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on the optimal singularity at the origin

Sei Nagayasu 1 and Hidemitsu Wadade 2

1Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

2Department of Mathematics, Taida Institute for Mathematical Sciences,
National Taiwan University, Taipei 106, Taiwan

Abstract

In the present paper, we investigate the optimal singularity at the origin for the functions
belonging to the critical Sobolev space H

n
p ,p(Rn), 1 < p < ∞. With this purpose, we shall

show the weighted Gagliardo-Nirenberg type inequality :

‖u‖Lq(Rn ; dx
|x|s ) ≤ C

(
1

n− s
) 1
q+ 1

p′
q

1
p′ ‖u‖

(n−s)p
nq

Lp(Rn)‖(−∆)
n
2pu‖1−

(n−s)p
nq

Lp(Rn) , (GN)

where C depends only on n and p. Here, 0 ≤ s < n and p̃ ≤ q < ∞ with some p̃ ∈ (p,∞)
determined only by n and p. Additionally, in the case n ≥ 2 and n

n−1 ≤ p <∞, we can prove
the growth orders for s as s ↑ n and for q as q → ∞ are both optimal. (GN) allows us to
prove the Trudinger type estimate with the homogeneous weight. Furthermore, it is obvious
that (GN) can not hold with the weight |x|n itself. However, with a help of the logarithmic

weight of the type
(

log 1
|x|
)r
|x|n at the origin, we cover this critical weight. Simultaneously,

we shall give the minimal exponent r = q+p′

p′ so that the continuous embedding can hold.

2000 Mathematics Subject Classification. Primary 46E35 ; Secondary 26D10.

Key words : Sobolev embedding theorem, Gagliardo-Nirenberg type inequality, Trudinger
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1 Introduction and main results

In the present paper, we give some characterization of the functions in H
n
p
,p(Rn) with n ∈ N

and 1 < p < ∞ called the critical Sobolev space in the sense that the continuous embedding
H

n
p
,p(Rn) ↪→ Lq(Rn) holds for all p ≤ q < ∞, but H

n
p
,p(Rn) 6⊂ L∞(Rn) which implies that

H
n
p
,p(Rn) possibly has a singularity at some point. Indeed, at least in the case n ≥ 2 and

n
n−1 ≤ p < ∞, a compactly supported function such as

[
log
(

1
|x|
)]τ

with 0 < τ < 1
p′ at the

origin implies the failure of the embedding in the case q =∞, see Lemma 2.6 in Section 2. More
precisely, Ozawa [12] gave the Gagliardo-Nirenberg type estimate of the following type :

‖u‖Lq(Rn) ≤ C q
1
p′ ‖u‖

p
q

Lp(Rn)‖(−∆)
n
2pu‖1−

p
q

Lp(Rn) (1.1)
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holds for all u ∈ H n
p
,p(Rn) and p ≤ q < ∞, where C depends only on n and p, and p′ := p

p−1
denotes the Hölder conjugate exponent of p. The inequality (1.1) was originally obtained by
Ogawa [9] and Ogawa-Ozawa [10] in the case p = 2, i.e., H

n
2
,2(Rn). Moreover, we refer to

Kozono-Wadade [6] which treats the marginal case of (1.1) as p→∞ in H
n
p
,p(Rn). In fact, the

functions having bounded mean oscillation BMO can be expressed as the limit case of H
n
p
,p(Rn)

with p =∞ in some sense, and [6] proved (1.1) with ‖(−∆)
n
2pu‖Lp(Rn) replaced by ‖u‖BMO. In

addition, Wadade [18] is also a generalization of (1.1) in terms of the Besov and the Triebel-
Lizorkin spaces.

Our purpose in this article is to generalize (1.1) with the weighted Lebesgue space. In
general, for a measurable weight function w(x), we define Lq

(
Rn ; dx

w(x)

)
as the function space

endowed with the norm :

‖u‖
Lq
(
Rn ; dx

w(x)

) :=
(∫

Rn
|u(x)|q dx

w(x)

) 1
q

for 1 < q <∞.

We shall show the following inequality with the homogeneous weight w(x) = |x|s :

Theorem 1.1. Let n ∈ N and 1 < p < ∞. Then there exist positive constants p̃ ∈ (p,∞) and
C which both depend only on n and p such that the inequality

‖u‖
Lq
(
Rn ; dx

|x|s
) ≤ C

(
1

n− s
) 1
q

+ 1
p′
q

1
p′ ‖u‖θLp(Rn)‖(−∆)

n
2pu‖1−θLp(Rn) (1.2)

holds for all u ∈ H n
p
,p(Rn), 0 ≤ s < n and p̃ ≤ q <∞, where θ := (n−s)p

nq ∈ (0, 1). Furthermore,

if n ≥ 2 and n
n−1 ≤ p < ∞, the growth orders

(
1

n−s
) 1
q

+ 1
p′ as s ↑ n and q

1
p′ as q → ∞ are both

optimal in the sense that we can not replace
(

1
n−s
) 1
q

+ 1
p′ and q

1
p′ by

(
1

n−s
) 1
q

+ 1
p′−ε and q

1
p′−ε for

any small ε > 0, respectively.

Remark 1.2. (i) If we do not pay attention to the growth orders of s and q, the inequality
(1.2) itself is shown by Caffarelli-Kohn-Nirenberg [1] with the first order derivative, i.e., n

p = 1.
However, we aim to obtain the optimal growth orders of s and q, and in fact we can prove that
those orders are optimal in the case n ≥ 2 and n

n−1 ≤ p < ∞. Unfortunately, we do not know
the optimality in the cases n = 1 and 1 < p < ∞, or n ≥ 2 and 1 < p < n

n−1 because of some
technical reason, see Lemma 2.6 in Section 2. Moreover, we shall prove a weighted Trudinger
type estimate as an effect of this growth order q

1
p′ as q →∞, which will be stated below.

(ii) The exponent p̃ actually can be chosen as p̃ := max{p+ 1, p′+ 1, n+ 1}. This restriction for
the range of q will be used to prove Lemma 2.4.

As stated in Remark 1.2 (i), we can prove a weighted Trudinger type estimate as an appli-
cation of Theorem 1.1 :
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Corollary 1.3. Let n ∈ N, 1 < p <∞, and define the function Φn,p by

Φn,p(t) := exp t−
j0−1∑

j=0

tj

j!
for t ∈ R with j0 := min{j ∈ N ; p′j ≥ p̃},

where p̃ ∈ (p,∞) is the positive constant given by Theorem 1.1. Then there exist two positive
constants α and β which depend only on n and p such that

∫

Rn
Φn,p

(
α(n− s)|u(x)|p′

) dx

|x|s ≤
β

n− s‖u‖
(n−s)p
n

Lp(Rn)

holds for all u ∈ H n
p
,p(Rn) with ‖(−∆)

n
2pu‖Lp(Rn) ≤ 1 and 0 ≤ s < n.

Remark 1.4. The procedure to get the Trudinger type estimate from the Gagliardo-Nirenberg
type estimate was originally seen in [9], [10], [11] and [12]. Especially, [11] clarified the relation-
ship between the positive constants in the Trudinger and the Gagliardo-Nirenberg type estimates
with the exact formula, which shows these two inequalities are actually equivalent each other.

Next, we shall state the result which deals with the critical weight s = n in Theorem 1.1.
Obviously, the inequality (1.1) can not hold with the weight |x|n itself. However, with a help of
the logarithmic weight, we shall show the following inequality :

Theorem 1.5. Let n ∈ N, 1 < p < r < ∞ and p ≤ q ≤ (r − 1)p′. Then there exists a positive
constant C which depends only on n, p, q and r such that

‖u‖
Lq
(
Rn ; dx

wr(x)

) ≤ C‖u‖
H
n
p ,p(Rn)

(1.3)

holds for all u ∈ H n
p
,p(Rn), where the weight function wr(x) is given by

wr(x) :=
[
log
(
e+

1
|x|
)]r
|x|n. (1.4)

Furthermore, if n ≥ 2 and n
n−1 ≤ p < ∞, the bound (r − 1)p′ is sharp in the sense that the

inequality (1.3) no longer holds provided q > (r − 1)p′.

Remark 1.6. (i) There are more general results of such embeddings in case of Besov and Triebel-
Lizorkin spaces including the Sobolev scale, cf. [5] and [7, 8], but restricted to Muckenhoupt
weights or so-called admissible weights, the former allows the weight to have a local singularity,
while the latter is some class of smooth functions. We emphasize that these classes of weight
functions do not cover the above limiting situation. Indeed, it is well-known that the weight 1

wr
as in (1.4) no longer belongs to even the class of Muckenhoupt weights.

(ii) Since there exists an upper bound (r − 1)p′ with respect to q so that the inequality (1.3)
holds, we can not deduce the Trudinger type estimate from the inequality (1.3) unlike the case
with the subcritical weight |x|s with 0 ≤ s < n. We additionally note that the critical exponent
q = (r − 1)p′ comes from the following computation :

(∫

{|x|< 1
2
}

[
log
(

1
|x|
)] q

p′ dx

wr(x)

) 1
q

=∞
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provided that q ≥ (r − 1)p′. Here, note that the marginal case q = (r − 1)p′ is included in
the above observation. However, we shall overcome this difficulty to get (1.3) by using the
generalized Young inequality by O’Neil [13], see Theorem B in Chapter 2.

