Study on reaction mechanism of dehydrogenation of magnesium hydride by *in situ* transmission electron microscopy

Shigehito Isobe,* Akifumi Ono, Hao Yao, Yongming Wang, Naoyuki Hashimoto, and Somei Ohnuki
Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8278, Japan

(Received 6 April 2010; accepted 10 May 2010; published online 2 June 2010)

In situ observation on dehydrogenation of MgH$_2$ was performed by using transmission electron microscope (TEM). The dehydrogenation of MgH$_2$ with 1 mol % Nb$_2$O$_5$ and formation of nanosized Mg particles were observed at 150 °C. Nb$_2$O$_5$ was not confirmed in diffraction patterns and TEM images probably due to wide dispersion. On MgH$_2$ with 10 mol % Nb$_2$O$_5$, the high resolution TEM could recognize the dehydrogenation at the interface between MgH$_2$ and Nb$_2$O$_5$, proceeding with increasing temperature. This suggests that hydrogen atoms could diffuse from MgH$_2$ phase to the interface between Mg and Nb$_2$O$_5$, resulting in formation of hydrogen molecules at the interface.

© 2010 American Institute of Physics.

doi:10.1063/1.3442910

Mg has been regarded as a promising candidate for a base metal of hydrogen storage alloys, which have large capacity for hydrogen storage.1–3 However, one of disadvantages is its slow reaction speed of hydrogenation and dehydrogenation. Recently, it has been suggested that oxide catalyst is effective for improving the hydrogenation and dehydrogenation kinetics of Mg. Barkhordarian et al. reported that Nb$_2$O$_5$ had the best effect on the hydrogen storage properties of Mg and MgH$_2$ as an oxide catalysts.4–6 Hanada et al. made some composite materials of MgH$_2$ catalyzed with transition metals and oxides by ball milling method, and reported that MgH$_2$ with 1 mol % of Nb$_2$O$_5$ has superior dehydrogenation characteristics.7–9 However, the detail of the catalytic reaction has not been understood yet. In this study, the change in the high resolution image before and after dehydrogenation was observed by using with TEM to examine the details of the catalytic reaction.

In this study, two kinds of samples with 1 and 10 mol % of Nb$_2$O$_5$ were prepared. For MgH$_2$ catalyzed with 1 mol % Nb$_2$O$_5$, MgH$_2$ powder (Alfa Aesar), and Nb$_2$O$_5$ powder (mesoporous: Sigma-Aldrich) were ball-milled under the hydrogen atmosphere of 1.0 MPa for 20 h. On the other hand, for MgH$_2$ catalyzed with 10 mol % Nb$_2$O$_5$, MgH$_2$ powder, and Nb$_2$O$_5$ powder (single-crystalline: Kojundo chemical Laboratory) were mixed by agate mortar in a glovebox filled with Ar gas. The samples were handled without exposure to air in whole process. The sample powder was placed on a micro-grid and the grid was set into a heating specimen holder in the glove box under Ar atmosphere. The heating specimen holder was put into a plastic bag under Ar atmosphere and loaded into TEM equipment in order to prevent the oxidation. The samples were observed from room temperature to 200 °C by using a TEM (JEOL-2010; 200 kV), and high resolution images of a 10 mol % catalyzed sample were obtained by using high voltage electron microscope (HVEM, JEM-ARM1300; 1250 kV). With respect to temperature control for *in situ* TEM observation, the temperature was rapidly raised up and kept at 100, 150, or 200 °C. The TEM images were analyzed by the selected area electron diffraction pattern (SADP), fast Fourier transformation (FFT), and inverse fast Fourier transformation (IFFT).

At the first step, observation by using a conventional TEM (200 kV) was carried out for MgH$_2$ catalyzed with 1 mol % Nb$_2$O$_5$, which showed a remarkable catalytic effect.10

Electronic mail: isobe@eng.hokudai.ac.jp.
Fig. 1 shows the bright field (BF) images and SADP of MgH$_2$ catalyzed with 1 mol% Nb$_2$O$_5$ at RT, 150 and 200 °C. In case of RT, the diffraction rings and patterns of MgH$_2$ and MgO were confirmed. MgO could be considered as an impurity in the starting material of MgH$_2$. At 150 °C, the diffraction ring of MgH$_2$ became weak and the diffraction ring of Mg appeared. Therefore, it was confirmed that the decomposition of MgH$_2$ and the formation of Mg started from around 150 °C. In the case of 200 °C, the diffraction ring of MgH$_2$ almost disappeared and the Debye ring of Mg developed, meaning that the Mg crystal was formed with several 10 nm in size. On the other hand, Nb$_2$O$_5$ was not identified by both BF images and SADP. In BF images, the shape of sample hardly changed while the contrast became weak with increasing temperature, indicating that the density of the particle decreased due to formation of voids.

