 (I=H{kag=—1})ja+ AZ (1-#{k:Be=—1})ig

% (_1)k:2 acCn BEAN_1
N-1
me+ Y (—t{k:an=—1}ja— > #{k: B =—1}ig
k=1 a€Cn BEAN 1
X (
N-2
my — Z Ja — Z ig |! my—_1 — Z Ja
= accF™ peAll acc {1~

mJ+mJ+1—2 Z ja—2 Z iﬁ
y byby (bJ - bJ+1) acc{7 = pea(IHD=

(by+by41)? \bs+ by

J=1

my—_o+my—_1—2 o
R 4 N W P
(bn—2 +bn-1)? \bn—2 + bn_1
(bN—l . bN)mN—1+1
X | ———— )
by—1+ by

Here we define y:_f’(*) =1 for N =3 and we put

Av={a=(aq,...,an_1) oy =%1, a# (1,1,...,1)},
BN:{OéEANCﬂ{kSOékI—l}:l},

CN:AN\BNv

AE\I;I ..... k“)i:{CMGANIOékl:“‘:O‘kv:il}’
Clkrk)E . _ _ _

N —{(XGC’N.akl—"'—akv—il}7

15



GN = GN(ml, e ,mN_l)

( {(ja)OcECN7 (iﬂ)BEANA} :
ja Z 07 Zﬁ 2 07

D dat Y ig<mi (1<k<N-2),

aeCP™ peAl)
§ ja S my-1-
N-1)—
L ocEC](\, ) )

REMARK 8. For example, 13 and 1, are as following:

¢3(m1, Ma; by, by, b3)

_ Z (_1)m2—j22 (m1 -+ Mo —j — L)'
0, (m1 — j — ¢)!(ma — 5)!!

JHesmy,
L bbb m)mﬁmﬂj (bg - bg)””“
(by 4+ b9)? \ by + by by + b3 ’

J<mg
¢4(m17 ma, s, bla b27 b37 b4)

= Z (—1)metms—ir—i2—js—2ja—isgl
J1,J2,33,4581,12,i3>0
Jo+j3+jatio+iz<my
J1t+jz+jatii+iz<mg
Ji+je2+jas<ms
(mq +mo +mg — j1 — jo — J3 — 24 — 11 — 1o — 2i3)!
(mq — Jo — js — Ja — 2 — i3)(ma — J1 — js — Ja — i1 — i3)!
(il + iQ + Zg)‘
(ms — g1 — J2 — ja)lJ1!jaldsldalis Viplis!
Y
b1b2 bl . b2 mi1+ma—2(jz+ja+is)
X
(bl + b2)2 bl + bg

y b2b3 (bg . b3>m2+m3—2(j1+j4) (bg . b4>m3+1
(by + b3)? \ by + b3 b3 + by '

In the case of 93, the indices j and ¢ correspond to the indices j, and g
in Proposition 7, respectively. We remark that Ay = {(—1)} and C5 =
{(=1,—=1)}. In the same way, the indices j, (x = 1,2,3,4) and i, (k = 1,2, 3)
correspond to the indices j, and i3 in Proposition 7 as following, respectively:

X

16



J1 = Ja,-1,-1); J2 = J(-11,-1), J3 = J(-1,-1,1), J4 = J(~-1,-1,-1), b1 = i(1,-1),
g = 1(—1,1), 13 = U(—1,~1)-

Proof of Proposition 7. By the equation (13) for £ = 1 and Lemmas 6 and 1,
we have

ﬁl(N)(p,m;al,...,aN;bl,...,bN;hl,...,hN_l;y)

11 i
= 9Ny b b;b
R ()
1 1 y _x  hy_i— hN—2)
X = elv—+vV—— —-—7-—7-—1, 18
A V;El ( ai a an-—-1 ( )

where we write

hi ho —h Bt — hn

I

ai a9 an_1
hi h, —h Bno — B
ZN_l:ZN_l(p;bl"'vbzv—l;—l, R e £ NB)
ai (05} an_o

for short notation. Then we discuss 1/Zy(p; b1,...,b0;01,...,08-1). We
first have