Finally let us describe the organization of this article. Section 2 is devoted to prepare the
several lemmas for the proof of main theorems, and we shall show our theorems in Section 3.

2 Preliminaries

This chapter is devoted to prepare several lemmas for the proof of main theorems. First, let
us introduce the higher-dimensional Hardy inequality proved by Drábek-Heinig-Kufner [2] :

Theorem A. (i) Let U1 and V1 be non-negative weight functions in Rn, and 1 < p ≤ q < ∞.
Then the inequality

(∫

Rn

(∫

{|y|<|x|}
f(y)dy

)q
U1(x)dx

) 1
q

≤ C1

(∫

Rn
f(x)pV1(x)dx

) 1
p

holds for all f ≥ 0 a.e. in Rn if and only if

A1 := sup
R>0

(∫

{|x|>R}
U1(x)dx

) 1
q
(∫

{|x|<R}
V1(x)−(p′−1)dx

) 1
p′

<∞.

Moreover, the constant C1 can be taken as

C1 = (p′)
1
p′ p

1
qA1.

(ii) Let U2 and V2 be non-negative weight functions in Rn, and 1 < p ≤ q < ∞. Then the
inequality (∫

Rn

(∫

{|y|>|x|}
f(y)dy

)q
U2(x)dx

) 1
q

≤ C2

(∫

Rn
f(x)pV2(x)dx

) 1
p

holds for all f ≥ 0 a.e. in Rn if and only if

A2 := sup
R>0

(∫

{|x|<R}
U2(x)dx

) 1
q
(∫

{|x|>R}
V2(x)−(p′−1)dx

) 1
p′

<∞.

Moreover, the constant C2 can be taken as

C2 = (p′)
1
p′ p

1
qA2.

By scaling and changing a variable, we have the following variant of Theorem A :
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Theorem A′. (i) Let U1 and V1 be non-negative weight functions in Rn, and 1 < p ≤ q < ∞.
Then the inequality

(∫

Rn

(∫

{2|y|<|x|}
f(y)dy

)q
U1(x)dx

) 1
q

≤ C̃1

(∫

Rn
f(x)pV1(x)dx

) 1
p

holds for all f ≥ 0 a.e. in Rn if and only if

Ã1 := sup
R>0

(∫

{|x|>2R}
U1(x)dx

) 1
q
(∫

{|x|<R}
V1(x)−(p′−1)dx

) 1
p′

<∞.

Moreover, the constant C̃1 can be taken as

C̃1 = (p′)
1
p′ p

1
q Ã1.

(ii) Let U2 and V2 be non-negative weight functions in Rn, and 1 < p ≤ q < ∞. Then the
inequality

(∫

Rn

(∫

{|y|>2|x|}
f(y)dy

)q
U2(x)dx

) 1
q

≤ C̃2

(∫

Rn
f(x)pV2(x)dx

) 1
p

holds for all f ≥ 0 a.e. in Rn if and only if

Ã2 := sup
R>0

(∫

{|x|<R}
U2(x)dx

) 1
q
(∫

{|x|>2R}
V2(x)−(p′−1)dx

) 1
p′

<∞.

Moreover, the constant C̃2 can be taken as

C̃2 = (p′)
1
p′ p

1
q Ã2.

In what follows, C denotes a positive constant which may vary from line to line. We shall
show key lemmas by applying Theorem A′ below. The idea of this procedure was inspired by
Rakotondratsimba [14, 15], who proved the weighted Young inequalities for convolutions towards
the functions behaving like the Riesz potential |x|−(n−α) with 0 < α < n. However, we need
to consider not only the Riesz potential but also ϕ, ψ and the Bessel potential Gα which are
defined below, and for the purpose to get exact growth orders concerning s and q, we investigate
these individual kernels precisely. Lemma 2.1–Lemma 2.4 will be used to prove Theorem 1.1 in
Section 3.

Lemma 2.1. Let n ∈ N, 1 < p < ∞ and ϕ(x) = e−π|x|2. Then there exists a positive constant
C which depends only on n and p such that

‖ϕ ∗ u‖
Lq
(
Rn ; dx

|x|s
) ≤ C

(
1

n− s
) 1
q

‖u‖Lp(Rn) (2.1)

holds for all u ∈ Lp(Rn), 0 ≤ s < n and p ≤ q <∞.
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Proof. Obviously, it is enough to show the inequality (2.1) for non-negative functions. First,
we decompose the integral into three parts :

∫

Rn
(ϕ ∗ u)(x)q

dx

|x|s ≤ 3q
[∫

Rn

(∫

{|y|< |x|
2
}
ϕ(x− y)u(y)dy

)q
dx

|x|s

+
∫

Rn

(∫

{ |x|
2
≤|y|≤2|x|}

ϕ(x− y)u(y)dy

)q
dx

|x|s +
∫

Rn

(∫

{|y|>2|x|}
ϕ(x− y)u(y)dy

)q
dx

|x|s
]

=: 3q(S1 + S2 + S3).

We first estimate S1. Note that |y| < |x|
2 implies |x|2 < |x− y|. Hence, we see

∫

{|y|< |x|
2
}
ϕ(x− y)u(y)dy ≤


 sup
{ |x|

2
<|z|}

ϕ(z)



∫

{|y|< |x|
2
}
u(y)dy = e−

π|x|2
4

∫

{|y|< |x|
2
}
u(y)dy.

Thus we have

S1 ≤
∫

Rn

(∫

{|y|< |x|
2
}
u(y)dy

)q
e−

πq|x|2
4 |x|−sdx.

To apply Theorem A′ (i), we need to check the following condition :

(∫

{2R<|x|}
e−

πq|x|2
4 |x|−sdx

) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ Ã1 (2.2)

holds for all R > 0, where Ã1 is independent of R. Indeed, once (2.2) has been established, the
Hardy inequality yields that

S
1
q

1 ≤ (p′)
1
p′ p

1
q Ã1‖u‖Lp(Rn) ≤ CÃ1‖u‖Lp(Rn),

where C is independent of p and q since p ≤ q and sup
1<p<∞

p
1
p <∞.

To check the condition (2.2), we distinguish two cases :

Case 1. We assume R ≥ 1. In this case, we have

(∫

{2R<|x|}
e−

πq|x|2
4 |x|−sdx

) 1
q

≤
(∫

{2R<|x|}
e−

πqR|x|
2 |x|−sdx

) 1
q

=

(∫

{2R<|x|}
e−

πqR|x|
4 e−

πqR|x|
4 |x|−sdx

) 1
q

≤ e−πR
2

2

(∫

{2R<|x|}
e−

πqR|x|
4 |x|−sdx

) 1
q

≤ e−πR
2

2

(∫

{2<|x|}
e−

π|x|
4 dx

) 1
q

≤ Ce−πR
2

2 .
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By using the above estimate, we obtain
(∫

{2R<|x|}
e−

πq|x|2
4 |x|−sdx

) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ Ce−πR
2

2 R
n
p′ ≤ C (2.3)

for all R ≥ 1.

Case 2. We assume 0 < R < 1. In this case, we have
(∫

{2R<|x|}
e−

πq|x|2
4 |x|−sdx

) 1
q

≤
(∫

Rn
e−

πq|x|2
4 |x|−sdx

) 1
q

≤
(∫

{|x|<1}
e−

πq|x|2
4 |x|−sdx

) 1
q

+

(∫

{|x|≥1}
e−

πq|x|2
4 |x|−sdx

) 1
q

≤
(∫

{|x|<1}
|x|−sdx

) 1
q

+

(∫

{|x|≥1}
e−

π|x|2
4 dx

) 1
q

≤ C
(

1
n− s

) 1
q

+ C.

Thus we have,
(∫

{2R<|x|}
e−

πq|x|2
4 |x|−sdx

) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ C
(

1
n− s

) 1
q

(2.4)

for all 0 < R < 1. Therefore, combining (2.3) with (2.4), we can take Ã1 = C
(

1
n−s
) 1
q .

Next, we estimate S3 in the similar way as S1. Note that |y| > 2|x| implies |y|2 < |x − y|.
Hence, we see

∫

{|y|>2|x|}
ϕ(x− y)u(y)dy ≤

∫

{|y|>2|x|}


 sup
{ |y|

2
<|z|}

ϕ(z)


u(y)dy =

∫

{|y|>2|x|}
e−

π|y|2
4 u(y)dy.

Hence, we have

S3 ≤
∫

Rn

(∫

{|y|>2|x|}
h(y)dy

)q
|x|−sdx, where h(y) := e−

π|y|2
4 u(y).