In order to identify microstructure of interface between MgH$_2$ and Nb$_2$O$_5$, MgH$_2$ catalyzed with 10 mol% Nb$_2$O$_5$ was observed by using high resolution microscopy with HVEM (1250 kV). On the desorption kinetics, the dehydrogenation characteristics of the MgH$_2$+1 mol% Nb$_2$O$_5$ is superior to that of MgH$_2$+10 mol% Nb$_2$O$_5$ due to a larger amount of interface volume between MgH$_2$ and catalyst. Figure 2 shows (a) BF image, (b) FFT image, and (c) IFFT image at RT. As shown in Fig. 2(a), it was confirmed that upper and bottom parts are MgH$_2$ and Nb$_2$O$_5$, respectively. Meanwhile Mg formation is confirmed near the interface. Figures 2(b) and 2(c) are FFT and IFFT images from square in (a), showing phases of MgH$_2$ and Mg. It was indicated that the initial decomposition from MgH$_2$ to Mg occurred at the interface between MgH$_2$ and Nb$_2$O$_5$ even at RT. The reason why the decomposition started even at RT was probably due to an effect of electron-beam irradiation. Here, the effect of electron-beam irradiation on the decomposition should be considered. By electron-beam irradiation, the temperature would be locally increased. The decomposition could be caused by this local heating. However, despite the electron-beam irradiation could affect the entire sample; the results showed that Mg phase appeared at the interface. From this consideration, it can be recognized that the decomposition started at the interface due to the catalytic effect. The size of Mg phase, as shown in the dotted line in Fig. 2(a) was approximately 60 nm. Figure 3 shows BF image and related FFT and IFFT images at 100 and 200 °C. The Mg phase grew up with increasing temperature. Conclusively, we successively observed the growth of Mg phase started at the interface between MgH$_2$ and Nb$_2$O$_5$ and proceeded with increasing temperature. Here, it should be noticed that Mg phase appeared and grew up between MgH$_2$ and catalyst, indicating that MgH$_2$ phase did not touch the catalyst any longer. In that case, it should be considered that how the catalyst does work. In general, surface reaction is regarded as the rate determining step of the decomposition of MgH$_2$. On the surface, hydrogen molecules form with hydrogen atoms. The catalyst should rescue the activation energy of the surface reaction. So, it can be recognized that hydrogen molecules emitted at the interface. As a result, it can be suggested that hydrogen atoms diffuse from MgH$_2$ phase to the interface through Mg phase, as shown in Fig. 4. With respect to state of hydrogen atoms, initially hydrogen is as atoms in
hydride, next hydrogen atoms randomly diffuse in interstitial sites, and finally hydrogen atoms are combined to be hydrogen molecule at the interface between Mg and catalyst.

In conclusion, it was confirmed that the dehydrogenation of MgH2 catalyzed with 1 mol % Nb2O5 started at 150 °C, and then nanosize Mg was formed by SADP. In the case of MgH2 catalyzed with 10 mol % Nb2O5, it was indicated that the dehydrogenation of MgH2 started at interface between Nb2O5 and MgH2. And it can be assumed that hydrogen probably diffuse from MgH2 to surface of Nb2O5 through Mg phase. The real catalyst, which might exist on the interface of Nb2O5 and MgH2 could not be identified either. Hanada et al.11 reported the catalyst of Nb–O binary oxides in MgH2 was characterized to be NbO by x-ray absorption fine structure (XAFS). NbO was generated by ballmilling MgH2 with Nb2O5. On the other hand, Porcu et al.12 observed Nb2O5, Nb2O, and MgNb2O3.67 by TEM. Still several candidates can be considered for the most effective catalyst. Near future, we plan to observe the interface between MgH2 and Nb2O5 by using scanning transmission electron microscope electron energy-loss spectroscopy (STEM-EELS), which can be a proper method to determine the real catalyst at the interface.

This work has been partially supported by NEDO under “Advanced Fundamental Research Project on Hydrogen Storage Materials.”