J=1 J=1
M—2

by +ajagi1by
X |1—<— Z aq (H

{ aEA N J=1 bJ + b‘]+1
by—1 + ap—1bys —
X e ay—1)©
bar—1 + by (;( ! ) !

for M > 2. Here, we remark that the absolute value of

1

M—-2 M—
by +ayaypibiir | bu—1 + an—1by
E 041(” by + by e E (ay—1)0;

brr—1 + b
aEAN J=1 M-1+ Om J=1

17



can be small enough when the positive number m is large enough. Then we
obtain

1
Z]\/[(bl7 e ,bM;@l, .. .,@M_l)

« Z{ Z (o) (1—_[ by +04J04J+15J+1>

] by + bj+1
K
bryr—1 + an—1by ~—
—1
X bar1 & bar € (Z(CYJ )0

J=1
( E j()é) !
= »

M-1

0<ja<00 (ja')
H (bj + bJ—i-l) (OzéAM) OzErAIIM
J=1

> o [ M-2

>
X (_1)QGAS\}I>+ H (bJ - bJ+1)a]gff§£1

=5 \by 4 by

Jo

b b % 1) Jo =

M—-1 "7 UM \aqcal¥ =1~ .

w [ 2M=L T OM ) acaf _ 9 +1%0
(bM_1+bM> el=>92 > jatlpe,

7= | aeal”

18



We substitute this equation into the equation (18). Then we have

F\I(N)(p,x;al,...,CLN;bl,...,bN;h1,~-~>hN—1;y)
N—2
_ _L122N74 H _ bibr
2a; 1p (b +br41)

J=1
(Z ja>! > g ]!
a€A BEAN_
o« Z Z EAN €AN-1
<ja<oo 0<ig<oo
(€A (Bedn ) { 11 (ja!)} IT Gsh

a€AN BEAN_1
Z Jat Z ig N-3 b b aEEAN Jot 561421\7 1 "
1 1 _ _
% (_1>a€A5V)+ BEAEV):E H < J J—1 ajayii=-1 ByByi1=—1
b b
721 \0s + 0541
ZA Jat Z iﬁ
_ € N—2)—
<bN_2 bN_l)aN;’NNl:—l BEAS\L1 )
by_o +bn_1
> Jatl
bv_1—0b N—1)—
w [ 2N N \acal¥ =V
by_1+ by

N—2
X Z e<l/a%+5a£1—22 Z Ja + Z is+ 1 hJ_aJhJ—l

V=1 T=1 \ qea- BeA)~

hn-1—hn-
_9 Z,ja+1 N-1 N2>

aN-1
anA%Vil)i

for N > 3. Now, we apply the inverse Fourier-Laplace transformation with
respect to 7 to this equation, and we change the indices from j, (o € By)
to my by the relations

acCP™ peAl)
Ja,.1-1) = My-1 — E Ja
erC’J(VN71>7



Here we remark that

Ft {GZ” (t) = H(t +s).

Then we obtain this proposition for N > 3. We can also prove the case of
N = 2 in the same way. O]

3 The proof of the main result

In this section, we prove our main result. We first discuss the behavior of
the function f®(¢,0) near ¢t = 0 in Lemmas 9 and 10.

Lemma 9. Forp>2 and ©1 > y/a;, ©; >0 (j =2,...,p—1),

f(p)(taou blv s pr;@la . ‘7@p—1;y)