To apply Theorem A′ (ii), we need to check the following condition :
(∫

{|x|<R}
|x|−sdx

) 1
q
(∫

{2R<|x|}

(
e
πp|x|2

4

)−(p′−1)

dx

) 1
p′

≤ Ã2 (2.5)

holds for all R > 0, where Ã2 is independent of R. Indeed, once (2.5) has been established, the
Hardy inequality yields that

S
1
q

3 ≤ (p′)
1
p′ p

1
q Ã2

(∫

Rn
h(x)pe

πp|x|2
4 dx

) 1
p

≤ CÃ2‖u‖Lp(Rn).
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To check the condition (2.5), we distinguish two cases :

Case 1. We assume R ≥ 1. Then we have
(∫

{|x|<R}
|x|−sdx

) 1
q

≤ C
(

1
n− s

) 1
q

R
n−s
q ≤ C

(
1

n− s
) 1
q

Rn.

On the other hand, we see
(∫

{2R<|x|}
e−

πp′|x|2
4 dx

) 1
p′

≤
(∫

{2R<|x|}
e−

πp′R|x|
2 dx

) 1
p′

=

(∫

{2R<|x|}
e−

πp′R|x|
4 e−

πp′R|x|
4 dx

) 1
p′

≤ e−πR
2

2

(∫

{2R<|x|}
e−

πp′R|x|
4 dx

) 1
p′

≤ e−πR
2

2

(∫

{2<|x|}
e−

π|x|
4 dx

) 1
p′

≤ Ce−πR
2

2 .

Thus by using above estimates, we obtain
(∫

{|x|<R}
|x|−sdx

) 1
q
(∫

{2R<|x|}
e−

πp′|x|2
4 dx

) 1
p′

≤ C
(

1
n− s

) 1
q

Rn e−
πR2

2 ≤ C
(

1
n− s

) 1
q

(2.6)

for all R ≥ 1.

Case 2. We assume 0 < R < 1. In this case, we see
(∫

{|x|<R}
|x|−sdx

) 1
q
(∫

{2R<|x|}
e−

πp′|x|2
4 dx

) 1
p′

≤
(∫

{|x|<1}
|x|−sdx

) 1
q (∫

Rn
e−

πp′|x|2
4 dx

) 1
p′ ≤ C

(
1

n− s
) 1
q

(2.7)

for all 0 < R < 1. Thus combining (2.6) with (2.7), we can take Ã2 = C
(

1
n−s
) 1
q .

Finally, we estimate S2. Note that |x|2 ≤ |y| ≤ 2|x| and 2k ≤ |x| < 2k+1 imply that
2k−1 ≤ |y| < 2k+2, and take r := nq

n−s ∈ [q,∞). Then by the Hölder inequality and the Young
inequality, we see

S2 =
∑

k∈Z

∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

ϕ(x− y)u(y)dy

)q
|x|−sdx

≤
∑

k∈Z
2−ks

∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

ϕ(x− y)u(y)dy

)q
dx

≤
∑

k∈Z
2−ksµ

(
{2k ≤ |x| < 2k+1}

)1− q
r

(∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

ϕ(x− y)u(y)dy

)r
dx

) q
r

8



≤ C
∑

k∈Z
2−ks+kn(1− q

r )
(∫

Rn

(∫

Rn
ϕ(x− y)u(y)χ{2k−1≤|·|<2k+2}(y)dy

)r
dx

) q
r

= C
∑

k∈Z
‖ϕ ∗ uχ{2k−1≤|·|<2k+2}‖qLr(Rn) ≤ C‖ϕ‖qLr̃(Rn)

∑

k∈Z
‖uχ{2k−1≤|·|<2k+2}‖qLp(Rn)

≤ Cq
∑

k∈Z

(∫

{2k−1≤|x|<2k+2}
u(x)pdx

) q
p

≤ Cq
(∑

k∈Z

∫

{2k−1≤|x|<2k+2}
u(x)pdx

) q
p

= Cq‖u‖qLp(Rn),

where r̃ ∈ [1,∞) is defined by 1
r + 1 = 1

r̃ + 1
p , and µ denotes the Lebesgue measure. In the

above estimates, we used the fact that max
1≤r̃≤∞

‖ϕ‖Lr̃(Rn) < ∞ since ϕ ∈ S(Rn). Thus we finish

the proof.

We proceed to prove the following lemma :

Lemma 2.2. Let n ∈ N, 0 < α < n and define the function ψ by

ψ(x) :=
∫

Rn

∣∣∣|x|−(n−α) − |x− y|−(n−α)
∣∣∣ e−π|y|2dy for x ∈ Rn \ {0}.

Then there exists a positive constant C which depends only on n and α such that ψ satisfies

ψ(x) ≤ C min{|x|−(n−α), |x|−(n−α+1)} for all x ∈ Rn \ {0}.

Proof. We first decompose ψ into three integrals :

ψ(x) =
∫

{|y|≤ |x|
2
}

∣∣∣|x|−(n−α) − |x− y|−(n−α)
∣∣∣ e−π|y|2dy

+
∫

{ |x|
2
<|y|<2|x|}

∣∣∣|x|−(n−α) − |x− y|−(n−α)
∣∣∣ e−π|y|2dy

+
∫

{|y|≥2|x|}

∣∣∣|x|−(n−α) − |x− y|−(n−α)
∣∣∣ e−π|y|2dy =: ψ1(x) + ψ2(x) + ψ3(x).

First, we estimate ψ1. For |y| ≤ |x|2 , we see

∣∣∣|x|−(n−α) − |x− y|−(n−α)
∣∣∣=
∣∣∣∣
∫ 1

0

d

dτ

[
|x− τy|−(n−α)

]
dτ

∣∣∣∣≤(n− α)|y|
∫ 1

0
|x− τy|−(n−α+1)dτ

= (n− α)|y||x|−(n−α+1)

∫ 1

0

∣∣∣∣
x

|x| − τ
y

|x|

∣∣∣∣
−(n−α+1)

dτ ≤ (n− α)|y||x|−(n−α+1)

∫ 1

0

∣∣∣∣1− τ
|y|
|x|

∣∣∣∣
−(n−α+1)

dτ

≤ (n− α)|y||x|−(n−α+1)

∫ 1

0

(
1− τ

2

)−(n−α+1)
dτ = C|y||x|−(n−α+1).

Thus on one hand, we see

ψ1(x) ≤ C|x|−(n−α+1)

∫

{|y|≤ |x|
2
}
|y|e−π|y|2dy ≤ C|x|−(n−α+1)

∫

Rn
|y|e−π|y|2dy = C|x|−(n−α+1),
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and on the other hand, we obtain

ψ1(x) ≤ C|x|−(n−α+1)

∫

{|y|≤ |x|
2
}
|y|e−π|y|2dy ≤ C|x|−(n−α)

∫

{|y|≤ |x|
2
}
e−π|y|

2
dy

≤ C|x|−(n−α)

∫

Rn
e−π|y|

2
dy = C|x|−(n−α).

Next, we estimate ψ2 as follows :

ψ2(x) ≤ |x|−(n−α)

∫

{ |x|
2
<|y|<2|x|}

e−π|y|
2
dy +

∫

{ |x|
2
<|y|<2|x|}

|x− y|−(n−α)e−π|y|
2
dy

≤ |x|−(n−α)e−
π|x|2

4

∫

{|y|<2|x|}
dy + e−

π|x|2
4

∫

{ |x|
2
<|y|<2|x|}

|x− y|−(n−α)dy

≤ C|x|αe−π|x|
2

4 + e−
π|x|2

4

∫

{|z|<3|x|}
|z|−(n−α)dz = C|x|αe−π|x|

2

4

≤ C min{|x|−(n−α), |x|−(n−α+1)}.
Finally, we estimate ψ3.

ψ3(x) ≤ |x|−(n−α)

∫

{|y|≥2|x|}
e−π|y|

2
dy +

∫

{|y|≥2|x|}
|x− y|−(n−α)e−π|y|

2
dy =: ψ31(x) + ψ32(x).

On one hand, we see

ψ31(x) ≤ |x|−(n−α)

∫

Rn
e−π|y|

2
dy = C|x|−(n−α),

and on the other hand, for |x| ≥ 1 we have

ψ31(x) ≤ |x|−(n−α)

∫

{|y|≥2|x|}
e−2π|x||y|dy ≤ |x|−(n−α)e−2π|x|2

∫

{|y|≥2|x|}
e−π|x||y|dy

≤ |x|−(2n−α)e−2π|x|2
∫

Rn
e−π|z|dz ≤ C|x|−(n−α+1).

Next, note that |y| ≥ 2|x| implies |x− y| ≥ |x|. Then we see

ψ32(x) ≤ |x|−(n−α)

∫

{|y|≥2|x|}
e−π|y|

2
dy = ψ31(x).

Thus the estimate of ψ32 can be reduced to the estimate of ψ31(x), and we finish the proof.

We can get the following lemma by applying Lemma 2.2 :

Lemma 2.3. Let n ∈ N, 1 < p <∞ and set the function ψ as in Lemma 2.2 with α = n
p . Then

there exists a positive constant C which depends only on n and p such that the estimate

‖ψ‖Lr(Rn) ≤ C
(

1
p′ − r +

1
(n+ p′)r − np′

) 1
r

holds for all np′
n+p′ < r < p′.
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Proof. By using Lemma 2.2, we see that

‖ψ‖rLr(Rn) =
∫

{|x|<1}
ψ(x)rdx+

∫

{|x|≥1}
ψ(x)rdx

≤ C
(∫

{|x|<1}
|x|−nrp′ dx+

∫

{|x|≥1}
|x|−

(
n
p′+1

)
r
dx

)
≤ C

(
1

p′ − r +
1

(n+ p′)r − np′
)
.

Furthermore, by applying Lemmas 2.2 and 2.3, we prove the following :

Lemma 2.4. Let n ∈ N, 1 < p <∞ and set the function ψ as in Lemma 2.2 with α = n
p . Then

there exist positive constants p̃ ∈ (p,∞) and C which both depend only on n and p such that the
inequality

‖ψ ∗ u‖
Lq
(
Rn : dx

|x|s
) ≤ C

(
1

n− s
) 1
q

+ 1
p′
q

1
p′ ‖u‖Lp(Rn)

holds for all u ∈ Lp(Rn), 0 ≤ s < n and p̃ ≤ q <∞.

We prove Lemma 2.4 in the similar way to the proof of Lemma 2.1. However, it should be noted
that the function ψ has a singularity at the origin which is a major difference between ψ and
ϕ ∈ S(Rn).

Proof. We may assume u is non-negative, and we take p̃ := max{p+ 1, p′+ 1, n+ 1} ≤ q <∞.

The integral is decomposed into three parts :
∫

Rn
(ψ ∗ u)(x)q|x|−sdx ≤ 3q

[∫

Rn

(∫

{|y|< |x|
2
}
ψ(x− y)u(y)dy

)q
|x|−sdx

+
∫

Rn

(∫

{ |x|
2
≤|y|≤2|x|}

ψ(x− y)u(y)dy

)q
|x|−sdx+

∫

Rn

(∫

{|y|>2|x|}
ψ(x− y)u(y)dy

)q
|x|−sdx

]

=: 3q(T1 + T2 + T3).

First, we estimate T1. Note that |y| < |x|
2 implies |x|2 < |x− y|. Hence, we see

T1 ≤
∫

Rn

(∫

{|y|< |x|
2
}
u(y)dy

)q
ψ̃(x)q|x|−sdx, where ψ̃(x) := sup

{|z|> |x|
2
}
ψ(z).

To apply Theorem A′ (i), we need to check the following condition :

(∫

{2R<|x|}
ψ̃(x)q|x|−sdx

) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ Ã1 (2.8)

holds for all R > 0. Indeed, once (2.8) has been established, the Hardy inequality yields

T
1
q

1 ≤ CÃ1‖u‖Lp(Rn).
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Note that Lemma 2.2 shows

ψ̃(x) ≤ C min
{
|x|− n

p′ , |x|−
(
n
p′+1

)}
for all x ∈ Rn \ {0}. (2.9)

We distinguish two cases :

Case 1. We assume R ≥ 1. By using the latter estimate of (2.9), we see

(∫

{2R<|x|}
ψ̃(x)q|x|−sdx

) 1
q

≤ C
(∫

{2R<|x|}
|x|−

(
n
p′+1

)
q−s

dx

) 1
q

≤ C

 1(

n
p′ + 1

)
q − (n− s)




1
q

R
− n
p′+

n−s
q
−1 ≤ C


 1(

n
p′ + 1

)
q − n




1
q

R
− n
p′+

n−s
q
−1 ≤ CR− n

p′+
n−s
q
−1
,

where we used q ≥ n+ 1 to get a constant C independent of s and q. Thus since q ≥ n+ 1 and
R ≥ 1, the above estimate yields that

(∫

{2R<|x|}
ψ̃(x)q|x|−sdx

) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ CRn−s
q
−1 ≤ C for all R ≥ 1.

Case 2. We assume 0 < R < 1. In this case, we have

(∫

{2R<|x|}
ψ̃(x)q|x|−sdx

) 1
q

≤
(∫

{2R<|x|<2}
ψ̃(x)q|x|−sdx

) 1
q

+

(∫

{|x|≥2}
ψ̃(x)q|x|−sdx

) 1
q

=: B1 +B2.

By using q ≥ n+ 1 and the latter estimate of (2.9), we see

B2 ≤ C
(∫

{|x|≥2}
|x|−

(
n
p′+1

)
q−s
) 1

q

≤ C

 1(

n
p′ + 1

)
q − (n− s)

2−
[(

n
p′+1

)
q−(n−s)

]


1
q

≤ C

 1(

n
p′ + 1

)
q − n




1
q

≤ C,

and by q ≥ p′ + 1 and the former estimate of (2.9), we obtain

B1 ≤ C
(∫

{2R<|x|<2}
|x|−

nq
p′ −sdx

) 1
q

≤ C

R

−
[
nq
p′ −(n−s)

]
− 1

nq
p′ − (n− s)




1
q

≤ C
(

1
nq
p′ − n

) 1
q

R
− n
p′+

n−s
q ≤ CR− n

p′+
n−s
q for all 0 < R < 1.
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Thus we get

(∫

{2R<|x|}
ψ̃(x)q|x|−sdx

) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ C
(
R
n−s
q +R

n
p′
)
≤ C for all 0 < R < 1.

As a consequence, we can take Ã1 = C which depends only on n and p.

Next, we estimate T3. Note that 2|x| < |y| implies |y|2 < |x− y|. Then we see

T3 ≤
∫

Rn

(∫

{|y|>2|x|}
h(y)dy

)q
|x|−sdx, where h(y) := ψ̃(y)u(y).

To apply Theorem A′ (ii), we need to check the following condition :

(∫

{|x|<R}
|x|−sdx

) 1
q
(∫

{2R<|x|}

(
ψ̃(x)−p

)−(p′−1)
dx

) 1
p′

≤ Ã2 (2.10)

holds for all R > 0 with some Ã2 independent of R. Indeed, once (2.10) has been established,
the Hardy inequality yields

T
1
q

3 ≤ (p′)
1
p′ p

1
q Ã2

(∫

Rn
h(x)pψ̃(x)−pdx

) 1
p

≤ CÃ2‖u‖Lp(Rn).

We distinguish two cases :

Case 1. We assume R ≥ 1. In this case, by q ≥ n+ 1 and the latter estimate of (2.9), we have

(∫

{|x|<R}
|x|−sdx

) 1
q
(∫

{2R<|x|}
ψ̃(x)p

′
dx

) 1
p′

≤ C
(

1
n− s

) 1
q

R
n−s
q

(∫

{2R<|x|}
|x|−

(
n
p′+1

)
p′
dx

) 1
p′

= C

(
1

n− s
) 1
q

R
n−s
q
−1 ≤ C

(
1

n− s
) 1
q

for all R ≥ 1.

Case 2. We assume 0 < R < 1. In this case, we see

(∫

{2R<|x|}
ψ̃(x)p

′
dx

) 1
p′

≤
(∫

{2R<|x|<2}
ψ̃(x)p

′
dx

) 1
p′

+

(∫

{|x|≥2}
ψ̃(x)p

′
dx

) 1
p′

=: B̃1 + B̃2.

The latter estimate of (2.9) yields B̃2 <∞, and the former estimate of (2.9) shows

B̃1 ≤ C
(∫

{2R<|x|<2}
|x|−ndx

) 1
p′

= C

(
log

1
R

) 1
p′

for all 0 < R < 1.
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Thus we get
(∫

{|x|<R}
|x|−sdx

) 1
q
(∫

{2R<|x|}
ψ̃(x)p

′
dx

) 1
p′

≤ C
(

1
n− s

) 1
q

R
n−s
q

(
1 +

(
log

1
R

) 1
p′
)

(2.11)

for all 0 < R < 1. Elementary calculus gives

max
{0<R<1}

g(R) := max
{0<R<1}

R
n−s
q

(
log

1
R

) 1
p′

= g
(
e
− q
p′(n−s)

)
=
(

q

ep′(n− s)
) 1
p′

= C

(
1

n− s
) 1
p′
q

1
p′ .

(2.12)
Combining (2.11) with (2.12) yields

(∫

{|x|<R}
|x|−sdx

) 1
q
(∫

{2R<|x|}
ψ̃(x)p

′
dx

) 1
p′

≤ C
(

1
n− s

) 1
q

+ 1
p′
q

1
p′ ,

and then we can take Ã2 = C
(

1
n−s
) 1
q

+ 1
p′
q

1
p′ .