( p—1
Y
0, te |0, —— 25 0,1,
[ a1+ J)

holds, where we define

p—2
b;b; bp-1—b
b’“.’b :22p*4 JYj+1 p—1 P’
qp( 1 p) {H (bj + bj+1)2 bpfl + bp

Jj=1

ep =6p(a1;01,...,0,.1;y) = Qmm{aﬂ,@l,...,@p_l}.
1

Proof. From

¢p(0,...,0;b1,...,bp):qp(bl,...,bp)

and

=~ +2 @>—— 2 O, =+1
ual—i— Zm] + Z +e, (v )

a1

except for (my,...,my_1;v) = (0,...,0; —1) we obtain this lemma. m

20



Lemma 10. For N > k+1>2 and ©, > y/a;, 0, >0 (j=2,...,N —1),

N
Z f(p)<t70;b17'"7bp;@17"'7@p71;y)
p=k+1
( y k
0, te |0, —— 42 O],

holds, where we define
gk = gk(al;@h .- '7@k7@k+1;y> = 2min {%7@17 .. '7@k7@k+1} .
1

Proof. By Lemma 9, we obtain this lemma easily. O

Here, we state the proposition which is the key of the proof of our main
result.

Proposition 11. Let N > k+1>2 and ©1 > y/a;,0; >0(j =2,...,N—
1). Suppose by # bgi1. Let T > 0. Put

N
= Z f(p)(t707bla R 7bp;@17 .. '7@}771;?/)'

p=k+1
Then the following holds:
e [fu(t)=0 on [0,T) then

k—1

O %(T+al) Z@] (19)

o Assume v(t) # 0 on [0,T). Put ty :=inf{t € [0,T) : v(t) # 0}. Then
there exist a constant ¢, and a positive constant €, > 0 such that

(t) = ¢ on (tg, ty + €,).

21



Furthermore

j=1
k—1 k—1
22 T (Bibj41) + cwan [ [ (0 + bj1)?
Dpsr = = = b
k+1 k1 k1 k
222 T (0sbs41) — cwar [ [ (b + bj41)”
j=1 j=1

hold.

Proof. By Lemmas 9 and 10, there exists € > 0 such that

( k
Yy
0, telo, -+ +2> 0;],
[ = j=1 ])

- 1
v(t) = - G_IQk—‘rl(bl, cee ,bk+1),

k

\ Jj=

k
te (—%JFQZGJ-, —a£+22@j+s>
! 1 ! j=1

(20)

(21)

holds. We remark that qx.1(b1,...,bgr1) # 0 since we assume that by # by 1.

If ¥(t) = 0 on [0,7) then we have

a1

k
T<-Y 2% e,
j=1

namely the equation (19). Hereafter we assume that v(t) # 0 on [0,7"). Then

the constant ¢, in this proposition satisfies

k
Yy

h=—24+2%"6,

k a1+ j

=1

We obtain the equation (20) from this equation. On the other hand, we can
take the constant €, in this proposition as e, and the constant ¢ in this

proposition satisfies
1
cr = ——qrr1(br, - - brg).
a1

By this equation, we have the equation (21).
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Next, we remark that there is a possibility that the same observation data
can be obtained even if the unknown constants are different.

Lemma 12. Let aj, b (j = 1,...,N), b (j =1,...,N = 1), @, b; (j =
1,...,N), h (Gj=1,...,N— 1) be posztwe constants. Assume that hj > h;_q
(jzl,...,N—l)cmdh >h]1(]—1 N -1 1), where we put hy := 0
and hg :==0. Let T > 0. Assume a1 = a;. Suppose

hj—h;_y  hj—hj_y ~

= (1<j<Nr—1), bj=0b; (1<j<Nrp),

aj

aj

where the natural number Nt satisfies
Y : o~ hj —hj aks %j — Ej—l
Tg—a—1—|—2m1n{jzl—aj , ;—ZL}- }

Then fort € [0,T)

un(t,0;a1,...,an;b1,...,bn;h, .o hy_1;Y)

=uyx(t,05aq,...,a5; bl, .. bN, hl, e ,Eﬁ_l; Y)
holds.
Proof. We remark that we have

uN(taO;ala'"7aN;b17"‘7bN;h1a"'7hN—1;y)
= uq(t, 0'a1;61;-;y)

_Zf(p) (tObl,...,b,hl,hQ hl,_”,M;O
ay

(05} ap—1

by the definition of F] l(p ) (t,z) and Proposition 7. In particular, we have
uN(t7O;a17'"7aN;b17"'7bN;h17"'7hN—1;y)
= u1(t, 05150153 y)