Finally, we estimate T2. Note that |x|2 ≤ |y| ≤ 2|x| and 2k ≤ |x| < 2k+1 imply that
2k−1 ≤ |y| < 2k+2, and take r := nq

n−s ∈ [q,∞). Then by the Hölder inequality and the Young
inequality, we see

T2 =
∑

k∈Z

∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

ψ(x− y)u(y)dy

)q
|x|−sdx

≤
∑

k∈Z
2−ks

∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

ψ(x− y)u(y)dy

)q
dx

≤ C
∑

k∈Z
2−ks+kn(1− q

r )
(∫

Rn

(∫

Rn
ψ(x− y)u(y)χ{2k−1≤|·|<2k+2}(y)dy

)r
dx

) q
r

= C
∑

k∈Z
‖ψ ∗ uχ{2k−1≤|·|<2k+2}‖qLr(Rn) ≤ C‖ψ‖qLr̃(Rn)

∑

k∈Z
‖uχ{2k−1≤|·|<2k+2}‖qLp(Rn)

≤
(
C‖ψ‖Lr̃(Rn)‖u‖Lp(Rn)

)q
,

where r̃ is defined by 1
r + 1 = 1

r̃ + 1
p , i.e., 1

r̃ = 1
p′ + n−s

nq . Since q ≥ max{p + 1, n + 1} and

0 ≤ s < n, we see max{1, np′
n+p′ } < r̃ < p′. By Lemma 2.3, we easily see that

‖ψ‖Lr̃(Rn) ≤ C
(

q

n− s
) 1
p′
.

Therefore, we get

T
1
q

2 ≤ C
(

q

n− s
) 1
p′ ‖u‖Lp(Rn),

which finishes the proof.
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Next, for the proof of Theorem 1.5, we prepare several tools. First, we recall the Bessel
potential Gα(x) with 0 < α < n defined by

Gα(x) :=
1

(4π)
α
2 Γ
(
α
2

)
∫ ∞

0
t−

n−α
2
−1e−

π|x|2
t
− t

4π dt for x ∈ Rn,

where Γ denotes the Gamma function. By virtue of the identity (I − ∆)−
α
2 f = Gα ∗ f for

f ∈ S ′(Rn), Theorem 1.5 can be changed into the following equivalent form :

Theorem 1.5′. Let n ∈ N, 1 < p < r < ∞, p ≤ q ≤ (r − 1)p′, and let wr(x) be the weight
function as in Theorem 1.5. Then there exists a positive constant C which depends only on n,
p, q and r such that ∥∥∥Gn

p
∗ f
∥∥∥
Lq
(
Rn ; dx

wr(x)

) ≤ C‖f‖Lp(Rn)

holds for all f ∈ Lp(Rn).

For the treatment of the marginal case q = (r − 1)p′ in Theorem 1.5 ′, we need to recall the
weak Lebesgue space Lpw(Rn) for 1 < p < ∞ and the generalized Young inequality : We say
f ∈ Lpw(Rn) if the following norm is finite, i.e.,

‖f‖Lpw(Rn) := sup
λ>0

µ ({x ∈ Rn ; |f(x)| > λ}) 1
p λ,

where µ denotes the Lebesgue measure. Then O’Neil [13] proved the following inequality which
generalizes the usual Young inequality :

Theorem B. Let n ∈ N and 1 < p < q < ∞. Then there exists a positive constant C which
depends only on n, p and q such that

‖f ∗ g‖Lq(Rn) ≤ C‖f‖Lrw(Rn)‖g‖Lp(Rn), (2.13)

where the exponent r ∈ (1,∞) is determined by 1 + 1
q = 1

r + 1
p .

Actually, O’Neil [13] proved more general inequality than (2.13) in terms of Lorentz spaces
Lpq(Rn) with 1 < p <∞ and 1 ≤ q ≤ ∞. However, since it is well-known that Lp∞(Rn) = Lpw(Rn),
we obtain Theorem B as a particular case of the result in [13].

Furthermore, we establish the decay estimate for Gα(x), which is essentially shown in
Stein [16]. However, we shall include the verification for the sake of completeness.

Lemma 2.5. Let n ∈ N and 0 < α < n. Then there exists a positive constant C which depends
only on n and α such that

Gα(x) ≤
{
C |x|−(n−α) for x ∈ Rn \ {0},
C e−|x| for x ∈ Rn with |x| ≥ 1.
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Proof. For x ∈ Rn \ {0}, changing a variable yields

Gα(x) ≤ C
∫ ∞

0
t−

n−α
2
−1e−

π|x|2
t dt = C|x|−(n−α)

∫ ∞
0

τ−
n−α

2
−1e−

π
τ dτ = C|x|−(n−α),

which proves the former decay estimate in Lemma 2.5.

Next assume |x| ≥ 1. First, we obtain

∫ 1

0
t−

n−α
2
−1e−

π|x|2
t
− t

4π dt ≤
∫ 1

0
t−

n−α
2
−1e−

π|x|2
2t
−π|x|2

2t dt ≤ e−π|x|
2

2

∫ 1

0
t−

n−α
2
−1e−

π|x|2
2t dt

≤ e−π|x|
2

2

∫ 1

0
t−

n−α
2
−1e−

π
2tdt = Ce−

π|x|2
2 ≤ Ce−|x|. (2.14)

Moreover, elementary calculus shows that the function e−
π|x|2
t
− t

4π for t > 0 has a maximum at
t = 2π|x|, and then we have

∫ ∞
1

t−
n−α

2
−1e−

π|x|2
t
− t

4π dt ≤ e−|x|
∫ ∞

1
t−

n−α
2
−1dt = Ce−|x|. (2.15)

Combining (2.14) with (2.15), we get the latter estimate in Lemma 2.5.

In the end of this chapter, we prove a lemma which is necessary for the proof of the optimality
of both Theorem 1.1 and Theorem 1.5. We first define

vτ (x) :=
(

log
1
|x|
)τ

η
(|x|) for x ∈ Rn \ {0}, (2.16)

where we take η ∈ C∞([0,∞)) satisfying the followings :

(i) 0 ≤ η(t) ≤ 1 for t ∈ [0,∞) ; (ii) η(t) ≡ 1 for 0 ≤ t ≤ 1
6

; (iii) η(t) ≡ 0 for t ≥ 1
5
.

We remark that the following lemma can be understood as the explicit version of the extremal
function studied in [3, Theorem 2.7.1] and [4, Theorem 2.1].

Lemma 2.6. Let n ≥ 2 and n
n−1 ≤ p <∞. Then vτ ∈ H

n
p
,p(Rn) holds for any τ ∈ (0, 1

p′ ) with
the estimate :

‖vτ‖
H
n
p ,p(Rn)

≤ C
(

1
1
p′ − τ

) 1
p

,

where a positive constant C depends only on n and p.

Proof. We first remark that the direct computation yields the derivative estimates of vτ : for
any l ∈ N, there exists cl depending only on l such that

|∂βxvτ (x)| ≤ clṽτ,l
(|x|) holds for 1 ≤ |β| ≤ l, τ ∈ (0, 1) and x ∈ Rn \ {0},
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where ṽτ,l(t) := t−l(log 1
t )
τ−1χ[0, 1

4
](t), t ∈ (0,∞). We note that the function ṽτ,l is non-increasing

on (0,∞) for l ≥ 1 and τ ∈ (0, 1). In this proof, C denotes a positive constant which depends
only on n and p. It is easy to show ‖vτ‖Lp(Rn) ≤ C for all τ ∈ (0, 1). Now let n

p = m+α, where
m is a non-negative integer and α ∈ [0, 1). In the case of α = 0, we can prove

‖∂βxvτ‖Lp(Rn) ≤ C
(

1
1
p′ − τ

) 1
p

for 1 ≤ |β| ≤ m and 0 < τ <
1
p′

by directly estimating the Lp(Rn)-norm of the derivatives of vτ . Then hereafter we assume that
α ∈ (0, 1). We have 0 ≤ m ≤ n−2 by the assumption p ≥ n

n−1 and α 6= 0. We prove this lemma

by applying the characterization of H
n
p
,p(Rn) in [17, §1.7, §2.1]. Thus it is enough to show that

∫

Rn

(∫

Rn

|(∂βxvτ )(x+ y)− (∂βxvτ )(x)|
|y|n+α

dy

)p
dx ≤ C

1
p′ − τ

for |β| ≤ m and 0 < τ <
1
p′

(2.17)

because we already obtained ‖vτ‖Lp(Rn) ≤ C for all 0 < τ < 1. Then we focus on the estimate
of the integrand of (2.17). We first divide the integrand into three parts as follows :

J(x) :=
∫

Rn

|(∂βxvτ )(x+ y)− (∂βxvτ )(x)|
|y|n+α

dy ≤
∫

Rn

∫ 1

0

∣∣∣(∇∂βxvτ )(x+ ty)
∣∣∣ dt |y|−n−α+1dy

≤ C
∫

Rn

∫ 1

0
ṽτ,m+1

(|x+ ty|)dt |y|−n−α+1dy ≤ C
(∫

{|y|< |x|
2
}

∫ 1

0
ṽτ,m+1

(|x+ ty|)dt |y|−n−α+1dy

+
∫

{ |x|
2
≤|y|≤2|x|}

∫ 1

0
ṽτ,m+1

(|x+ ty|)dt |y|−n−α+1dy

+
∫

{|y|>2|x|}

∫ 1

0
ṽτ,m+1

(|x+ ty|)dt |y|−n−α+1dy

)
=: C(J1(x) + J2(x) + J3(x)).

Since we have |x+ ty| ≥ |x|2 for any |y| < |x|
2 and 0 ≤ t ≤ 1, we estimate J1 as follows:

J1(x) ≤
∫

{|y|< |x|
2
}

∫ 1

0
ṽτ,m+1

( |x|
2

)
dt |y|−n−α+1dy = C|x|−np

(
log

2
|x|
)τ−1

χ[0, 1
2

]

(|x|).