Nt
_Zf(p) (tvo;blv"'abp;ﬁahz_hla"'vhp1_hp2;y)
— a1

(05} Ap—1

Z f(p <tObl’ b hl h2 hla"'aw;y>a
1

p=Np+1 42 Up—1
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and the last term vanishes for ¢ € [0,7) by Lemma 10. Then we obtain this
lemma. [

By Lemma 12, we cannot identify a; and h; themselves even if the obser-
vation data on [0, c0) are given. We can identify only by and (hy — hy—1)/ak.
Then we try to reconstruct them.

Now, we state the process in order to reconstruct them.

Theorem 13. Suppose the constants ay, by, y are known. Assume b; # bjq
for j = 1,...,N — 1. Assume that the observation data v(t) = un(t,0)
are giwven on [0,T), where un(t,z) is the solution of (1)—(6). Then byy1 and
(hg —hg—1)/ax (k=1,...,Nog—1) are reconstructed by the following process:

e The first step: Put vy(t) := (1/a1)H(t —y/a1) — v(t).

o The (k+1)-st step (k=1,2,...): Ifvg(t) =0 on [0,T) then the process
is finished. Ifvg(t) #Z 0 on [0,T) then we carry out the following process:
Put ty := inf{t € [0,T) : vi(t) # 0}. Then there exist a constant cy
and a positive constant &) such that

vi(t) = e, on (ty, tr, + €},).

The constants (hy — hg_1)/ay and byyq are reconstructed by

k—1
hk — hk—l 1 Yy hj — hj—l
_— = = t _— —_ _—

=1 !
k—1 k—1
252 [T (bsbs41) + cuan [ [ (B + bjs1)”
D = = = b
k+1 -— b_1 —1 k-
222 TT(bsbs41) — cwar [ [ (b + bj41)”
j=1 =1
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We define
Uk1(t) = vi(t)

1
+ — Z wkﬂ(ml,...,mk;bl,...,bkﬂ)

a
my (1<I<k):

k . h
321(mj+1)h] ”};J_IS%<T+%)
y b hi—h;

% Hlt—v2Z 19 T e A
Z ( (Val + Z(m] +1) a ))
v==+1 j=1

and go the next step, where 1 is defined in Proposition 7.

Furthermore, when the process is finished at the (Ny + 1)-st step, that is to
say, vn,(t) =0 on [0,T), we have either N = Ny or the following:

hy = hxg-1 1 by — by
N>N0andu>_(’f+£)_z j -1
a

CLNO -2 aq = j
REMARK 14. For k£ = 2,3, ..., we have
k—1
1 h; —h;_ 1
5 (tk—i-i) =Y = (e~ ),
ay — a; 2
j=1

that is to say, we can also reconstruct (hy — hx_1)/ax by

hiy —hp—1 1
L T (t —th ).
@ 2(k k1)

Proof of Theorem 13. We first remark that

uN(taO;ala'"7aN;b17"‘7bN;h17"'7hN—1;y)

= uy(t,0;a1;b1; -+ y)

N
hi ho —h hi_1 — hg_
_Zf(k)(taoab17vbk7_17 = 17"'7M;y>
2 ay ) Ak—1

holds as the same way in the proof of Lemma 12. Now, we put v(t) :=
(1/a1)H(t —y/a1) — v(t). Then we obtain

N
hi hy —h i1 — hi
vl(t)zzj”(’“)(t,o;bl,...,bk;_l, 2 1,_”,M;y>
k=2

a1 a2 A—1
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since uy(t,0;5a1;01;5y) = (1/a1)H(t — y/ay) holds. From this equation and
Propositions 7 and 11, we obtain this theorem. O]

4 Appendix

In this section, we discuss the case that the impedances of the adjacent media
may be equal. In this case, the following lemma is a key lemma.

Lemma 15. Let N > k+ 1. If b, = b.y1 then

Fl(N)(tax;alw"7aN;b17"'7bN;h17"'7hN71;y)

/

0 (N=r+1),
(%)
_ ) Fl(N—l)(t’;p;ah,,_,aK_l, a,a,€+2,..-,a]v;
bl,...,b5717b){7b){+27__.7bN; (N2/€+2)
h]_,...,hﬁ_17h,§+1,hﬁ+27...,hN_]_;y)

\

holds, where the constant a satisfies

hn—i—l - h/@—l o h/@ - hn—l + h/@—&—l - hn'

a g, Ar+1

Proof. We remark that

~

Fl(N)(p>$;a17"'7aN;bla---vbN;hlv"wthfl;y)

— Ll22N_4(bN—1 —by) {1__[ (beJ+1)}

24 1P =

1 1 y o  hy_i1—hn_o
X Zn Z e (Val +Va1

A an—
N 11/,17:i1 N-1

which appears in the proof of Proposition 7, where we write

hi ho —h Bin t — B

ai ag anN—1

hy hy—h hn_o— hyn_
ZN—1:ZN—1(p;bl,...,b]\;_l;—l7 2 1"”,M)

ai a2 anN—2
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for short notation. Hence

an+1)(p7w; Ay, ... 7aﬁ+1;b17 s 7bn+1;h17 .. 7hf€7y) =0

(22)

holds since b, — by11 = 0. Let N > k + 2. We remark that we obtain

Zm+1(P; biy oy bkt 01, -, 9,@) = ane(Gn)Za(P; bi, .., bs;01,...

and

ZM([), bl, . .,bM;@l, . -a@M—l)

(%)
= Qb,{ZMfl(p;bl, - .,bﬂ,bﬂ+2,. .. ,bM;@l,. . .,@K —|—@,{+1,. oy

for M > k + 2. Then we have

ﬁl(N)(p,x;al, coyan; by oo by e 1Y)

~ (k)
_ g 2 .
= F (py @501, ... Qk_1, @, Ggy2y ..., QN;

bla"wbﬁfl;bmbivﬂa"'7bN;

h17 ey hﬁ—lﬂ hli-f—l? hn+2a s 7hN—1;y)'

On-1)

) @f{—l)

(23)

Hence we have this lemma by applying the inverse Fourier-Laplace transfor-
mations with respect to p = 7 — imlog(2 + |7|) to the equations (22) and

(23).
Lemma 16. Let by # byy1 fork=1,...,N —1. Then
(M) .
Fy7(t o
&171,...,aly)\l,...,aml,...,a,{’,\m...,
AN—-11y++-yAN=1AN_1)AN,1s- - AN AN
>\1 )\;@ /\N—l )\N
— —N— % %

bl,...,bl,...,b,i,...,b,{,...,bN_l,...,bN_l,bN,...,bN;
hi, oo shiag s Pty ooy P, ooy
hN—l,la cen 7hN—1,/\N,1,hN,1, .- -;hN,)\N—l;y)
(07

f(N) <t,$7b1,,b1\[7

)\1 )\Nfl
hl,# — hl,u—l hN—l,u — hN—Lu—l,
a AR a 1y 9
\ pn=1 Ly u=1 N-1u
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hl,O hl,)\l
Il Il
0 hia hio hig hay -1 hy ha
1,1 1,2 1,3 A1, a1
by by by by by
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Po—17 4 Poie x
I I
chker b hkp e P n,—1 b hpgq
Q1 a2 Q.3 Qg N, (k41,1
by by by by, b1

Figure 3: The situation when the impedances of the adjacent media may be
equal.

where M = Zszl Moy o =0, and hyo:=hy_1a, , fork=2,...,N — 1.

Proof. We obtain this lemma from repeating Lemma 15. [

By Lemma 16, we can only find out that the situation is as Figure 3 when
the impedances of the adjacent media may be equal, where we reconstruct
bi+1 and (hy—hi—1)/ai, as Theorem 13 and the constants ay,,, and hy , satisfy

TR T

A, Qe
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