Next, we estimate J2. By changing a variable z = x+ ty, we have

J2(x) ≤ C|x|−n−α+1

∫ 1

0

∫

{ |x|
2
≤|y|≤2|x|}

ṽτ,m+1

(|x+ ty|)dy dt

= C|x|−n−α+1

∫ 1

0

∫

{ t|x|
2
≤|z−x|≤2t|x|}

ṽτ,m+1

(|z|)dz t−ndt

= C|x|−n−α+1

[∫

{ |x|
2
≤|z−x|≤2|x|}

∫ 1

|z−x|
2|x|

t−ndt ṽτ,m+1

(|z|)dz

17



+
∫

{|z−x|< |x|
2
}

∫ 2|z−x|
|x|

|z−x|
2|x|

t−ndt ṽτ,m+1

(|z|)dz
]

=: C|x|−n−α+1(J21(x) + J22(x)).

Note that |x|2 ≤ |z − x| ≤ 2|x| implies |z−x|2|x| ≥ 1
4 and |z| ≤ 3|x|. Then by using the condition

m ≤ n− 2, we can estimate J21 as

J21(x) ≤ C
∫

{ |x|
2
≤|z−x|≤2|x|}

ṽτ,m+1

(|z|)dz ≤ C
∫

{|z|≤3|x|}
ṽτ,m+1

(|z|)dz

=





C

(n−m− 1)τ

∫ ∞
(n−m−1) log 4

στ−1e−σdσ ≤ C if |x| > 1
12
,

C

(n−m− 1)τ

∫ ∞
(n−m−1) log 1

3|x|

στ−1e−σdσ ≤ C|x|n−m−1

(
log

1
3|x|

)τ−1

if |x| ≤ 1
12
,

where we used the following claim :

Claim. The estimate
∫ ∞
t

στ−1e−σdσ ≤ tτ−1e−t holds for any t > 0 and 0 < τ < 1.

Indeed, this claim is shown as
∫ ∞
t

στ−1e−σdσ = tτ−1e−t − (1− τ)
∫ ∞
t

στ−2e−σdσ ≤ tτ−1e−t.

On the other hand, we can estimate J22 as

J22(x) ≤ C|x|n−1

∫

{|z−x|≤ |x|
2
}

1
|z − x|n−1

ṽτ,m+1

(|z|)dz

≤ C|x|n−1ṽτ,m+1

( |x|
2

)∫

{|z−x|≤ |x|
2
}

1
|z − x|n−1

dz = C|x|n−m−1

(
log

2
|x|
)τ−1

χ[0, 1
2

]

(|x|)

since |z| ≥ |x|2 holds for |z − x| ≤ |x|2 . Lastly, we estimate J3. By changing a variable z = ty, we
divide the integral into two parts as follows :

J3(x) =
∫ 1

0

∫

{|z|>2t|x|}
ṽτ,m+1

(|x+ z|)|z|−n−α+1tα−1dz dt

=
∫

{|z|>2|x|}

∫ 1

0
tα−1dt ṽτ,m+1

(|x+ z|)|z|−n−α+1dz

+
∫

{|z|≤2|x|}

∫ |z|
2|x|

0
tα−1dt ṽτ,m+1

(|x+ z|)|z|−n−α+1dz =: J31(x) + J32(x).

We now estimate J31. We first remark that we have J31(x) ≡ 0 for |x| > 1
4 since |x + z| > 1

4

holds for |z| > 2|x| and |x| > 1
4 . Then we consider |x| ≤ 1

4 . Since we have |x + z| > |z|
2 for any

|z| > 2|x|, we have

J31(x) =
1
α

∫

{|z|>2|x|}
ṽτ,m+1

(|x+ z|)|z|−n−α+1dz ≤ 1
α

∫

{|z|>2|x|}
ṽτ,m+1

( |z|
2

)
|z|−n−α+1dz

18



=
C

(np )τ

∫ n
p

log 1
|x|

n
p

log 4
στ−1eσdσ ≤ C|x|−np

(
log

1
|x|
)τ−1

for |x| ≤ 1
4 , where we used the following claim :

Claim. Fix a > 0. Then there exists a positive constant Ca depending only on a
such that ∫ t

a
στ−1eσdσ ≤ Catτ−1et

holds for any t > a and 0 < τ < 1.

Indeed, this claim is shown as follows. First, it is easy to show
∫ t

2 σ
τ−1eσdσ ≤ 2tτ−1et for t ≥ 2.

Hence we may assume a < 2. Then we have
∫ 2

a
στ−1eσdσ ≤ C ′a and tτ−1et ≥ (1− τ)τ−1e1−τ ≥ 1 for t > 0 and 0 < τ < 1,

where a positive constant C ′a depends only on a. Therefore, this claim is true. Now we estimate
J32. We divide it into two parts as follows :

J32(x) = C|x|−α
∫

{|z|≤2|x|}
ṽτ,m+1

(|x+ z|)|z|−n+1dz

= C|x|−α
(∫

{|z|< |x|
2
}
ṽτ,m+1

(|x+ z|)|z|−n+1dz +
∫

{ |x|
2
≤|z|≤2|x|}

ṽτ,m+1

(|x+ z|)|z|−n+1dz

)

=: C|x|−α(J321(x) + J322(x)).

Since |z| < |x|
2 yields |x+ z| > |x|

2 , we have

J321(x) ≤
∫

{|z|< |x|
2
}
ṽτ,m+1

( |x|
2

)
|z|−n+1dz = C|x|−m

(
log

2
|x|
)τ−1

χ[0, 1
2

]

(|x|).

On the other hand, we remark that |x+ z| ≤ 3|x| holds for |z| ≤ 2|x|. Hence, we have

J322(x) ≤ C|x|−n+1

∫

{ |x|
2
≤|z|≤2|x|}

ṽτ,m+1

(|x+ z|)dz ≤ C|x|−n+1

∫

{|y|≤3|x|}
ṽτ,m+1

(|y|)dy

≤





C|x|−n+1 if |x| > 1
12
,

C|x|−m
(

log
1

3|x|
)τ−1

if |x| ≤ 1
12

since m ≤ n− 2 in the same way as the estimate of J21.

Summing up, we obtain

J(x) ≤ C


|x|−

n
p

∑

l= 1
2
, 1, 3

(
log

1
l|x|
)τ−1

χ[0, 1
4l

]

(|x|)+ |x|−n−α+1χ( 1
12
,∞)

(|x|)

 .
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Therefore, we have

‖J‖Lp(Rn) ≤ C
∑

l= 1
2
, 1, 3

∥∥∥∥∥|·|
−n
p

(
log

1
l|·|
)τ−1

χ[0, 1
4l

]

(|·|)
∥∥∥∥∥
Lp(Rn)

+ C
∥∥∥|·|−n−α+1χ( 1

12
,∞)

(|·|)
∥∥∥
Lp(Rn)

= C

(∫ 1
4

0

1
t

(
log

1
t

)p(τ−1)

dt

) 1
p

+ C

(∫ ∞
1
12

t−p(n−m−1)−1dt

) 1
p

≤ C
(

1
1
p′ − τ

) 1
p

since m ≤ n− 2 and 0 < τ < 1
p′ , which is the desired estimate.

3 Proof of main theorems

In this chapter, we prove Theorem 1.1 and Theorem 1.5 ′ by using lemmas in Section 2.

Proof of Theorem 1.1. We first prove the optimality of the growth orders with respect to s
and q, which is easily seen by applying Lemma 2.6. Indeed, let vτ be the function defined in
(2.16) for 0 < τ < 1

p′ . Then the direct computation yields

‖vτ‖Lq(Rn ; dx
|x|s

) ≥
(∫

{|x|≤ 1
6
}

[
log
(

1
|x|
)]τq dx

|x|s
) 1

q

= O

((
1

n− s
) 1
q

+τ

qτ

)
(3.1)

as s ↑ n and q → ∞ for all τ ∈ (0, 1
p′ ). Since vτ ∈ H

n
p
,p(Rn) for all τ ∈ (0, 1

p′ ) if n ≥ 2 and
n
n−1 ≤ p <∞ by Lemma 2.6, (3.1) clearly implies the growth orders of s and q are both optimal.

Thus we proceed to the proof of the affirmative part of Theorem 1.1. We may assume
u ∈ S(Rn) since S(Rn) is dense in H

n
p
,p(Rn). In what follows, F and F−1 denote the Fourier

and the Fourier inverse transforms, respectively. Then for any K > 0, the function u can be
decomposed into two parts such as

u(x) =
∫

Rn
e2πi x·ξ(Fu)(ξ)dξ

=
∫

Rn
e2πi x·ξ(Fu)(ξ)ϕ

(
ξ

K

)
dξ +

∫

Rn
e2πi x·ξ(Fu)(ξ)

(
1− ϕ

(
ξ

K

))
dξ =: u1(x) + u2(x),

where ϕ is the function as in Lemma 2.1. We first estimate the integral of u1. Since Fϕ = ϕ,
we have

F−1
[
ϕ
( ·
K

)]
(x) = Knϕ(Kx) =: ϕK(x).

Then note that u1(x) = ϕK ∗ u(x). Since we have the scaling (ϕK ∗ u)
(
x
K

)
= ϕ ∗ (u ( ·K

))
(x),

Lemma 2.1 yields

(∫

Rn
|u1(x)|q|x|−sdx

) 1
q

=
(∫

Rn
|ϕK ∗ u(x)|q|x|−sdx

) 1
q
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= K
−n−s

q

(∫

Rn

∣∣∣(ϕK ∗ u)
( y
K

)∣∣∣
q
|y|−sdy

) 1
q

= K
−n−s

q

(∫

Rn

∣∣∣
[
ϕ ∗

(
u
( ·
K

))]
(y)
∣∣∣
q
|y|−sdy

) 1
q

≤ C
(

1
n− s

) 1
q

K
−n−s

q

∥∥∥u
( ·
K

)∥∥∥
Lp(Rn)

= C

(
1

n− s
) 1
q

K
n
p
−n−s

q ‖u‖Lp(Rn) (3.2)

for all K > 0.

Next, we estimate the integral of u2. For any K > 0, the function u2 can be rewritten as

u2(x) =
∫

Rn
e2πi x·ξ

1− ϕ
(
ξ
K

)

(2π|ξ|)np
(2π|ξ|)np (Fu)(ξ)dξ = ψ̃K ∗ (−∆)

n
2pu(x),

where

ψ̃K(x) := F−1
[
(2π| · |)−np

(
1− ϕ

( ·
K

))]
(x) = C

(
|x|− n

p′ − | · |− n
p′ ∗ F−1

[
ϕ
( ·
K

)]
(x)
)

= C
(
|x|− n

p′ − | · |− n
p′ ∗ ϕK(x)

)
= CKn

∫

Rn

(
|x|− n

p′ − |x− y|− n
p′
)
e−π|Ky|

2
dy, (3.3)

where the last equality follows from Kn
∫
Rn e

−π|Ky|2dy =
∫
Rn e

−π|y|2dy = 1 for all K > 0.
Moreover, we have the scaling such as

(
ψ̃K ∗ (−∆)

n
2pu
)( x

K

)
= K

−n
p ψ̃1 ∗

[(
(−∆)

n
2pu
)( ·

K

)]
(x) for all K > 0. (3.4)

Thus by (3.3), (3.4) and Lemma 2.4, we have

(∫

Rn
|u2(x)|q|x|−sdx

) 1
q

=
(∫

Rn
|ψ̃k ∗ (−∆)

n
2pu(x)|q|x|−sdx

) 1
q

= K
−n−s

q

(∫

Rn

∣∣∣
(
ψ̃K ∗ (−∆)

n
2pu
)( x

K

)∣∣∣
q
|x|−sdx

) 1
q

= K
−n
p
−n−s

q

(∫

Rn

∣∣∣ψ̃1 ∗
[(

(−∆)
n
2pu
)( ·

K

)]
(x)
∣∣∣
q
|x|−sdx

) 1
q

≤ CK−np−n−sq
(∫

Rn

(
ψ ∗

∣∣∣
[(

(−∆)
n
2pu
)( ·

K

)]∣∣∣ (x)
)q
|x|−sdx

) 1
q

≤ C
(

1
n− s

) 1
q

+ 1
p′
q

1
p′K

−n
p
−n−s

q

∥∥∥
(

(−∆)
n
2pu
)( ·

K

)∥∥∥
Lp(Rn)

= C

(
1

n− s
) 1
q

+ 1
p′
q

1
p′K

−n−s
q ‖(−∆)

n
2pu‖Lp(Rn) (3.5)

for all K > 0, where ψ is the function as in Lemma 2.4, and we used |ψ̃1| ≤ C ψ.
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By combining (3.2) with (3.5), we have

‖u‖
Lq
(
Rn ; dx

|x|s
) ≤ C

(
1

n− s
) 1
q

+ 1
p′
q

1
p′
(
K

n
p
−n−s

q ‖u‖Lp(Rn) +K
−n−s

q ‖(−∆)
n
2pu‖Lp(Rn)

)

for all K > 0. In the end, in order to optimize the right-hand side with respect to K, we
especially take K as

K :=

(
‖(−∆)

n
2pu‖Lp(Rn)

‖u‖Lp(Rn)

) p
n

,

which provides the desired interpolation inequality, and we finish the proof. �
Next, we shall prove Theorem 1.5.

Proof of Theorem 1.5. Firstly, we prove the optimality of the bound (r−1)p′, which is shown
by Lemma 2.6 again. Indeed, it is easy to see that if q > (r − 1)p′, taking τ close enough to 1

p′
shows that

‖vτ‖Lq(Rn ; dx
wr(x)

) =∞. (3.6)

On the other hand, vτ ∈ H
n
p
,p(Rn) for all τ ∈ (0, 1

p′ ) if n ≥ 2 and n
n−1 ≤ p <∞ by Lemma 2.6.

Thus (3.6) implies the optimality of the bound (r − 1)p′ in that case.

Thus we proceed to the proof of the affirmative part of Theorem 1.5. As we discussed in
Section 2, it suffices to prove Theorem 1.5 ′. We may assume the function f is non-negative, and
we first decompose the integral into three parts :
∫

Rn

(
Gn

p
∗ f
)

(x)q
dx

wr(x)
≤ 3q

[∫

Rn

(∫

{|y|< |x|
2
}
Gn

p
(x− y)f(y)dy

)q
dx

wr(x)

+
∫

Rn

(∫

{ |x|
2
≤|y|≤2|x|}

Gn
p
(x− y)f(y)dy

)q
dx

wr(x)
+
∫

Rn

(∫

{|y|>2|x|}
Gn

p
(x− y)f(y)dy

)q
dx

wr(x)

]

=: 3q(U1 + U2 + U3).

We first investigate U1. Note that Gn
p
(x) is radial function and non-increasing with respect to

|x|. Moreover, |y| < |x|
2 implies that |x|2 < |x− y|. Thus we see

U1 ≤
∫

Rn

(∫

{|y|< |x|
2
}
f(y)dy

)q
 sup
{ |x|

2
<|z|}

Gn
p
(z)



q

dx

wr(x)

=
∫

Rn

(∫

{|y|< |x|
2
}
f(y)dy

)q
Gn

p

(x
2

)q dx

wr(x)
.

To apply Theorem A′ (i), we need to check the following condition :
(∫

{2R<|x|}
Gn

p

(x
2

)q dx

wr(x)

) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ Ã1
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holds for all R > 0. Indeed, once the above estimate has been established, the Hardy inequality
yields

U
1
q

1 ≤ (p′)
1
p′ p

1
q Ã1‖f‖Lp(Rn).

We distinguish two cases :

Case 1. We assume R ≥ 1. In this case, by the latter estimate in Lemma 2.5, we have
∫

{2R<|x|}
Gn

p

(x
2

)q dx

wr(x)
≤ C

∫

{2R<|x|}
e−

q|x|
2

dx[
log
(
e+ 1

|x|
)]r
|x|n

≤ C
∫

{2R<|x|}
e−

q|x|
4
− q|x|

4 dx ≤ Ce− qR2
∫

{2<|x|}
e−

q|x|
4 dx = Ce−

qR
2 .

Thus we have for any R ≥ 1,

(∫

{2R<|x|}
Gn

p

(x
2

)q dx

wr(x)

) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ Ce−R2 R n
p′ ≤ C.

Case 2. We assume 0 < R < 1. In this case, we see
∫

{2R<|x|}
Gn

p

(x
2

)q dx

wr(x)
=
∫

{2R<|x|<2}
Gn

p

(x
2

)q dx

wr(x)
+
∫

{|x|≥2}
Gn

p

(x
2

)q dx

wr(x)
.

By the latter estimate in Lemma 2.5, the second term is integrable, and by the former estimate
in Lemma 2.5, the first term can be estimated as follows :
∫

{2R<|x|<2}
Gn

p

(x
2

)q dx

wr(x)
≤
∫

{2R<|x|<2}
Gn

p

(x
2

)q dx

|x|n ≤ C
∫

{2R<|x|<2}
|x|−

nq
p′ −ndx ≤ CR−

nq
p′ .

Thus we obtain for any 0 < R < 1,

(∫

{2R<|x|}
Gn

p

(x
2

)q dx

wr(x)

) 1
q
(∫

{|x|<R}
dx

) 1
p′

≤ C
(
R
− n
p′ + 1

)
R

n
p′ ≤ C.

Next, we estimate U3. Note that 2|x| < |y| implies |y|2 < |x− y|. Thus we see

U3 ≤
∫

Rn

(∫

{|y|>2|x|}
Gn

p

(y
2

)
f(y)dy

)q
dx

wr(x)
.

To apply Theorem A′ (ii), we need to check the following condition :

(∫

{|x|<R}

dx

wr(x)

) 1
q
(∫

{2R<|x|}
Gn

p

(x
2

)p′
dx

) 1
p′

≤ Ã2.
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We distinguish two cases :

Case 1. We assume R ≥ 1. By Lemma 2.5, we have
∫

{2R<|x|}
Gn

p

(x
2

)p′
dx ≤ C

∫

{2R<|x|}
e−

p′|x|
2 dx

= C

∫

{2R<|x|}
e−

p′|x|
4
− p′|x|

4 dx ≤ Ce− p
′R
2

∫

{2<|x|}
e−

p′|x|
4 dx = Ce−

p′R
2 .

Furthermore, we see
∫

{|x|<R}

dx

wr(x)
=
∫

{|x|< 1
2
}

dx

wr(x)
+
∫

{ 1
2
≤|x|<R}

dx

wr(x)
,

and it is easy to see that the first term is integrable since r > 1. The second term will be
estimated as ∫

{ 1
2
≤|x|<R}

dx

wr(x)
≤
∫

{ 1
2
≤|x|<R}

dx

|x|n ≤ C(1 + logR).

Combining the above estimates, we have for any R ≥ 1,

(∫

{|x|<R}

dx

wr(x)

) 1
q
(∫

{2R<|x|}
Gn

p

(x
2

)p′
dx

) 1
p′

≤ C
[
1 + (logR)

1
q

]
e−

R
2 ≤ C.

Case 2. We assume 0 < R < 1, which is a crucial case where we use the condition q ≤ (r−1)p′.
First, Lemma 2.5 yields
∫

{2R<|x|}
Gn

p

(x
2

)p′
dx =

∫

{2R<|x|<2}
Gn

p

(x
2

)p′
dx+

∫

{|x|≥2}
Gn

p

(x
2

)p′
dx ≤ C

[
1 + log

(
1
R

)]
.

Moreover, it is easy to see that

∫

{|x|<R}

dx

wr(x)
≤ C

[
log
(
e+

1
R

)]−(r−1)

.

Thus combining above two estimates shows that

(∫

{|x|<R}

dx

wr(x)

) 1
q
(∫

{2R<|x|}
Gn

p

(x
2

)p′
dx

) 1
p′

≤ C
[
log
(
e+

1
R

)]− r−1
q

[
1 +

[
log
(

1
R

)] 1
p′
]
≤ C

since r > 1 and − r−1
q + 1

p′ ≤ 0, i.e., q ≤ (r − 1)p′.

Finally, we estimate U2. We first write U2 as

U2 =
∑

k∈Z

∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

Gn
p
(x− y)f(y)dy

)q
dx

wr(x)
.
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Since w̃r(x) :=
[
log
(

1
|x|
)]r
|x|n is non-decreasing with respect to |x| near the origin, there exists

k0 ∈ Z with k0 ≤ −3 such that w̃r(x) is non-decreasing in |x| ∈ (0, 2k0+1). We decompose U2

with k0 :

U2 =
k0∑

k=−∞

∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

Gn
p
(x− y)f(y)dy

)q
dx

wr(x)

+
∞∑

k=k0+1

∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

Gn
p
(x− y)f(y)dy

)q
dx

wr(x)
=: U21 + U22.

We first investigate U22 which is easier to estimate compared to U21. Note that |x|2 ≤ |y| ≤ 2|x|
and 2k ≤ |x| < 2k+1 imply 2k−1 ≤ |y| < 2k+2. Then by the Young inequality, we see

U22 ≤ C
∞∑

k=k0+1

∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

Gn
p
(x− y)f(y)dy

)q
dx

≤ C
∥∥∥Gn

p
∗ fχ{2k−1≤|·|<2k+2}

∥∥∥
q

Lq(Rn)
≤ C‖Gn

p
‖q
Lr̃(Rn)

∞∑

k=k0+1

‖fχ{2k−1≤|·|<2k+2}‖qLp(Rn)

= C

∞∑

k=k0+1

(∫

{2k−1≤|x|<2k+2}
f(x)pdx

) q
p

≤ C
(∑

k∈Z

∫

{2k−1≤|x|<2k+2}
f(x)pdx

) q
p

= C‖f‖qLp(Rn),

where the exponent r̃ ∈ [1,∞) is determined by 1 + 1
q = 1

r̃ + 1
p , and in the above estimate, we

used Gn
p
∈ Lr̃(Rn) which is easily seen by using Lemma 2.5.

Next, we estimate U21. Recall that w̃r(x) is non-decreasing in |x| ∈ (0, 2k0+1), and note that
|y| ≤ 2|x| implies |x| ≥ |x−y|3 . Thus by Lemma 2.5, we have

U21 ≤ C
k0∑

k=−∞

∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

|x− y|− n
p′ f(y)dy

)q
dx

w̃r(x)

= C

k0∑

k=−∞

∫

{2k≤|x|<2k+1}

(∫

{ |x|
2
≤|y|≤2|x|}

|x− y|− n
p′ f(y)

w̃r(x)
1
q

dy

)q
dx

≤ C
k0∑

k=−∞

∫

{2k≤|x|<2k+1}



∫

{ |x|
2
≤|y|≤2|x|}

|x− y|− n
p′ f(y)

w̃r
(x−y

3

) 1
q

dy



q

dx.

Here, note that |x|2 ≤ |y| ≤ 2|x| and 2k ≤ |x| < 2k+1 with k ≤ k0 yield

2k−1 ≤ |y| < 2k+2 and |x− y| ≤ 3|x| < 3 · 2k0+1 ≤ 3
4

since k0 ≤ −3.

Then we further keep evaluating U21 :

U21 ≤ C
k0∑

k=−∞

∫

{2k≤|x|<2k+1}



∫

{ |x|
2
≤|y|≤2|x|}

f(y)
[
log
(

1
|x−y|

)] r
q |x− y|nq + n

p′
dy




q

dx
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≤ C
k0∑

k=−∞

∥∥∥W ∗ fχ{2k−1≤|·|<2k+2}
∥∥∥
q

Lq(Rn)
, where W (x) :=

χB 3
4

(0)(x)
[
log
(

1
|x|
)] r

q |x|nq + n
p′
.

Now we distinguish two cases :

Case 1. We assume p ≤ q < (r − 1)p′. In this case, the Young inequality yields

U21 ≤ C‖W‖qLr̃(Rn)

k0∑

k=−∞
‖fχ{2k−1≤|·|<2k+2}‖qLp(Rn) ≤ C‖W‖qLr̃(Rn)

‖f‖qLp(Rn),

where the exponent r̃ ∈ [1,∞) is determined by 1 + 1
q = 1

r̃ + 1
p . To complete the above estimate,

we check W ∈ Lr̃(Rn) below. Note that
(
n
q + n

p′

)
r̃ = n and rr̃

q = rp′
p′+q . Thus by changing a

variable, we see

‖W‖r̃Lr̃(Rn) =
∫

B 3
4

(0)

dx
[
log
(

1
|x|
)] rp′

p′+q |x|n
= C

∫ ∞
log( 4

3)

dt

t
rp′
p′+q

<∞

since rp′
p′+q > 1, i.e., q < (r − 1)p′.

Case 2. We assume q = (r − 1)p′. In this case, one sees that W 6∈ Lr̃(Rn) but W ∈ Lr̃w(Rn)
with r̃ = p′

r′ ∈ (1,∞). Indeed, we have

W (x) =
χB 3

4
(0)(x)

[
log
(

1
|x|
)] r′

p′ |x|nr
′

p′
≤ C

|x|nr
′

p′
=: W̃ (x) for all x ∈ Rn \ {0},

and we can easily observe that W̃ ∈ Lr̃w(Rn) from the definition of the weak Lebesgue space.
Then by the above observation and Theorem B, we have

U21 ≤ C‖W‖qLr̃w(Rn)

k0∑

k=−∞
‖fχ{2k−1≤|·|<2k+2}‖qLp(Rn) ≤ C‖W̃‖qLr̃w(Rn)

‖f‖qLp(Rn) = C‖f‖qLp(Rn).

Thus we finish the proof. �
We end this chapter with the proof of Corollary 1.3 which is an immediate consequence of

Theorem 1.1 :

Proof of Corollary 1.3. Let p̃ and C be positive constants depending only n and p given by
Theorem 1.1, and let α > 0 which will be chosen small enough later. Then for any u ∈ H n

p
,p(Rn)

with ‖(−∆)
n
2pu‖Lp(Rn) ≤ 1, the Taylor expansion yields

∫

Rn
Φn,p

(
α(n− s)|u(x)|p′

) dx

|x|s =
∞∑

j=j0

[α(n− s)]j
j!

‖u‖p′j
Lp
′j
(
Rn ; dx

|x|s
).
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Furthermore, we apply Theorem 1.1 for each norm ‖u‖
Lp′j

(
Rn ; dx

|x|s
) with p′j ≥ p̃, and we get

∫

Rn
Φn,p

(
α(n− s)|u(x)|p′

) dx

|x|s ≤
1

n− s



∞∑

j=1

(
αC p′p′j

)j

j!


 ‖u‖

(n−s)p
n

Lp(Rn).

In the end, we take α = 1
2C p′p′e

so that β =
∞∑

j=1

(
j
2e

)j

j!
<∞. �
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